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Abstract Interactions among neurons are a key com-
ponent of neural signal processing. Rich neural data
sets potentially containing evidence of interactions can
now be collected readily in the laboratory, but ex-
isting analysis methods are often not sufficiently sen-
sitive and specific to reveal these interactions. Gen-
eralized linear models offer a platform for analyzing
multi-electrode recordings of neuronal spike train data.
Here we suggest an L1-regularized logistic regression
model (L1L method) to detect short-term (order of
3 ms) neuronal interactions. We estimate the para-
meters in this model using a coordinate descent al-
gorithm, and determine the optimal tuning parameter
using a Bayesian Information Criterion. Simulation
studies show that in general the L1L method has
better sensitivities and specificities than those of the
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traditional shuffle-corrected cross-correlogram (covar-
iogram) method. The L1L method is able to detect
excitatory interactions with both high sensitivity and
specificity with reasonably large recordings, even when
the magnitude of the interactions is small; similar re-
sults hold for inhibition given sufficiently high baseline
firing rates. Our study also suggests that the false pos-
itives can be further removed by thresholding, because
their magnitudes are typically smaller than true inter-
actions. Simulations also show that the L1L method is
somewhat robust to partially observed networks. We
apply the method to multi-electrode recordings col-
lected in the monkey dorsal premotor cortex (PMd)
while the animal prepares to make reaching arm move-
ments. The results show that some neurons interact
differently depending on task conditions. The stronger
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interactions detected with our L1L method were also
visible using the covariogram method.

Keywords Multi-electrode recording ·
Model selection · Coordinate descent ·
BIC · Premotor cortex

1 Introduction

An important problem in current neuroscience re-
search is to understand the networks of interactions
among the neurons in relevant brain areas (Brown
et al. 2004; Fujisawa et al. 2008; Eldawlatly et al. 2009;
Stevenson et al. 2009; Kass et al. 2011; Mishchencko
et al. 2011). New multi-electrode recording techniques
allow simultaneous recordings of neurons during be-
havior, which can help reveal how cells interact. At the
same time, these recordings present a great challenge
to data analysts, because conventional procedures are
often inadequate to infer structure in the noisy high
dimensional data yielded by these experiments.

The commonly used tools by neuroscientists to study
neuronal correlations are the cross-correlation his-
togram (Perkel et al. 1967) and its variants, includ-
ing the joint peri-stimulus time histogram (JPSTH)
(Gerstein and Perkel 1972), the snowflake plot (Perkel
et al. 1975; Czanner et al. 2005), and the shuffle-
corrected cross-correlogram (Aertsen et al. 1989;
Brody 1999). However, these methods have limitations.
First, they study only two or three neurons at a time,
ignoring the possible contributions of other neurons.
The detected correlations could be ambiguous due to
the possible but excluded influence of other neurons,
such as common-input or chain effects. Second, the
correlations detected by these graphical methods are
undirected, that is, the correlation between neurons
A and B is the same as that between neurons B and
A. However, because neurons are polarized, such an
analysis may not capture the true asymmetric informa-
tion flow in the brain. Third, those graphical methods
are histogram-based, so analysis must be restricted to a
specific time scale or degrees of smoothing (Kohn and
Smith 2005; Harrison and Geman 2009).

Brillinger (1988) introduced generalized linear mod-
els (GLMs) for the analysis of the firing rate of a
neuron as a function of the time since its last spike
and the spiking history of other neurons. Although he
studied small networks (three neurons) GLMs offer a
useful framework for the analysis of tens, even hun-
dreds of simultaneously recorded neurons. Since then,
much of the work in this area has focused on encoding,

which fits a model of neural spiking given observed
behavior (Paninski 2004; Truccolo et al. 2005; Kulkarni
and Paninski 2007). GLMs can be generalized to point
process (Paninski 2004; Kass et al. 2011) or state-space
frameworks (Kulkarni and Paninski 2007; Mishchencko
et al. 2011). In addition, GLMs have proven to be
successful in decoding body movements from neural
activity (Gao et al. 2003; Truccolo et al. 2005), and are
better than entropy methods in predicting the spikes of
single neurons (Truccolo et al. 2010).

One additional advantage of the GLM approach is
that it allows all recorded neurons and interactions
among them to be analyzed simultaneously. GLMs can
capture other influences on a neuron, such as spike his-
tory of the neural ensemble, environmental events, and
body movement. The resulting GLM parameters have
an intuitive interpretation as indicating the degree of in-
teractions among neurons. Unlike traditional graphical
methods, this measurement of neuronal interactions is
directed, flexible to the choice of time lags, and condi-
tional on the neuron ensemble. Therefore, in this paper
we call this type of neuronal spike-timing dependence
described by the GLM an ‘interaction’, to distinguish it
from the ‘correlation’ estimated from graphical meth-
ods like the shuffle-corrected cross-correlogram.

Here we use GLMs to assess neuronal interactions
and their variations under different behavioral tasks.
We interpret the signs of parameters in GLMs as indi-
cating an excitatory (positive), inhibitory (negative), or
a lack of (zero) interaction between neurons. Neuronal
interactions can reasonably be expected to be sparse. A
cortical neuron receives between 103–104 inputs, which
is a vanishingly small fraction of the 1010 neurons in the
cerebral cortex. Also, the occurrence of correlations
reported using conventional methods range from small
(Kohn and Smith 2005) to essentially zero (Ecker
et al. 2010). One such attempt by Truccolo et al.
(2005) uses the Akaike Information Criterion (AIC) to
select models. However, the AIC cannot automatically
select the best among all possible interaction networks
because it must compare all candidate models, which
is infeasible for a large neuron population. Therefore,
unless we have postulated a network for testing a
priori, an automatic model selection approach is
required to find the neural interactions. In addition,
a naive implementation of logistic or Poisson models
for spike train data suffers from nonconvergence
problems. Zhao and Iyengar (2010) showed that these
difficulties are due to infinite values of the maximum
likelihood estimates (MLEs). Therefore, standard
stepwise variable selection methods are susceptible to
the nonconvergence problems.
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The model selection method we consider, which we
call the L1L method, uses an L1 regularization on
a logistic regression model to detect short-term neu-
ronal interactions. We chose L1 (as opposed to, say,
L2) regularization because several studies Tibshirani
(1996) and Avalos et al. (2003) show that it performs
well for models that are sparse, with relatively few
regression coefficients that are large. There are several
other recent works in neuroscience that also use L1

