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affecting exploration of novel stimuli  
(Fig. 1e, center left). Photostimulation of the 
mHB terminals in the IPN decreased explora-
tion of novel social and nonsocial stimuli with-
out affecting exploration of familiar stimuli 
(Fig. 1f, center and right). Next, the authors 
photostimulated the VTA dopaminergic ter-
minals in the IPN. As in the phenomenon of 
jamais vu, this manipulation mimicked the 
novelty signal, resulting in increased explo-
ration of a familiar mouse (Fig. 1e, center 
right). Interestingly, the photostimulation of 
dopamine terminals did not affect exploration 
of inanimate objects. Thus, the novelty signal-
ing pathway may differ for social and nonso-
cial signals. The authors suggest that different 
subtypes of VTA dopaminergic neurons may 
mediate novelty responses to social and non-
social stimuli.

It is tempting to conclude that novelty is 
simply the absence of memory-based famil-
iarity. Yet a number of studies have provided 
evidence that the processing of novelty 
information and familiarity information can 
be functionally dissociated in the forebrain 
medial temporal lobe memory system. A 
study using c-Fos expression methods com-
bined with structural equation modeling 
found evidence that, in rats presented with 
familiar objects, caudal perirhinal cortex 

activated the entorhinal-to-hippocampal 
field CA1 pathway, also known as the tem-
poro-ammonic pathway13. When rats were 
presented with novel objects, perirhinal cor-
tex activated the entorhinal-to-dentate gyrus 
pathway, also known as the perforant pathway. 
Another c-Fos study showed that exploration 
of a novel environment increased activation 
in the hippocampus, the prelimbic prefrontal 
cortex and the dopaminergic reward circuit14. 
Exploration of a familiar environment, how-
ever, increased activation in the amygdala. A 
better understanding of how the midbrain cir-
cuits interact with the forebrain circuits could 
help explain the human prevalence differences 
between déjà vu and jamais vu. Future work 
could elucidate other neural bases of neuro
psychiatric disorders by explaining dysregu-
lation of novelty and familiarity processing, 
depersonalization, derealization and other 
symptoms that involve detachment from 
familiar surroundings.

In this elegant series of experiments, Molas 
et al. have elucidated the mechanisms and cir-
cuitry by which novelty transitions to familiar-
ity. A primary contribution of their work is 
the demonstration that novelty and familiar-
ity are signaled by different pathways, partially 
overlapping in the IPN, to support novelty 
preference. These findings may explain why 

déjà vu and jamais vu contribute differently 
to symptom profiles of neuropsychiatric 
disorders. More importantly, the findings of 
Molas et al. have profound implications for  
understanding and treating neuropsychiatric 
disorders in which processing of novelty and 
familiarity are compromised.
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Is population activity more than the sum of its parts?
Jonathan W Pillow & Mikio C Aoi

A study introduces innovative ways to test whether neural population activity exhibits structure above and beyond that of its 
basic components.

Suppose a fancy new analysis method reveals an 
(apparently) surprising form of population-level 
organization in your large-scale neural data set. 
How can you tell if the observed pattern is truly 
surprising? Is it the hallmark of a population-
level mechanism that reveals the circuit’s true 
function, or is it merely an expected byproduct 
of things we already knew about neurons 
contained in the population? To put it bluntly: 
when are findings of population-level structure 
‘new science’  and when are they merely old 
knowledge dressed up in new clothes? In this 
month’s issue of Nature Neuroscience, Elsayed 

and Cunningham propose new methods for 
resolving this question1. 

Their main contribution is to formalize the 
notion of primary (or already known) fea-
tures of a neural population so that claims of 
surprising population structure can be tested 
against them. To make this concrete, consider, 
for example, the recent claim that a neural 
population exhibits ‘rotational dynamics’2, a 
contention we’ll return to later. Elsayed and 
Cunningham show that standard shuffling 
methods do not, in fact, preserve the full 
set of primary features of a neural popula-
tion; to address this problem, they introduce  
two methods for sampling from a properly 
defined null model, allowing claims of novel 
population-level structure to be put to the 
appropriate test.

