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Modern large-scale multineuronal recording methodologies,

including multielectrode arrays, calcium imaging, and

optogenetic techniques, produce single-neuron resolution data

of a magnitude and precision that were the realm of science

fiction twenty years ago. The major bottlenecks in systems and

circuit neuroscience no longer lie in simply collecting data from

large neural populations, but also in understanding this data:

developing novel scientific questions, with corresponding

analysis techniques and experimental designs to fully harness

these new capabilities and meaningfully interrogate these

questions. Advances in methods for signal processing, network

analysis, dimensionality reduction, and optimal control —

developed in lockstep with advances in experimental

neurotechnology — promise major breakthroughs in multiple

fundamental neuroscience problems. These trends are clear in

a broad array of subfields of modern neuroscience; this review

focuses on recent advances in methods for analyzing neural

time-series data with single-neuronal precision.
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High-throughput neural signal processing
methods
Neuroscientists have long dreamed of recording from

many thousands of neurons simultaneously. This goal

is the major motivation of the BRAIN initiative and

related efforts, and with new calcium imaging methods

and large-scale multielectrode array (MEA) devices, this

dream is quickly becoming a reality. But now a major

bottleneck exists. Cutting-edge calcium imaging
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methods and MEAs output data at rates on the order

of terabytes/hour, and data rates continue to increase. At

these huge rates processing and even storing the data is

challenging, let alone optimally extracting all the useful

information in these data streams; without the right

analytical technology, we will never unlock the true

potential of these experimental advances (Figure 1).

Calcium imaging

Calcium imaging has become the dominant method for

recording from large populations of neurons, due to

several well-known advantages: calcium imaging offers

cell-type specificity and can be coupled easily with a

variety of genetic tools; imaging approaches can be less

invasive and damaging to brain tissue than inserting an

MEA; calcium imaging has proven scalability to record

simultaneously from O(104) neurons in vivo (an order of

magnitude larger than achieved by an MEA to date); and

finally, imaging approaches enable significantly greater

experimental design flexibility than MEAs in terms of

which subsets of neurons in the imaging volume are

interrogated at which times, and how many pixels are

assigned to each neuron (we expand on the importance of

this point below). At the same time, calcium imaging

suffers from some clear disadvantages: calcium signals

represent a slow, nonlinear encoding of the underlying

spike train signals of interest, and therefore it is necessary

to denoise, temporally deconvolve, and spatially demix

calcium video data into estimates of neural activity.

There has recently been a flurry of research activity

addressing these issues. Building on earlier work

[1,2,3�,4–6] present constrained and/or nonnegative

matrix factorization (NMF) approaches to simultaneously

solve these demixing and deconvolution problems. Ref.

[7�] extend this approach to handle data from one-photon

imaging approaches, where large ‘background’ contribu-

tions from out-of-focus light complicate the demixing

problem; recent large-scale approaches to acquiring

one-photon imaging data [8,9] will likely benefit from

this approach or modifications thereof. Refs. [10,11�]
developed real-time implementations that process

incoming data online, one imaging frame at a time,

enabling closed-loop experiments. Ref. [12] developed

an improved and more general implementation of the

hidden Markov model deconvolution approach of [13].

Ref. [14] developed hierarchical Bayesian methods for

sharing statistical information across behaviorally similar
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The central role of data science in modern large-scale neuroscience. Topics reviewed herein are indicated in black.
trials to enable temporal super-resolution of estimated

neural activity. Ref. [15] developed useful mathematical

theory on exactly solving the sparse deconvolution prob-

lem addressed in [3�,10]. Ref. [16] investigate the impact

of calcium indicator nonlinearities on downstream anal-

yses of neural population activity, concluding that some

caution is warranted in interpreting neural dynamics

inferred from calcium imaging data.