regularization. Stevenson et al. (2009) used a Bayesian
formulation of L1 regularization to detect long-term
(∼100 ms) neuronal interactions. Kelly et al. (2010)
used a L1-regularized Poisson model to study neuronal
network in V1 data. Chen et al. (2010) compared L1,
L2 and hierarchical variational Bayesian methods with
respect to their performance in detecting interactions.
Mishchencko et al. (2011) proposed a L1-regularized
state-space model to detect functional connectiviy on
calcium fluorescent imaging data. In this paper, we
extend the study of L1-regularization in several ways.
First, the performance of L1 regularization depends
highly on the details of network, that is, the size of
the model, the sparsity of the model, the correla-
tion between variables, and the method used to select
tuning parameters (Hastie et al. 2001). Therefore, we
simulated networks, varying several factors that could
potentially influence the method’s performance. In
particular, we study its sensitivity (ability to detect
nonzero coefficients) and specificity (resistance to false
positives) while we vary: (1) amount of data, (2)
network complexity, (3) magnitudes of connection
strength, (4) excitation and inhibition, and (5) the
fraction of the complete network observed from our
simulation. We assess the performance of the L1L
method across these conditions. Second, different brain
areas have different structures or different degrees
of sparsity of neuronal interactions. The complexity
of the network will have different effects on short-
term and long-term interactions. Therefore, it is worth
assessing the performance of the L1L method when
applied to the motor cortex to study short-term in-
teractions. Third, we use the Bayesian Information
Criterion (BIC) to select the tuning parameter (BIC
γ -selector). We state and prove a theorem that us-
ing BIC γ -selector on the L1L method asymptotically
maintains all true variables in the selected submodel,
so that the problem of false positives will dominate
that of false negatives. This result sheds light on the
theoretical performance of the L1L method. Fourth,
to further remove false positives, we suggest a further
thresholding on selected interactions. Although, this
second thresholding step is not a main focus of our

paper, we illustrate its use on both simulated and real
data, and discuss our future work in this direction. Fifth,
we also use the simulation to compare our method with
the shuffle-corrected cross-correlogram (covariogram)
(Brody 1999). Our proposed L1L method generally
performs better than the covariogram method with
respect to the sensitivity and specificity of interaction
detection. In particular when the interaction network
is complex, the L1L method has far fewer false pos-
itives than the covariogram method. In addition, be-
cause the optimization of L1-regularized problems is
usually computationally heavy, we use the ‘coordinate
descent algorithm’ as implemented in the R package
glmnet (Friedman et al. 2007, 2010; Kelly et al. 2010).
Finally, the use of the BIC γ -selector instead of tra-
ditional k-fold cross validation can avoid extra model
fittings, making our approach feasible for routine
use.

After calibrating the L1L method by simulations,
we apply it to electrophysiological data collected from
the dorsal premotor cortex (PMd) of a behaving Rhe-
sus monkey. The animal was instructed to perform
reaching movements to targets distributed through a
workspace. Each movement was preceded by an in-
structed delay period during which the animal was
aware of the reach he would soon be instructed to per-
form, but was not yet permitted to do so (Batista et al.
2007). This ‘plan’ period generated relatively stationary
average firing rates, which can remove confounds in
a correlation analysis (Brody 1999). We found that
both the quantity and pattern of short-term neuronal
interactions change with different conditions, which is
further confirmed by a covariogram analysis. The L1L
method detected about only half number of short-term
neuronal interactions that the covariogram method did.
Based on our simulation studies, we believe that, given
a potentially complicated neuronal network and strong
interactions between neurons, the L1L method si-
multaneously maintains high sensitivity and specificity,
while the covariogram method is susceptible to more
false positives.

The paper is organized as follows. Section 2 describes
the GLM framework for modeling multi-electrode
recording data, and our L1L method to detect short-
term neuronal interactions. In Section 3, simulation
studies are used to assess the performance of the L1L
method and to compare the L1L method with the
covariogram method. The performance is assessed with
respect to the aspects stated above. In Section 4, the
L1L method is applied to monkey PMd data. Section
5 summarizes the main results and discusses future
extensions and applications.
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2 Methods

2.1 GLM framework for multi-electrode recording
data

A typical format for neurophysiological data is the
binned spike count: a discrete integer-valued time
series with each value indicating the number of ac-
tion potential discharges (spikes) within each time bin.
There is one such ‘spike train’ per neuron recorded.
Depending on the type of experiment, the time courses
of extrinsic covariate information, such as stimulus his-
tory and body kinematics, can also accompany the spike
trains. These data are discretized to the same time bins
as the spike data.

We bin the time axis into T equal segments. Typ-
ically T is large enough so that at most one spike
per neuron occurs within each bin of size �. Thus
the binned spike count time series has binary values
typically with � = 1 millisecond (ms) (Brillinger 1988;
Truccolo et al. 2005). Large bin sizes that lead to count
data are also used (Stevenson et al. 2009). We denote
the spike train within the first t bins of neuron c as Nc

1:t,
the number of spikes within the tth bin of neuron c as
�Nc

t , the history of all neurons and extrinsic influences
before, but not including, the tth bin as Ht, and its
conditional firing rate (number of spikes per second) at
bin t as λc

t , where c = 1, 2, ..., C, the number of neurons
identified by the electrodes.

Assuming that the firing rate is constant in the time
interval �, the distribution of �Nc

t conditioned on the
history is typically considered as either Bernoullli if
�Nc

t is binary, or Poisson if �Nc
t is a count. In the

Bernoulli case,

P
(
�Nc

t |Ht
) = [

λc
t �

]�Nc
t
[
1 − λc

t �
]1−�Nc

t ,

and in the Poisson case,

P
(
�Nc

t |Ht
) =

[
λc

t �
]�Nc

t

�Nc
t !

e−λc
t �.

Assuming that the spiking probability of a neuron at
time t depends only on the history, and not on the spik-
ing of other neurons at the same time, the likelihood of
all spike trains is:

P
(
N1:C

1:T
) =

C∏

c=1

T∏

t=1

P
(
�Nc

t |Ht
)
.

Further, if the experiment is repeated J times, we
assume that the trials are independent replicates, so the
likelihood is

P
(
N1:C

1:T (1), ..., N1:C
1:T (J)

) =
J∏

j=1

C∏

c=1

T∏

t=1

P
(
�Nc

t ( j)|Ht
)
.

(1)

Next, we model the conditional firing rate, incorporat-
ing all covariates of interest:

g
(
λc

t �
)=βc+

P∑

p=1

βcp�Nc
t−p+

∑

i �=c

Q∑

q=1

βciq�Ni
t−q+ I(αc),

(2)

where g is an appropriate link function satisfying the
standard requirements of a logistic or Poisson model,
such as the logit or log, respectively (McCullagh and
Nelder 1989). The first term βc in Eq. (2) denotes the
baseline firing rate. The second term models the effect
of the spiking history of neuron c, with the coefficient
βcp indicating the magnitude of effect at lag p, up to a
P� ms lag. The third term captures neural ensemble
effects, with βciq being the magnitude of effect of neu-
ron i on neuron c at lag q, this time up to a Q� ms lag.
The last term I denotes a function, linear in parameters
α, of extrinsic covariate effects (Moran and Schwartz
1999; Truccolo et al. 2005).

To model the spike history and neural ensemble
effects, the covariates �Nc

t−p, �Ni
t−q in Eq. (2) can be

substituted by Nc
1:t−(p−1)W − Nc

1:t−pW and Ni
1:t−(q−1)W −

Ni
1:t−qW , where W represents a multiple of �. This sub-

stitution is equivalent to constraining the βcp and βciq

to be constant in a larger time interval compared to �,
so that the corresponding spike event has a persistent
effect.

2.2 L1-regularized logistic model

To capture short-term interactions on the order of
3 ms, we build a model with high time resolution, with
� = 1 ms and Q ≤ 3. Note that the use of a small bin
size can increase the resolution considerably so that the
data are sufficient, particularly when the experiment
time of interest is small, say, 500 ms. When � = 1 ms,
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each �Nc
t is binary, leading to the logistic regression

model

log
(

λc
t �

1 − λc
t �

)
= βc +

P∑

p=1

βcp�Nc
t−p

+
∑

i �=c

βci1

⎛

⎝
Q∑

q=1

�Ni
t−q

⎞

⎠ + I (αc) .