The starting point for the population-
level analyses in question is a collection of  

peristimulus time histograms, or time-varying 
firing rates, from multiple neurons across time 
and across multiple experimental conditions. 
We can think of these data as living in a 3D  
tensor (or array) with axes denoting time, neu-
ron and condition (Fig. 1). Every entry in the 
tensor is a number indicating the firing rate of 
a particular neuron at a single time bin for a 
particular condition.

What would it mean for this dataset to con-
tain meaningful population structure above 
and beyond its primary features? Elsayed and 
Cunningham propose that we should consider 
as primary the means and correlations along 
each side of the tensor: temporal correlations, 
neuronal correlations and conditional corre-
lations. Temporal correlations reflect the fact 
that, before we say anything about population-
level structure, neural firing rates are typically 
smooth in time. Neuronal correlations, the 
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second primary feature, reflect differences in 
individual neural tuning: neurons with similar 
tuning curves will be strongly correlated over 
time and conditions, whereas neurons with 
dissimilar tuning may exhibit zero or even 
negative correlation (in which one neuron’s 
firing rate goes up whenever another’s goes 
down). Lastly, conditional correlations reflect 
similarity between the patterns of population 
activity observed during different experi-
mental conditions or tasks. For example, in 
a reaching study, two subtly different right-
ward movements may generate similar pat-
terns of population activity, producing high 
conditional correlations; a leftward reach that 
recruits an entirely different set of neurons 
would be weakly correlated with the previous 
two conditions.

The null model defined by Elsayed and 
Cunningham (Fig. 1) is a distribution over data 
tensors that preserves nothing beyond these 
three sets of primary features, each described 
by a mean and covariance matrix (over time 
bins, neurons and conditions, respectively). 
Population-level phenomena that arise from 
this null model are, in the parlance of Elsayed 
and Cunningham, “expected byproducts” of 
the population’s primary features.

Prior to this paper, the standard approach to 
testing for population-level structure involved 
forming a null distribution by permuting each 
neuron’s responses across experimental con-
ditions. Elsayed and Cunningham show that 
this shuffling procedure preserves only one of 
those three correlations (e.g., temporal, which 
is standard), but that, notably, it fails to pre-
serve correlations across the other two (neu-
rons and conditions). This failure can elevate 
nonsignificant effects to an appearance of sig-
nificance (that is, it can create false positives) 
or inflate weak population-level effects so they 
appear more significant than they are.

Elsayed and Cunningham introduce two 
methods for creating the correct null distri-
bution. The first is corrected Fisher random-
ization, a direct extension of conventional 
shuffling methods in which the reshuffled 
data are weighted so that all three sets of cor-
relations are preserved. The second method is 
to sample from the tensor maximum entropy 
distribution, a distribution that preserves pri-
mary (mean and covariance) features of the 
original dataset but is otherwise maximally 
unstructured. Samples from this distribution 
are data tensors that exhibit the same temporal 
smoothness and the same pattern of marginal 
correlations across neurons and conditions, but 
that are otherwise as random as possible. The 
logic of Elsayed and Cunningham’s proposed 
approach, following the standard logic of sta-
tistical hypothesis testing, is to sample datasets 

from the null distribution using either cor-
rected Fisher randomization or tensor maxi-
mum entropy, apply the same population-level 
analysis to each sample (for example, fit it with 
a rotational dynamical system) and test whether 
the result for the original dataset (for example, 
the percent of variance explained) is an outlier 
compared to the samples from the null.

It is worth noting that Elsayed and 
Cunningham’s derivation of the tensor maxi-
mum entropy distribution is a mathemati-
cal achievement in its own right, above and 
beyond the neuroscience questions considered 
in their paper. This result, which amounts to 
a particular Gaussian distribution constrained 
by marginal covariance matrices (not the one 
you would expect if you are familiar with the 
tensor normal distribution) has not, to the best 
of our knowledge, appeared previously in the 
statistics literature.