In the near future, we expect that modern computational

vision approaches (e.g. based on artificial neural networks

(ANNs)) can be incorporated into the NMF framework

for further improvements (as we will see below, the

incorporation of ANNs to replace modules in various

analysis pipelines is a recurring theme in this review);

Ref. [17] presented a promising first step. Since NMF is a

non-convex problem, accurate initialization of the esti-

mates is critical; Refs. [18,11�] explore these issues fur-

ther. One major issue that has slowed progress is the lack

of ‘gold standard’ datasets that can be used to objectively

score algorithm performance. The iterative optimization

of open-sourced algorithms on agreed-upon standard

datasets has been a critical theme enabling progress in

modern machine learning [19�]; see [20] for a recent

application of this general program to improve available

calcium deconvolution methods. The curation of ‘gold

standard’ spatiotemporal calcium imaging datasets

remains a critical challenge; the IARPA MICRONS proj-

ect (https://www.iarpa.gov/index.php/research-programs/

microns) will soon deliver public datasets that combine

large-scale electron microscopy with calcium imaging in

the same cortical volumes, and will therefore serve as a

major step forward in this direction [21,22].

One major trend that we see guiding research in this area

over the next several years involves the optimization of

experimental design and analysis methods jointly in order

to image larger populations at higher temporal resolution.

The suboptimality of, for example, optimizing an imaging

apparatus in isolation is widely recognized; instead, the

full experimental preparation, imaging technology, and
www.sciencedirect.com 
computational analysis approach should be considered as

parts of a pipeline that should be optimized as a whole.

Refs. [23–25,26�,27�] have all offered variations on a

theme: spatial resolution can be usefully traded off for

temporal resolution. That is, we can record from more

cells if we are willing to accept a lower ratio of pixels per

cell, and, moreover, prior information about cell shapes

and locations can shift the favorable point of this trade-off

even further: once we know the locations and shapes of

the cells in the field of view, we can reduce our spatial

resolution even more without negatively impacting the

quality of the recovered temporal neural activity [27�].
Ref. [28] presented another example of this theme in the

context of a computationally challenging light-field

microscopy application; we expect that performance here

can be improved significantly with stronger signal models.

Simulators such as those developed in [29] will likely play

a useful role in the ongoing joint optimization of demixing

methods and hardware design.

One significant problem requires further development:

tracking activity with single-neuron resolution in small

moving animals with flexible nervous systems, for exam-

ple, larval zebrafish [30], Drosophila [8], or hydra [31].

Good solutions have been developed in Caenorhabditis
elegans [32�,33], though demixing of fast cytosolic (non-

nuclear-localized) signals remains an unsolved problem.

We expect non-rigid registration approaches similar to

those developed by [34] to be helpful here; see also [35�]
for impressive recent progress in larval zebrafish.

While we have focused on calcium imaging in this sec-

tion, many similar themes will hold for voltage imaging at

single-cell resolution [36], which is expected to be a major

growth area over the next decade; see for example [37],

for a recent review. Of course voltage imaging also pro-

vides the opportunity to record at subcellular resolution,

at multiple points along the dendrite and axon. Once

these imaging methods become more mature we expect

to see rapid growth in statistical methods for extracting

information from this noisy data; earlier works offer
Current Opinion in Neurobiology 2018, 50:232–241

https://www.iarpa.gov/index.php/research-programs/microns
https://www.iarpa.gov/index.php/research-programs/microns


234 Neurotechnologies
algorithmic starting points for modeling voltage data with

subcellular resolution [38–42].