(3)

For small values of �, probabilities from the Poisson
model are quite close to that of the logistic; hence, the
two models will give essentially equivalent inferences.

The parameter βci1 in Eq. (3) represents the short-
term interaction between neurons c and i within Q ms,
given the activity of all other neurons: βci1 > 0 means
that neuron c will be excited within Q ms after neuron i
fires, βci1 < 0 means inhibitory interaction, and βci1 = 0
means lack of interaction from neuron i to neuron c.
In the last term, αc are parameters for extrinsic effects,
which we exclude from the model when there are no
stimuli or body movements of interest. Note that for
different cells c, the parameters in Eq. (3) are distinct,
so the entire logistic model can be solved cell by cell.
We collect the parameters βc, {βcp} and {βci1} into a
large vector θc, and maximize C individual likelihoods

L (θc, α̃c) = P
(
Nc

1:T(1), ..., Nc
1:T(J)

)

=
J∏

j=1

T∏

t=1

P
(
�Nc

t ( j)|Ht
)
. (4)

However, maximizing Eq. (4) itself does not generally
give zero estimates of the interactions parameters, so
we use a selection method by zeroing out some βci1.
Tibshirani (1996) introduced the lasso to select vari-
ables in the linear model. The lasso has been imple-
mented widely (Tibshirani 1997; Peng et al. 2009), and
its theoretical properties have been studied (Fan and Li
2001; Efron et al. 2004; Zou et al. 2007). Our approach
selects a sparse model by minimizing the C individual
L1-regularized logistic models

f (θc, α̃c|γc) = − logP
(
Nc

1:T(1), ..., Nc
1:T(J)

)

+ γc

⎛

⎝
∑

p

| βcp | +
∑

i �=c

| βci1 |
⎞

⎠ . (5)

The L1-regularization can be also directly added
to the whole log-likelihood (Eq. (1)). However, since
there is no overlap in the parameters for different

neurons, fitting C individual L1-regularization logistic
models affords more flexibility in the choice of the reg-
ularization parameter γ . In addition, decomposing the
entire model (Eq. (1)) into C models can decrease its di-
mension, so that computation becomes more efficient.

Because the function f in Eq. (5) does not have
a derivative at βcp = 0 and βci1 = 0, a gradient-based
method, like the Newton–Raphson method, cannot
be applied directly. Hence, there has been consid-
erable effort on numerical optimization of the L1-
regularization problem. Tibshirani (1996) offered an al-
gorithm but it proved to be computationally inefficient.
Later, methods based on path algorithms (Efron et al.
2004; Friedman et al. 2007, 2010; Park and Hastie 2007;
Rosset 2004; Wu and Lange 2008) improved the time
required for accurate computation of the estimates.

In this paper, we use the coordinate descent algo-
rithm (Friedman et al. 2007) because of its speed and
simplicity of implementation. It does not necessarily
give accurate estimates of β; however, that suffices for
our purposes because our focus is on sign(β) rather
than its actual value.

2.3 BIC for selecting tuning parameter

In addition to minimizing Eq. (5) for different γ , we
need to decide how to select the optimal γ . There are
several commonly used procedures, such as the ‘BIC
γ -selector’, ‘AIC γ -selector’ and cross-validation. Here
we use the terms ‘BIC γ -selector’ or ‘AIC γ -selector’
to distinguish them from the traditional BIC and AIC
methods that directly compare the BIC or AIC scores
of candidates models without regularization. The BIC
γ -selector is the one considered in our analysis for
several reasons. First, it saves time in computation,
compared to the extra model fittings required by cross
validation. Moreover, the BIC as a method to select a
tuning parameter has been studied, and is proven to
be consistent in model selection for linear regression
(Zou et al. 2007; Wang et al. 2009). Although the merits
of the BIC γ -selector is based on the large sample
theory, in the monkey experiments that we consider,
the acquisition of sufficiently large samples is not an
issue. Simulation studies in the next section suggest the
sufficient sample sizes we actually need. The BIC γ -
selector chooses the tuning parameter γ which gives the
smallest BIC value:

BIC(γ ) = − 2logL(β̂(γ )) + log(n)

× #{nonzero parameters},
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where β̂(γ ) is the L1-regularized estimate of parame-
ters for the tuning parameter γ .

Earlier theoretical studies about the consistency of
BIC γ -selector in model selection address linear mod-
els with various types of regularization (Zou et al.
2007; Wang et al. 2009; Qian and Wu 2006). We there-
fore state the following asymptotic results of BIC γ -
selector in L1-regularized logistic models. First, some
terminology: we call models that contain all covariates
with non-zero parameters ‘correct models’, even if they
contain covariates with zero parameters; we call the
model that contains all the covariates with non-zero
parameters only the ‘true model’; we call models that
miss at least one covariate with non-zero parameter as
‘wrong models’. Based on certain regularity conditions
on link functions, data, and likelihood functions, we
have the following theorem:

Theorem For the L1-regularized logistic regression
model given in Eqs. (4) and (5) with a logit link function,
the BIC γ -selector will asymptotically select the correct
model with the smallest number of covariates among all
the submodels β̂(γ ) presents.

See the Appendix for the proof and the details of
theorems quoted in the proof. We will brief ly sketch
the steps here. Qian and Wu (2006) showed that, in
logistic regressions, the dif ference of the log-likelihoods
between a correct model and the true model is positive
and of order O(log log n). Next, the dif ference between
the log-likelihoods of the true model and a wrong model
is positive and of order O(n). Therefore, a penaliza-
tion of order O(log n), which BIC does, will asymp-
totically select the true model. Although BIC(γ ) is de-
rived from L1-regularized estimates, the logic described

above still holds, as long as the dif ference between the
L1-regularized log-likelihood of the true model and its
unregularized counterpart is of order o(log n). Now,
Theorem 1 in Fan and Li (2001) shows that the L1-
regularized estimates converge at the rate of o(n− 1

2 log n),
and based on a Taylor expansion, the dif ference of
two log-likelihoods can be controlled to be of order
o(log n). Therefore, the BIC γ -selector is consistent in
model selection, in the sense that it asymptotically gives
the correct model with the smallest number of covariates
among all the submodels β̂(γ ) presents.

3 Simulation study

3.1 Simulation setup

Before we turn to the analysis of the neurophysiological
experiments, we describe a simulation study to assess
the performance of this L1L method. We mainly focus
on two types of network we constructed (Fig. 1): a
simple one consisting of parallel one-way interactions
between pairs of neurons, and a complex one with a
hub-and-spoke structure. To further study the impact
of network complexity, we construct a ‘dense’ network
with tighter loops, higher order cliques and more in-
teractions (Fig. 2). Each simulated network contains
30 neurons. We do not claim that these networks are
biologically accurate. Instead, we use them because
they do incorporate certain plausible features such
as communication between layers, common input and
recurrent loops. We also choose parameter values to
generate realistic firing rates. For our simulations, we
assume stationarity; thus, for each set of parameter

Fig. 1 Two simulated
networks, each with 30
neurons
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Fig. 2 A ‘dense’ network
which has three disconnected
sub-networks with tighter
loops, higher order cliques
and more interactions
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values, we used a single long trial; to relate the simu-
lations with the physiological data below, we matched
the recording times.