To focus solely on the statistical issues, 
however, is to miss part of the larger sci-
entific story surrounding Elsayed and 
Cunningham’s paper. A debate has raged 
for several years about claims put forth by 
Churchland et al.2, who argued that popula-
tion activity in motor cortex exhibits rota-
tional dynamics during (nonrotational) 
reaching movements. This result electrified 
the field, but also sparked controversy over 
whether the findings were truly surprising. 
Critics grumbled (although never in print) 
that the finding of rotational dynamics was a 
trivial consequence of the neurons’ smooth  

firing rates; in high-dimensional spaces, they 
argued, any set of smooth trajectories will 
look rotational.

The results of Elsayed and Cunningham can 
be viewed as a direct response to this criticism, 
vindicating the original claims of Churchland 
et al.2: the fits of a dynamical system explain 
significantly more variance than expected 
under a null model that preserves correla-
tions across time, neurons and conditions1. 
To understand this result intuitively, consider 
the following: neural responses generated by a 
rotational dynamical system exhibit consistent 
phase relationships between neurons; these 
relationships are preserved across different 
reach conditions, allowing them to be well fit 
by a single linear dynamics matrix. Samples 
from the null model, by contrast, although 
smooth and matching covariances over neu-
rons and conditions, have scrambled phases, 
since consistent phases involve relationships 
between rates over multiple time bins and con-
ditions, and such relationships are beyond the 
purview of the null model.

Elsayed and Cunningham’s paper can be 
seen as a natural extension of previous work 
seeking to quantify whether high-level fea-
tures of neural activity are expected from 
known low-level features. Previous work on 
multineuron spike patterns, for example, used 
maximum entropy models to ask whether the 
observed distribution of spike patterns could 
be explained by the simpler set of correlations 
between pairs of neurons, neglecting higher 

Figure 1  Schematic of testing approach for population-level structure. Left: multineuron firing 
rate data from multiple conditions can be arranged in a 3D tensor, with dimensions T (number of 
time bins) by N (number of neurons) by C (number of experimental conditions). Right: a properly 
designed null distribution preserves the correlations found in the original data over time, neurons 
and conditions, each described by a covariance matrix: a T × T temporal covariance matrix,  
an N × N neuronal covariance matrix and a C × C condition covariance matrix. These primary  
features define a null distribution that can be sampled by either corrected Fisher randomization  
or tensor maximum entropy; these samples can be used to rigorously test claims about population- 
level structure.
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order interactions3–5. However, it bears men-
tioning that calling a feature an expected 
byproduct is not the same as calling it unin-
teresting or unimportant, a point that Elsayed 
and Cunningham also take care to emphasize. 
Physics is rife with examples in which lower 
order features are sufficient to explain funda-
mental large-scale phenomena such as heat, 
states of matter or the behavior of artificial 
neural networks.

Considered broadly, the recent rise of 
advanced imaging and electrical record-
ing technologies has driven a broad-based 
demand for new analysis methods of neural 
population recordings. Central to this need is 
the desire of researchers to go beyond a purely 
representational view of neuronal activity and 
move toward a characterization of the dynam-
ics underlying neural computations. Such 
demands have spurred a creative explosion 
of new analysis methods focused particularly 
on dynamical systems2,6–8 and dimensional-
ity reduction9–11 for high-dimensional neural 
activity. Elsayed and Cunningham’s approach 

will therefore provide a much-needed check 
on the overexuberant application of such 
methods and on claims about the patterns 
they reveal.

There are several directions in which the  
methods proposed by Elsayed and Cunningham  
could be extended to address richer datasets 
or analysis methods. First, their proposed 
methodology is designed for rate codes 
and thus does not apply to phase coding or 
other forms of temporal coding. Second, 
they use trial-averaged responses (although 
this is not a fundamental constraint on the 
method) and thus do not consider noise cor-
relations or patterns of single-trial variability 
that might reflect population-level dynam-
ics. The proposed methods are, nonetheless, 
applicable to a wide range of dataset types 
that are being generated in massive volumes, 
and the basic approach can be extended to 
incorporate constraints beyond the primary 
features the authors consider (for example,  
ref. 12). Ultimately, the ability to precisely 
quantify structure arising from low-level  

features will be crucial to settling future 
debates over what neural population  
structure is, and whether or not to believe it 
when you see it.
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