Spike sorting data from large-scale MEAs

Spike sorting has been a not-quite-completely-solved

problem for decades. In small-scale recordings, a large

degree of manual supervision over the spike sorting

process is viable; additionally, it is feasible to manually

optimize the depth of a few electrodes or tetrodes to

ensure high-SNR recordings. Neither strategy is possible

with large-scale MEAs: recordings with hundreds of

electrodes are routine now, and much larger MEAs are

on the way [43–45] (see also www.darpa.mil/program/

neural-engineering-system-design). This looming bottle-

neck has driven a recent uptick in studies of spike sorting

activity from large dense MEAs [46�,47–51] see also [52]

for a discussion of similar issues in the context of EMG

signals. This recent literature has emphasized computa-

tional scalability and proper handling of spike events that

overlap across many electrodes. In particular, Ref. [46�]
introduced a fast implementation of a matching-pursuit

algorithm to detect these spike overlaps, and [48] built on

this work with a more robust and efficient ‘triage-then-

cluster’ approach in which an ANN detects putative spike

events and then ‘clean’ spikes are clustered first, followed

by more difficult overlapping spikes.

As in the calcium imaging context, it is clear that agreed-

upon gold standard datasets will lead to accelerated

progress here. Acquisition of ground truth data in this

context is a notoriously challenging problem; for now we

can only hope for partial solutions, for example datasets in

which ground truth spiking for single neurons is available

[53]. Optogenetic tagging methods (in which a sparse

subset of neurons is activated at known times) could play

a very useful role here. In some brain areas we can exploit

useful side information to provide a sanity check on the

sorting results: for example, the mosaic tiling of receptive

fields in the primate retina provides partial validation. In

parallel, as in the imaging context, the iterative improve-

ment of simulators of electrical activity [54] remains an

important direction. Another useful approach is to create

‘hybrid’ datasets combining simulated spiking signals

with real noise signals [46�,49]. The time seems ripe

for a community-based collaborative approach to develop

a battery of gold standard datasets and quality metrics and

then iteratively improve each module of these pipelines

towards more scalable and accurate solutions.

A separate track of work has taken as a starting point the

realization that spike sorting selects the most easily

discriminable units from the observed voltage traces,

but leaves behind a large amount of information in the

lower-SNR units that can not be separated cleanly from

the noise floor. ‘Clusterless’ decoding approaches [55,56]

have been developed to extract information from these

unsorted spikes. A combined strategy (in which one sorts
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the sortable units, but also exploits information from the

non-separable units and local field potential signals) has

been shown to have superior performance in offline

movement decoding experiments [57,58].

Finally, as interest grows in bidirectional electrical neural

interfaces that stimulate and record simultaneously, the

problem of stimulation artifact cancellation becomes crit-

ical; see [59] for a scalable Bayesian artifact removal

algorithm applied to large retinal MEA data.

Understanding large-scale neural signals
As emphasized above, acquiring and processing large-

scale neural data with single-neuron and high temporal

resolution has represented a critical bottleneck that has

attracted significant research effort over the last couple

years. While significant challenges remain, these efforts

have established a clear path forward towards eliminating

this bottleneck. The next frontier then is to extract

understanding from the resulting high-dimensional neu-

ral activity data.

Historically, the analysis of spike train data has focused

significant effort on three broad questions. Firstly, How is

information encoded in spike trains, and how can we

decode this information? Secondly, Can we infer network

connectivity from multi-spike train data? Thirdly, can we

model the activity of large neural populations in terms of a

lower-dimensional set of factors? We will review recent

progress on each of these three themes in turn below, but

it is worth emphasizing up front that models developed to

address any of these questions can be profitably com-

bined: for example, factor analysis models developed to

address question 3 can lead to improved decoding of

neural data (question 1).

Encoding and decoding

How the brain encodes external variables into spike trains,

and the converse problem of decoding external variables

from spike trains, are classic problems in statistical

neuroscience.

For the first problem, generalized linear models (GLMs)

have for years provided the methodological foundation:

GLMs enable spike trains to be regressed against covari-

ates such as behavioral parameters, hidden factors, and

other spiking in the population; see [60] for a review.

Some recent work has targeted the computational effi-

ciency of GLM estimation methods [61–63]. Of course,

GLMs, being simply a generalization of linear regression

methods, have effectiveness dependent entirely on the

chosen ‘feature set’ — that is, the collection of variables

against which we choose to regress neural activity. Ref.