The interactions in the networks are either excitatory
or inhibitory, denoted by positive or negative values
of the parameter βciq, which captures the influence
of neuron i on neuron c at lag q; see the previous
section for details. To simulate the model in Eq. (2) we
follow the approach of Truccolo et al. (2005), with βciq

increasing (or decreasing) with q = 1, 2, 3 and βciq = 0
for q > 3 (Fig. 3(a), (b)). This choice models short-
term dependence: the influence of an action potential
lessens with time, with an average duration of 3 ms. The
parameter βcp captures the self-spike-history effect: see
Fig. 3(c). We further require βc, which determines the
neuron’s baseline firing rate, to be between −6 and −3
to realize a 3–50 Hz baseline firing rate for each neuron.
In our illustrations, we set βc = −4.6 to achieve a 10
Hz baseline firing rate, which approximates the average
firing rate for our population of real neurons. Since our
focus is on the detection of neuronal interactions, we
set the function I(αc) that related to external signals to
a neuron’s firing rate to 0 to omit extrinsic effects. This

is a reasonable approximation for the planning period
in the delayed reaching task the monkeys performed:
the visual environment is not changing, and the monkey
is holding still, thus changing external influences on
neural activity are relatively reduced.

Here we set Q = 3, P = 60 and C = 30 in Eq. (3).
The model then becomes:

log
(

λc
k�

1 − λc
k�

)
= βc +

60∑

p=1

βcp�Nc
k−p

+
∑

i �=c

βci1(�Ni
k−1 + �Ni

k−2 + �Ni
k−3)

(6)

We select this model setup because of our interest in
detecting excitatory and inhibitory interactions within
a 3 ms range, rather than in the details of the curves
in Fig. 3. Thus, we pool the data within the next 3 ms
together, and the parameters βci1 in Eq. (6) are then
estimated by our L1L method, which illustrates the
short-term neuronal interactions.
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Fig. 3 Parameter values in Eq. (2) for (a) excitatory interactions, (b) inhibitory interactions, and (c) the neuron’s refractoriness after a
spike
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Table 1 Sensitivities and
specificities for the simple
and complex networks in
Fig. 1 for three values of |βci1|
and four data lengths

Data length Network |βci1| Sensitivity Specificity

Total Excitation Inhibition

5 s Simple 2 0.088 0.165 0 0.9994
3 0.403 0.755 0 0.9994
4 0.531 0.995 0 0.9994

Complex 2 0.1 0.15 0 0.9997
3 0.583 0.874 0 0.9987
4 0.665 0.996 0.02 0.9934

25 s Simple 2 0.423 0.793 0 0.9997
3 0.533 1 0 0.9998
4 0.533 1 0.008 0.9992

Complex 2 0.589 0.881 0.004 0.9993
3 0.668 1 0.004 0.9993
4 0.679 1 0.036 0.9446

50 s Simple 2 0.528 0.985 0.006 0.9997
3 0.535 1 0.003 0.9999
4 0.537 1 0.008 0.9997

Complex 2 0.675 0.999 0.028 0.9997
3 0.715 1 0.144 0.9959
4 0.738 1 0.214 0.9477

100 s Simple 2 0.543 1 0.020 0.9999
3 0.604 1 0.151 0.9993
4 0.643 1 0.234 0.9998

Complex 2 0.695 1 0.086 0.9995
3 0.827 1 0.482 0.9832
4 0.812 0.988 0.460 0.8936

The performance of the method is assessed in several
ways: the complexity of the network, the strength of the
interaction (|βci1| = 2, 3, 4), the size of the data set (5 s,
25 s, 50 s, or 100 s recording periods), the type of inter-
action (excitation or inhibition), and the subpopulation
of neurons (partial network). For each combination of
model parameters, we ran 50 independent replicates
in the simulations. For our simulations, we assume
stationarity. Thus, for each set of parameter values, we
used a single long trial. We matched the recording times
to relate the simulations with the physiological data
below. The criteria are the sensitivities (given in three
types) and specificities, which are shown in the Tables
1, 2, 3, 4, and 5.

3.2 Simulation results

Here we summarize our main findings in terms of the
sensitivity (ability to detect nonzero coefficients) and
specificity (resistance to false positives) for detecting
excitation and inhibition. We vary the network com-
plexity, the interaction strengths, and the size of the
data set (that is, recording time). We also assess the
model’s performance when only a subset of the simu-
lated network is observed.

Size of the dataset From Table 1, we can see that
more data yield more power in detecting neuronal

interactions. For data of size no shorter than 25 s,
with specificities over 94%, the L1L model can detect
more than 80% of the excitatory interactions for both
networks when the strength of the interactions is small
(βci1 = 2). If the strength of interactions is larger (βci1 =
3 or 4), all of the excitatory interactions are detected.
Also, compared to almost zero sensitivity in detecting
inhibition for 5 s and 25 s data, a 50 or 100 s data
set can detect more inhibitory interactions (up to 40%,
if the strength is high enough). We also noticed that
for complex network with larger interaction strength
(βci1 = 3 or 4), more data cause more false positives
(lower specificity). This phenomenon also occurs in the
‘dense’ network results (Table 2). We speculate that it is

Table 2 Sensitivities and specificities for the ‘dense’ network in
Fig. 2 for two values of |βci1| and four data lengths

Data |βci1| Sensitivity Specificity

length Total Excitation Inhibition

5 s 2 0.064 0.1272 0 0.9992
4 0.520 0.996 0.043 0.9834

25 s 2 0.433 0.864 0.002 0.9983
4 0.765 1 0.529 0.9028

50 s 2 0.506 0.997 0.014 0.9982
4 0.806 1 0.612 0.9082

100 s 2 0.549 1 0.098 0.9993
4 0.924 1 0.847 0.9061
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Table 3 Sensitivities and
specificities for very small
interaction strengths with 50 s
and 100 s (in parentheses)
data length

|βci1| Network Sensitivity Specificity

Total Excitation Inhibition

|βci1| = 1 Simple 0.0547 (0.1427) 0.1025 (0.2675) 0 (0) 0.9998 (0.9998)
Complex 0.0553 (0.1860) 0.0830 (0.2730) 0 (0.0120) 0.9998 (0.9997)
Dense 0.0361 (0.1353) 0.0722 (0.2683) 0 (0.0022) 0.9998 (0.9998)

|βci1| = 1.5 Simple 0.3293 (0.5120) 0.6175 (0.9525) 0 (0.0086) 0.9996 (0.9996)
Complex 0.4807 (0.6877) 0.7190 (0.9750) 0.0040 (0.0920) 0.9990 (0.9994)
Dense 0.3367 (0.5019) 0.6689 (0.9661) 0.0044 (0.0378) 0.9986 (0.9986)

due both to the effect of the complexity of the network
and the strength of neuronal interactions.

Complexity of the network When interaction strength
is small (βci1 = 2 or 3), there are no major differences
in the sensitivities and specificities between the the
simple and complex networks. But when the interaction
strength is large (βci1 = 4), the the L1L method yield
more false positives in the complex network. There ap-
pears to be a synergistic effect between the interaction
strength and network complexity. We speculate that
two neurons that have no interaction could be falsely
identified as having ‘interacted’ by a strong pathway
of intermediate neurons. Such misclassification is much
more common in the covariogram method (Table 5), a
point that we will discuss below.