[64�] describe an exciting recent application showing that

with a good choice of features it is possible for simple

regression models to predict highly nonlinear responses.

One major trend is to learn features adaptively using a
www.sciencedirect.com

http://www.darpa.mil/program/neural-engineering-system-design
http://www.darpa.mil/program/neural-engineering-system-design


Neural data science .Paninski and Cunningham 235
hierarchical approach to combine information over many

cells/experiments. This leads to significantly richer and

more powerful models. Refs. [65,66�] are two examples of

this approach, in which we share information from simul-

taneously-recorded cells to estimate a hidden layer that

better explains the observed responses. (See also [67] for a

different method for sharing statistical strength across

cells.) Again, modern ANN methods are well-suited to

this task of learning a useful shared feature representation

from a large dataset of many neural responses: Refs.

[68,69�,70] provide three examples of this idea (see also

[71] for an earlier example), and we expect to see more

applications of this approach in the near future. Alterna-

tively, we can repurpose ANNs trained to perform

machine learning tasks (e.g. object recognition) and use

the resulting feature sets to predict responses; see [72�,73]
for perspectives on this growing literature.

Regarding the converse problem of decoding, there is a

large ongoing engineering and clinical literature on brain-

machine interfaces (including not only systems to extract

motor control information from the brain but also sensory

devices such as cochlear and retinal prosthetics) that we

will not attempt to review systematically here. The

‘ReFIT’ decoding algorithm proposed in [74] contributed

substantial empirical performance improvement in brain-

machine interface decoding from the motor cortex; Ref.

[75] provides a rigorous theoretical foundation and gen-

eralization of this algorithm. Another thread of work has

shown that more constrained models of joint neural

variability can be used to construct better decoders

[76,77]; see also [78] for a promising converse approach

using a discriminative (rather than the more typical

generative) model. Finally, ANNs have recently been

applied to decoding problems [79,80]; Ref. [81�] notably

developed a straightforward procedure for converting an

encoding model (i.e. a probabilistic model of the neural

responses to an arbitrary stimulus), plus samples from the

prior stimulus distribution, into an easily-computed

approximation of the optimal Bayesian decoder. We

expect to see more applications of similar ideas in the

near future.

Connectivity estimation

Another classic problem in statistical neuroscience is to

infer neuronal network connectivity from correlated

activity in the network, and then to use the inferred

connectivity to understand the network function and

predict its dynamics. The major roadblock here has been

the ‘common input’ problem: without strong prior infor-

mation, it is not possible to reliably distinguish causal

connections between pairs of observed neurons versus

correlations induced by common input from unobserved

neurons. Ref. [82�] introduced a novel ‘shotgun’ experi-

mental design that exploits the flexibility of imaging

approaches for recording from large populations of cells:

the idea is to image different subsets of the network in a
www.sciencedirect.com 
serial manner, then use statistical methods to estimate the

full network connectivity. (Note that this approach is

enabled by optical approaches to neural recording, and

would not be feasible with current multi-electrode

arrays.) In simulations, this approach enables the accurate

estimation of networks an order of magnitude larger than

was previously possible. (See also [83] for a simplified

implementation of this idea.) Experimental methods are

now becoming sufficiently fast and scalable to put this

method into practice. Other relevant advances include

[84�], who introduce new conditional inference methods

to address hypotheses about the precision of multineur-

onal responses, and [85], who discuss methods for incor-

porating stronger prior knowledge into network esti-

mates; see also [86�] for improved prior models for

networks.

Once we have estimated the network connectivity, we

need a high-throughput method for verifying our esti-

mates (e.g. the inferred synaptic weights). Optogenetic

approaches are well-suited to this task; Refs. [87,88]

propose a scalable, adaptive, closed-loop, optimal experi-

mental design approach towards mapping and verifying

the connectivity onto single postsynaptic cells.