From the results of ‘dense’ network (Table 2), we
find that the specificity remains above 90%, although
it is generally lower than those from the simple and
complex networks, as we expected. And in the mean-
time, the sensitivity remains at a higher level than those
from simple and complex networks, particularly for
inhibitory interactions.

Interaction strength All three types of sensitivity
(total, excitation, and inhibition) increase with the
strength of neuronal interactions (Table 1), while
specificity remains above 94%. The strength of neu-
ronal interactions is indicated by the magnitude of βci1.
When the data set is small (5 s of data), this increase
is more obvious, especially in the sensitivity to excita-
tion. For example, when βci1 = 2, this method can only
detect 15% of excitatory interactions, but with βci1 = 3,
it can detect at least 75% of them. In other words, if
the excitatory input from neuron i increases the firing
rate of neuron c from 10 Hz to 70 Hz (βci1 = 2), it is not
large enough to detect by our method. But if the firing
rate increases to 170 Hz (βci1 = 3) or more (350 Hz for
βci1 = 4) (which is typically well beyond the peak firing
rates of cortical neurons), our method would have at
least 75% sensitivity.

Although 70 Hz may appear to indicate an active
neuron, the transience (only 3 ms) of the interactions
prevents us from detecting this effect with a 5 s record-

ing period. The probability of a spike in the next mil-
lisecond raises only from 0.01 to 0.07. When the data
size is enlarged to 50 s, the change in excitation from 10
Hz to 70 Hz is more likely to be detected.

In order to see how small the interaction strengths
must be before the performance degrades, we did simu-
lations with smaller values of the regression coefficients
(Table 3): we see that for |βci1| = 1.0 the sensitivities are
very small; for |βci1| = 1.5 the sensitivities are consid-
erably higher, especially for inhibition. The specificity
remains very high.

Excitation and inhibition From Table 1 we see that
inhibitory interactions between neurons are harder to
detect than excitation. We expect this difficulty because
when firing rates are already low, further inhibition
is limited by a floor at zero (e.g., a 10 Hz firing rate
corresponds to a 0.01 probability of a spike during
a 1 ms bin). To verify this conjecture, we simulated
networks with higher baseline firing rates to see if the
sensitivity in detecting inhibition would increase. The
results in Table 4 shows that given the same interaction
strength and data length, higher baseline firing rates do
indeed result in higher sensitivity to inhibition. On the
other hand, it is not hard to imagine that increasing the
baseline firing rate is equivalent in effect to increasing
the data length.

False positives The asymptotic properties of the BIC
γ -selector stated in Section 2.3 suggest that false posi-
tives will be more likely when the size of the data set
is large enough. This is also shown by the simulation

Table 4 Sensitivities and specificities for different baseline firing
rates (BFR)

Network BFR Sensitivity Specificity

Total Excitation Inhibition

Simple 10 Hz 0.528 0.985 0.006 0.9997
15 Hz 0.56 1 0.057 0.9998
25 Hz 0.867 1 0.714 0.9406

Complex 10 Hz 0.675 0.999 0.028 0.9997
15 Hz 0.713 1 0.14 0.9996
25 Hz 0.973 1 0.918 0.9325

|βci1| is fixed at 2 and data length is 50 s
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Table 5 Sensitivities and
specificities for the
covariogram method

The corresponding
sensitivities and specificities
of the L1 L method are shown
in parentheses

Network Data length |βci1| Sensitivity Specificity

& BFR Excitation Inhibition

Simple 5 s 2 0 (0.165) 0 (0) 1 (0.9994)
BFR = 10 Hz 4 0.930(0.995) 0 (0) 1 (0.9994)
50 s 2 0.828 (0.985) 0 (0.006) 1 (0.9997)
BFR = 10 Hz 4 1 (1) 0 (0.008) 1 (0.9997)
50 s 2 1 (1) 0 (0.714) 1 (0.9406)
BFR = 25 Hz 4 1 (1) 0 (0.703) 1 (0.9413)

Complex 5 s 2 0 (0.150) 0 (0) 1 (0.9997)
BFR =10 Hz 4 0.771 (0.996) 0 (0.020) 0.9669 (0.9934)
50 s 2 0.951 (0.999) 0 (0.028) 1 (0.9997)
BFR = 10 Hz 4 1 (1) 0 (0.214) 0.7124 (0.9477)
50 s 2 1 (1) 0 (1) 1 (0.9325)
BFR = 25 Hz 4 1 (1) 0.006 (0.996) 0.7036 (0.9062)

results. For example in Table 4, when the baseline firing
rate is high enough, the total sensitivity increases, and
false positives become the dominant problem. Theoret-
ical studies about model selection via L1-regularization
prove that although L1 regularization tends to intro-
duce more false positives than false negatives, the
magnitude of the L1-regularized estimates of the false
positives are usually smaller than those of the true
positives (Wasserman and Roeder 2009; Meinshausen
and Yu 2009). Therefore, the concerns about false
positives can be moderated by further thresholding the
L1-regularized estimates (Meinshausen and Yu 2009).
We plot the L1-regularized estimates for both false
positives and true positives in Fig. 4 in histograms for
the simple and complex networks respectively. The
baseline firing rate is 25 Hz and recording length is
50 s. In Fig. 4, we see that the estimates of false positives
are centered at zero and are much smaller in magnitude
than those of true positives in both networks.

Subpopulation Multi-electrode systems record only a
small portion of the complex neural network involved
in a behavior of interest. We therefore examine our

L1L method when only partial information about the
entire network is available. That is, when the spike
trains of only a subpopulation of neurons are observed,
can our method still detect interactions among them? It
is not obvious that this will be possible, since an inter-
action between any two neurons is in the context of all
the neurons in the network. In this simulation study, we
do not attempt to mimic a biologically realistic network
with millions of neurons. Instead, we simulated a small
network with a sparse interaction structure, which we
only partially observe.

Here we assess our method using two types of
subpopulations from the original complex network in
Fig. 1. First we study model performance when one
hub and its related spokes are not observed, so that the
overall structure of the network is maintained. Second,
we randomly select ten neurons to be unobserved, so
that the main structure of the network is destroyed.
Figure 5 illustrates the two types of subpopulation and
the corresponding networks.

The difference between the true and detected net-
works for both cases are depicted in matrix form in
Fig. 6. The diagonal elements are meaningless and are

Fig. 4 Histograms of
magnitudes of L1-regularized
estimates for false positives
and true positives. Results
refer to Table 4 with 25 Hz
baseline, |βci1| = 2, and data
length 50 s
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Fig. 5 Partially observed networks. (a) the entire network. (b) neurons 25–30 not observed. (c) 10 randomly selected neurons not
observed

set to zero. Each block in the matrix indicates the
misclassification rate. Positive values indicate missed
true interactions, and negative values indicate false
positives.

We find that even when only a partial network
is observed, the L1L method is still able to detect
the excitatory interactions between observed neurons
100% of the time, despite missing hub neurons and

the consequent loss of structure. Inhibition remains
hard to detect due to the 10 Hz baseline firing rate
(red pixels in difference matrices). Out of a total of 12
inhibitory interactions in both subnetworks, nine are
successfully detected in fewer than 15% of 50 runs,
and the other three are detected in fewer than 40% of
50 runs. False positives do occur, but relatively rarely
(blue pixels compared to green pixels). Among 1,071

Fig. 6 The difference
between the true and
detected interaction matrices.
Red pixels indicate false
negatives, blue pixels indicate
false positives and green
pixels indicate the correct
detection. (a)
‘Missing-a-piece’ partial
observations. (b)
‘Random-missing’ partial
observations
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pairs of neurons with no interaction, approximately 5%
(51 out of 1,071) false positives occur at least once.
Among the 51 neuron pairs where false positives occur
at least once, 68% (35 out of 51) occur less than 10%
of 50 runs. However, the situation with false positives is
worse (having bluer pixels) for the second subpopula-
tion than for the first. This may be due to the further
difference between the observed population and the
entire network.

Comparison with covariogram method We now com-
pare the L1L method with the traditional covariogram
method (Brody 1999). We create the covariograms us-
ing 1 ms bins and smooth them by a moving average
with a 10 ms window. A peak or trough is declared
only when it occurs between −50 ms to 50 ms, and
at least three adjacent values are above or below the
95% confidence bands. As long as at least one peak or
trough is found within a −3 to 3 ms lag between two
neurons, a correlation is declared between them. Under
the simulation strategy described in Section 3.1, the
performance of the covariogram method in detecting
short-term neuronal correlations are shown in Table 5.

From Table 5, we see that the L1L method has more
detection power in general. Unlike the L1L method,
the covariogram method still possess no power in in-
hibition detection even when the baseline firing rates
are increased. Moreover, Table 5 shows that when the
interaction is strong (|βci1| = 4) and the network is
complex, the covariogram method suffers from a large
false positive rate (70% specificity). This is probably
because the covariogram method only uses marginal
information of two neurons, and strong interactions in
a complicated network could obscure the real relation-
ship between neurons since it does not take the activity
of other neurons into consideration.

3.3 Conclusions from simulation studies

Compared to the covariogram method, the L1L
method has more power, that is, higher sensitivities,
in detecting both excitatory and inhibitory short-term
interactions. When the network has complex structure,
the L1L method can also achieve higher specificity.
Inhibition is more difficult to detect, at least for the
low baseline firing rates typical of cortical neurons.
Increasing the sample size and baseline firing rates
improves the detection power. Our simulations indicate
that at least 25 s data will help guarantee adequate
power of the method, even when the strength of inter-
action is small. Although false positives may become
a problem as the detection power is increased, this
difficulty can be moderated by thresholding the L1-

regularized estimates. It is robust to the omission of
parts of the active network; however, it performs better
if the main structure (e.g., hub-and-spoke) of the entire
network are retained in the observations. Guided by
these observations based on simulations, we apply our
method to electrophysiological data from a monkey.

4 Electrophysiological data

4.1 Experiment

Data recorded in a one-day session from the dorsal pre-
motor cortex (PMd) of an adult male Rhesus monkey
(Macaca Mulatta monkey L, Session 2008-03-27) were
used in this analysis. All experimental procedures were
approved by Stanford University’s Institutional Animal
Care and Use Committee. The animal performed a
delayed center-out reaching task (Fig. 7). The animal
was extensively trained to perform the task before
experiments began. The monkey sat facing a vertically-
oriented screen. A trial began with the appearance of a
central visual cue, which the animal touched. The pre-
cue period ensued, and ended 600 ms later when a pe-
ripheral target appeared at one of two screen locations,
10 cm to the right or left of the central point. A 300
ms delay period ensued, during which the animal could
prepare a reach, but could not execute it. Then, a go cue
(offset of the central visual cue) instructed the animal to
touch the peripheral target. A juice reward was given
for each successful reach.

Neural data were recorded using a 96-electrode
‘Utah’ array (Blackrock Microsystems, Salt Lake City,
UT) surgically implanted into PMd from the left hemi-
sphere. Implantation was designed to target cortical
layer 5, where neurons that project to the primary
motor cortex are located, though electrode depth could
not be confirmed. The action potentials of individual
neurons are detected automatically, and then verified
by hand using the algorithm described in Santhanam
et al. (2004). We recognize that the multi-units detected
from one electrode could be false due to the limitation
of this spike-sorting algorithm. However, for illustrat-
ing the L1L method here, we proceed as if the sorted 86
units are well-isolated neurons. Next, we select neurons
with sufficiently high mean firing rate in the period of
interest (3 Hz as a threshold), because neurons with
fewer spikes may cause computational difficulty for
the L1L method. Therefore, 45 of them are used in
our analysis, among which 41 have mean firing rates
greater than 3 Hz in the pre-cue and both delay periods
respectively, and 4 have mean firing rates greater than
3 Hz in the pre-cue and the delay period of rightward
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two-target center-out

Start Locations Appear Touch and Fixate Instructed Delay ‘Go’ Cue then Reach

Fig. 7 The experimental scheme for the instructed delayed center-out task. The task includes two targets for reach, left (574 trials) and
right (559 trials). In our analysis, we use 200 ms data in the delay period and 300 ms data in the pre-cue period for each trial

reaches only. Therefore, three data sets are chosen: the
last 200 ms delay period from leftward reach (‘left’, 41
neurons in 574 trials, 114.8 s), the last 200 ms delay
period from rightward reach (‘right’, 45 neurons in 559
trials, 111.8 s), and the last 300 ms of the pre-cue control
period (‘pre-cue’, 45 neurons in 574 + 559 = 1133 trials,
339.9 s). The analysis is conducted separately for the
three data sets. To satisfy the condition required by
the L1L method, we assume the trials be homogeneous
replicates, because Chestek et al. (2007) have shown
little if any temporal structure across trials in such
experiments.

4.2 Results

Results of the detected interactions are mainly shown
in matrix format. Each element (i, j) in the interaction
matrix represents neuron j’s influence upon neuron i,
in the context of the activity of other neurons. The
sign of element (i, j) represents an excitatory influence
(positive), inhibitory influence (negative) and lack of
interaction (zero). In a color-coded interaction ma-
trix, the magnitude of element (i, j) represents the L1-
regularized estimate of that interaction parameter. In a
gray-scale interaction matrix, the magnitude of element
(i, j) only indicates the nature of that interaction. The
diagonal elements are meaningless for the interaction

analysis, unlike those for cross-correlation methods
where they indicate autocorrelation.

We apply the L1L method to the pre-cue data,
and to the data for leftward and rightward reaching.
Figure 8 depicts the interaction matrices. The first 41
neurons in each matrix are the same and in the order of
their channel numbers and unit numbers. The last four
neurons (neurons 42–45) in the pre-cue data analysis
and the data from the rightward reaching trials, which
are excluded in the analysis of the leftward reaching
data because of their firing rates were less than 3
Hz, are the same and of the order by their electrode
numbers and unit numbers. There are 9.4%, 12.7% and
21.3% interactions detected among all neuron pairs.
The percentage of interactions are higher than typically
reported in other experiments (Kohn and Smith 2005;
Ecker et al. 2010). That is likely due to false positives,
for example, the many interactions in Fig. 8 coded in
light yellow or light blue.

Based on our simulation studies (Fig. 4), we apply
a cut-off of ±0.2 to remove possible false positives.
The results are shown in Fig. 9. This time, there are
2.7%, 3.1% and 9.4% interactions detected among total
neuron pairs. We note that the neurons interact more
when planning rightward reaches. Perhaps the neurons
that are more spatially tuned are more likely to interact.
To explore this possibility, we sort the neurons by their
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spatial selectivity, using the following contrast index
(CI):

CI = firing rate left − firing rate right
min(firing rate left, firing rate right)

.