Finally, once these networks are inferred a major goal is to

study their dynamical properties. Refs. [89,90] point out

that standard GLM estimation approaches can lead to

dynamically unstable estimated networks, and propose

approaches to correct this deficit; some relevant asymp-

totic theory is developed in [91,92].

Factor models

In the language of machine learning, the encoding and

decoding problems are supervised, in the sense that one

seeks a mapping between two known signals: measurable

behavioral variables and populations of spike trains. The

unsupervised analog is often approached using factor mod-
els: high-dimensional neural population activity is

assumed to be a noisy, redundant observation of some

hidden (latent), often low-dimensional, signal of interest.

This signal can then be interrogated with respect to a

scientific hypothesis, used as a denoised and simpler

representation of the neural activity, or visualized for

compact exploratory analysis of the data.

Following the pioneering work of [93], much of this

literature has followed the Bayesian paradigm, where a

generative probabilistic model is stipulated to link low-

dimensional latent signals to high-dimensional neural

spike trains, and then a computational inference proce-

dure recovers the posterior distribution of the latent

variable from the observed data. Examples of this para-

digm include systems with simple latent temporal struc-

ture (e.g. [93–98,99�,100,101]), systems with switching

dynamical structure [102,103,104�,105,106�], and systems

with recurrent neural network dynamical structure
Current Opinion in Neurobiology 2018, 50:232–241
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[107,108]. An alternative direct approach to dimensional-

ity reduction is to stipulate an objective or loss function

that encodes the features one would like to capture in the

data and then optimize a map from data to low-dimen-

sional latent factors [109�].

Dimensionality reduction approaches have been widely

used in neuroscience [110]. Several exemplars of the

scientific potential of these approaches are worth noting.

First, some of the earliest applications of factor models

were to understand mixed selectivity in prefrontal cortex

[111]; this work showed that despite the apparent com-

plex responses displayed by single neurons, at the popu-

lation level simple behavioral correlates can be effectively

read out from the brain. Second, one natural but signifi-

cant extension of this ‘de-mixing’ perspective was the

finding that different computations in certain brain areas

are carried out in different subspaces of neural population

activity, thus providing an implicit gating mechanism for

irrelevant activity [112,113�,114]. Third, Ref. [115] used

this notion of subspaces of activity along with a brain-

machine interface to discover constraints (in terms of

dimensions in neural population space) on learning.

Fourth, population activity along with factor models

has been used to understand the dynamical structure

of motor and prefrontal cortices [116,117]. As more con-

nectomic and cell type constraints become available for

population activity recordings, we expect this literature to

continue to mature and deepen methodologically, and to

elucidate interactions between cell type-specific subpo-

pulations in multiple brain areas [118,119].

Interpretability of large-scale neural data analysis

Of course, the impetus behind the development of new

large scale neural recording and analysis methods is the

belief that these efforts will lead to deeper insights into

principles of neural computation. One important line of

research, which is in its earliest chapter, is to ask: to what

extent is that belief well founded? There are three

categories of approach to address this critical question.

First, there is the concern that novel analyses of large-

scale neural data may not be discovering new phenomena,

but are rather rediscovering simpler, previously known

features of the data that appear new given the novel class

of data and algorithms used to investigate these points.

Recent work has created statistical hypothesis testing

frameworks to enable researchers to quantitatively

address this question [84�,120�,121,122], by developing

methods to generate datasets that contain these simpler,

previously known features but are otherwise random, thus

creating a null distribution against which novel large-scale

data claims can be tested. Applications to test the pres-

ence of linear dynamics in motor cortex [116] and the

presence of de-mixed readouts in prefrontal cortex [111]

have clarified these previous results [120�].
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Another key point of skepticism is whether recording

larger and larger datasets will produce fundamentally new

findings. The answer may depend on the complexity of

the experimental paradigm: if the number of recorded

neurons grows while the task the animal needs to solve is

kept relatively simple, will new scientific insights follow,

or must the complexity of the task grow in concordance

with that of the data? One group has discussed a theoreti-

cal notion of inherent data complexity [123], and two

others have attempted to measure the complexity of

neural population activity in the face of larger and larger

datasets, finding both that complexity (as measured by

the apparent dimensionality of the data) grows seemingly

without bound (Pachitariu et al., unpublished 2017) in

some cases, and in others that it does not [124]. Significant

additional theoretical and experimental work is required

to provide clearer conclusions here.