The contrast index indicates the percentage of the firing
rate change from the inhibited direction to the excited

direction. The sign indicates the tuned direction (posi-
tive for left tuning, negative for right tuning), and the
magnitude ranges from zero to infinity for both tuning
directions. The contrast index uses the percentage of
the change instead of the absolute difference, so that
the risk that higher firing rates cause more false pos-
itives is further reduced. We show in Fig. 9 the new
results using permuted interaction matrices with their

Fig. 9 Interaction matrices in
pre-cue and delay periods.
Sorted by strength of spatial
tuning (CI). Neuron’s CI are
shown in the heat maps
beside the corresponding
interaction matrix. The
right-tuned neurons interact
more with each other when
planning the rightward reach
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CI shown in heat maps. Using a 30% change (|CI|
> 0.3) in mean firing rate as a cutoff for tuning, there
are 2 left-tuned and 8 right-tuned neurons among the
41 neurons in the data analysis leftward reaching trials,
and 2 left-tuned and 11 right-tuned neurons among the
45 neurons in the rightward reaching and pre-cue data
analysis. In Fig. 9, it can be seen that the 11 right-tuned
neurons (neurons 35–45 in the analysis of rightward
reaching trials) interact more with each other when
planning the rightward reach, and they tend to excite
each other. However, due to the paucity of recordings
of left-tuned neurons (possibly due to sampling biased
to right-tuned ones), inferences about left-tuned are
more difficult.

It is difficult to make a definitive statement about the
validity of these findings. One major limiting feature is
that we have such data from only one monkey. Our sim-
ulation studies indicate that we have sufficient amounts
of data to detect nonzero regression coefficients.
However, we need simultaneous confidence intervals
around their estimates in order to make formal in-
ferences about the regression parameters. Unfortu-
nately, confidence procedures for penalized regres-
sion methods for high-dimensional models are not
available.

We now apply the covariogram method to the three
data sets. The detected correlations are further cate-
gorized into short-term if at least one peak or trough
is within a −3 to 3 ms lag, or long-term if all peaks
or troughs are located outside that lag. We randomly
select half of the trials in pre-cue period to equalize
the number of trials in the shuffle-corrected cross-
correlogram analysis for three data sets (567, 574, and
559 trials respectively). We illustrate the correlations
between all pairs of neurons in matrix form (Fig. 10).

This time, the element (i, j) indicates the nature of cor-
relation between Neuron i and j: short-term correlation
(white), long-term correlation (gray) and no correla-
tion (black). The neurons are sorted by the strength
of spatial tuning as was done in Fig. 9 to illustrate
the relationship between spatial tuning and neuronal
correlation. In Fig. 10, we again see that the right-
tuned neurons are more short-term correlated to each
other when planning the rightward reaches. There are
in total 10.4%, 8.2% and 18.6% correlations in pre-
cue, leftward and rightward reaching data sets respec-
tively, among which there are 7.7%, 4.9% and 13.9%
short-term correlations. There are more correlations
found in each of the data sets than those found in
the previous L1L analysis, and also more than those
reported in other studies (Kohn and Smith 2005; Ecker
et al. 2010). Based on the simulation studies, we suspect
that the results in Fig. 10 sustain a large number of
false positives, which is due to the potential complex
network of neurons in PMd and strong interactions
among them. Although a larger number of correlations
are found, neurons correlate more in rightward reach
planning, which agrees with the findings from the L1L
method.

5 Discussion

In this paper, we propose the L1L method to iden-
tify excitatory and inhibitory interactions among simul-
taneously recorded neurons. Our method can detect
fast-timescale (≤ 3 ms) interactions that may indicate
potential direct synaptic connections between cells if
auxiliary anatomical information is available (Reid and
Alonso 1995; Matsumura et al. 1996; Fujisawa et al.
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Fig. 10 Covariogram analysis in pre-cue and delay periods. Neu-
rons sorted by strength of spatial tuning (the heat map on the
right). Black pixels indicate no correlation, gray pixels indicate
long-term correlations (> 3 ms) and white pixels indicate short-

term correlations (≤3 ms). Covariogram analysis finds more
correlations (10.4%, 8.2% and 18.6%) than the L1 L method.
However, it still shows that the right-tuned neurons interact more
with each other when planning the rightward reach
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2008). Given the very large number of potential in-
teracting groups of neurons, we believe that the feasi-
bility of the computations for the L1L methods offers
the neuroscience community a rapid screening tool for
high-volume data sets. When one or more such groups
are identified, they can then be subject to follow-up
studies to assess other features such as the consistency
of the interactions under certain behaviors, or local
microstimulation with different inputs to study the re-
sponse properties of the network. It works well—it has
high sensitivity and specificity—even with fairly short
durations of data, well within the range of what is fea-
sible to collect in a typical behavioral neurophysiology
experiment. Although the results are depicted as pair-
wise dependence, the L1L method uses a regression
context which considers the entire ensemble activity
when estimating the interaction coefficients. In that
sense, the L1L goes beyond the more standard study of
pairwise interactions only (e.g., correlation). Finally, it
does not assume any features of the network topology;
if certain details of the topology are known, they can in
principle be incorporated in the logistic model, perhaps
as constraints on the coefficients.

In addition, the identified interacting neurons by
the L1L method provide a starting point for further
investigations, such as finding methods to further delete
false positives and assessing across-trial variation of
the detected interactions. For example, both simulation
and theoretical results about the L1L method suggest
that the detected network contains more false positives
than false negatives. This leads us to explore finer
model selection procedures in a multistage manner
(Meinshausen and Yu 2009; Wasserman and Roeder
2009): first detect a network with false positives, and
then, starting with the selected model in a greatly re-
duced dimension, do a second stage of selection. Our
tentative approach of thresholding is one possible way
to do this second-stage selection (Meinshausen and Yu
2009), and simulation results illustrate its good per-
formance. As for assessing across-trial variation of the
detected interactions, the inclusion of across-trial vari-
ation often implies a large number of extra parameters
in the model. By detecting the possible interactions
first, we can focus our study on particular interaction
networks, so that the dimension of the problem will
be largely reduced. We are pursuing this work in both
directions.

In general, computation for such problems can be
quite demanding. Our approach has several features
that make the computation feasible. First, we use reg-
ularization to avoid certain nonconvergence problems
that a naive implementation of GLM would encounter
(Zhao and Iyengar 2010). Second, we use the coordi-

nate descent algorithm, which is efficient and easily im-
plemented. Third, we use the BIC γ -selector to deter-
mine the tuning parameters. We recognize that cross-
validation is common, but it is much more computation-
ally intensive because it requires repeated model fitting;
in addition, we provide a theoretical justification for the
use of the BIC γ -selector. And fourth, we decompose
the regression model into C individual sub-models,
each with considerably smaller dimensionality. This
decomposition is especially effective when the number
of neurons is large, which is important as advances
in technology allow for the simultaneous recording of
increasing numbers of neurons. We expect that the per-
formance of L1L will only improve as computational
capabilities expand.