Third, at the broadest level, we might ask if our current

approaches will ever produce a coherent mechanistic

understanding of the neural system. Ref. [125�] recently

presented an arguably pessimistic answer to this question;

these authors used a man-made computer as a proxy for a

small nervous system, then made simulated recordings,

applied a battery of statistical analyses, and failed to arrive

at a satisfactory understanding of the system’s function or

design. Thus their answer to their question, ‘could a

neuroscientist understand a microprocessor,’ seems to be

negative. While we don’t share the pessimism implicit here,

we do agree that despite rapid progress in our field over the

last decade, neural data science remains in an early stage,

largely because the curve of increasing neural data com-

plexity that we have emphasized above has only recently

begun to accelerate sharply upwards. Moreover, many of

our theories of the brain have been allowed to flourish

largely untethered from data that could constrain and

winnow these theories, and many analyses have similarly

flourished without appropriate statistical testing to constrain

their interpretation. But now we have to grapple seriously

with the question of what we will do when we have in hand,

for example, a matrix of the spatially and temporally

resolved activity of all neurons in an animal performing

an interesting behavior. This remains a yet-distant dream in

mammals but is close to reality in several invertebrate

species, and our field needs to think critically and deeply

about what to do now that this century-long goal is almost in

our grasp. We believe the way forward is an acceleration of

the experiment-analysis-theory cycle; there is a rapidly

growing need for new theories to guide our exquisite

new experimental tools, and as these theories develop

we will continue to need well-matched scalable and test-

able analysis methods that can connect experiment and

theory in a tightly closed loop.

Future outlook
We close by summarizing several trends that will guide

development in this field over the next several years.
www.sciencedirect.com
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� Datasets will continue to grow in size as recording

modalities are optimized and new approaches are intro-

duced; the scalability of processing pipelines will

remain a critical design constraint.

� Closed loop, many-degree-of-freedom optimal control

of neuronal populations will represent a critical

research subfield as optogenetic spatiotemporal control

methods continue to mature [91,126,127].

� Fusion of multimodal datasets will represent another

critical research area, as large-scale connectomic and

cell type constraints [128–130] become available to

inform functional models [125�].
� With this growth in the scale, quantity, and complexity

of datasets and analysis methodologies, statistical tech-

niques for validating and appropriately contextualizing

resulting findings will become increasingly essential

[120�].
� We expect to see more fruitful marriages of ‘classical’

computational neuroscience theories (e.g., network

dynamics, reinforcement learning) with statistical mod-

els for network inference and dimensionality reduction

[131].

� More broadly, sociological trends towards more open

and large-scale data sharing and open-source collabo-

rative projects, supported by stronger pipelines [132]

and reproducibility tools (e.g. http://mybinder.org/),

will enable richer and more ambitious multilevel mod-

els of neural function that are beyond the reach of

single laboratories. https://www.internationalbrainlab.

com represents an example of this; we expect to see

more. Automated curation and compression of data into

useful shareable form are important underexplored

steps in the analysis pipeline here.

� Finally, from our vantage point the number of critical

neural data science projects is currently growing sig-

nificantly more quickly than the number of young

scientists with the necessary interdisciplinary training

in machine learning, statistics, and neuroscience. Simi-

larly, as noted above, the richness and complexity of

available experimental data is beginning to outstrip the

sophistication of the theory that we need to guide new

experiments and the development of new analysis

approaches. This is becoming a critical bottleneck

[133,134]; increased investment in neural data science

and neurotheory training will pay rich dividends in

improving our understanding of neural systems over

the next decade.
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