It is difficult to determine the ‘ground truth’ of
network interactions among real neurons. Even if mi-
croscopic examination of living tissue were feasible, it
would still be unclear what the strength and sign of a
synaptic interaction between two cells might be. Thus
we used simulations to calibrate our method, and also a
conventional cross-correlation technique against which
to compare the performance of our method. We found
that our L1L method has more sensitivity in detecting
both excitatory and especially inhibitory interactions
than the covariogram method does. When the neuronal
network is complex with structures such as common
input, loops, or chain effects, the strong interactions be-
tween neurons could result in the covariogram method
having more false positives, which is indicated by the
low specificities in simulation and twice the correlations
in electrophysiological data than those found by the
L1L method.

Some intriguing findings about neuronal interac-
tions indicated by the analysis include: (1) interactions
among cortical neurons may be sparse; (2) the structure
of network interactions could depend on spatial, tem-
poral, and cognitive aspects of the task. That is, network
topologies may rapidly modify to achieve different
functional processing. Interactions among neurons are
known to be rare (Zohary et al. 1994; Reid and Alonso
1995; Kohn and Smith 2005; Ecker et al. 2010) and task-
dependent (Kohn and Smith 2005; Fujisawa et al. 2008).
Our findings in L1L analysis confirm these general
trends, at a finer scale. In summary, applying the L1L
method to data from a behaving monkey exhibits in-
teresting interactions that appear to change with reach
direction and behavioral epoch. This motivates further
experimental work geared toward revealing the details
of these interactions.
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Appendix

The proof quotes two lemmas and theorems in Qian
and Wu (2006), one theorem in Fan and Li (2001)
and one theorem in Park and Hastie (2007). To make
them hold, we inherit the conditions (C.1)–(C.14) in
Qian and Wu (2006) and conditions (A)–(C) in Fan
and Li (2001). We refer the reader to those papers for
the details. Without elaborating those conditions, we
paraphrase the quoted lemmas and theorems as the
lemmas for our proof. Intuitively, the conditions (C.1)–
(C.6) are requirements for link functions in general,
which logit link will not violate (Qian and Wu 2006).
The conditions (C.7)–(C.13) are requirements for co-
variates, where no observation should dominate as the
sample size tends to infinity. The conditions (C.14) and
(A)–(C) are requirements for log-likelihood functions,
where classic likelihood theory can apply.

We denote β0 as the true values of a collection of
P parameters, of which only p are nonzero. Here we
assume both p and P finite and not varying with sample
size n. Denote the log-likelihood function for logistic
regression as l. C and W are sets of all correct models
and all wrong models respectively. β̂c stands for the
unregularized MLEs under the assumption of model
c ∈ C, and β̂w stands for the unregularized MLEs under
the assumption of model w ∈ W . β̂(γ ) stands for the
L1-regularized estimates at γ . If there is a subscript c
or w under β̂(γ ), it means that the nonzero estimates in
β̂(γ ) consist of model c or w.

Lemma 1 (Theorem 2 in Qian and Wu 2006) Under
(C.1)–(C.14), for any correct model c ∈ C

0 ≤ l
(
β̂c

)
− l(β0) = O(log log n), a.s..

Lemma 2 (Theorem 3 in Qian and Wu 2006) Under
(C.1)–(C.14), for any wrong model w ∈ W

0 < l(β0) − l
(
β̂w

)
= O(n), a.s..

Lemma 3 (Theorem 1 in Fan and Li 2001) Under
(A)–(C), there exists a local maximizer β̂(γ ) for L1-
regularized log-likelihood such that ‖ β̂(γ ) − β0 ‖=
Op(n−1/2 + γ /n).

Lemma 4 (Lemma 4 in Qian and Wu 2006) Under
(C.1)–(C.14), we have each component of ∂l

∂β
(β0) equal

to O(
√

n log log n) a.s..

Lemma 5 (Lemma 6 in Qian and Wu 2006) Under
(C.1)–(C.14), there exists two positive numbers d1 and
d2 such that the eigenvalues of −∂2l/∂β∂β ′ at β0 are
bounded by d1n and d2n a.s. as n goes to inf inity.

Lemma 6 (Lemma 1 in Park and Hastie 2007) If the
intercept in the logistic model are not regularized, when
γ > max | ( ∂l

∂β
) j | , j = 1, . . . , P, the intercept is the only

non-zero coef f icient.

Proof of the Theorem Let γ1 > γ2. Denote m1 as the
model consisting of d1 nonzero parameters in β̂(γ1), and
m2 as the model consisting of d2 nonzero parameters in
β̂(γ2). Therefore,

BIC(γ1) − BIC(γ2) = −2l(β̂(γ1)) + d1 log n

−
[
−2l

(
β̂(γ2)

)
+ d2 log n

]

= (d1 − d2) log n + 2
[
l
(
β̂(γ2)

)

− l(β̂(γ1))
]

= (d1 − d2) log n

+2
[
l(β̂(γ2)) − l(β̂m2

) + l(β̂m2
)

− l
(
β̂m1

)
+ l(β̂m1

) − l
(
β̂(γ1)

)]

If m1 ∈ C and m2 ∈ C, by Lemma 1, we have
(d1 − d2) log n = O(log n) < 0 and l(β̂m2

) − l(β̂m1
) =

O(log log n) > 0. By the definition of maximum like-
lihood, we also have l(β̂(γ2)) − l(β̂m2

) < 0. Therefore,
as long as l(β̂m1

) − l(β̂(γ1)) = o(log n), BIC(γ1) −
BIC(γ2) < 0 and the correct model m1 with smaller
number of parameters is selected.

If m1 ∈ W and m2 ∈ C, by Lemma 2, we have (d1 −
d2) log n = O(log n) < 0 and l(β̂m2

) − l(β̂m1
) = O(n) >

0. Again by the definition of maximum likelihood,
we have l(β̂m1

) − l(β̂(γ1)) > 0. Therefore, as long as
l(β̂(γ2)) − l(β̂m2

) = o(n), BIC(γ1) − BIC(γ2) > 0 and
the correct model m2 is selected.

Thus, it is required to show that, for any
c ∈ C, we have l(β̂c) − l(β̂c(γ )) = o(log n). Because
l(β̂c) − l(β0) = O(log log n), it suffices to show
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l(β0) − l(β̂c(γ )) = o(log n). By a Taylor expansion,
we have

l(β) − l(β0) = (β − β0)
′ ∂l(β0)

∂β

+ 1
2
(β − β0)

′ ∂
2l(β0)

∂β∂β ′ (β − β0)

+ o
(∥

∥∥β̂(γ ) − β0

∥
∥∥

2
)

.

So by Lemmas 3, 4 and 5, we have

l(β0) − l
(
β̂c(γ )

)
= O

(
1/

√
n + γ /n

)
O

(√
n log log n

)

+ O(n)O
((

1/
√

n + γ /n
)2

)
.

When γ = o(
√

n log n), we have l(β0) − l(β̂c(γ )) =
o(log n).

In the end, because Lemma 6 says that, when γ >

max | ( ∂l
∂β

) j |= O(
√

n log log n), it gives a null model
with only an intercept, we do not need a tuning pa-
rameter γ exceeding o(

√
n log n). Therefore, l(β0) −

l(β̂c(γ )) = o(log n) is achievable for all correct models
given by β̂(γ ). Therefore, the BIC γ -selector selects
the correct model with smallest number of parameters
among all the submodels β̂(γ ) presents.
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