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SUMMARY

Blocking motor cortical output with lesions or phar-
macological inactivation has identified movements
that require motor cortex. Yet, when and how motor
cortex influences muscle activity during movement
execution remains unresolved. We addressed this
ambiguity using measurement and perturbation of
motor cortical activity together with electromyog-
raphy in mice during two forelimb movements that
differ in their requirement for cortical involvement.
Rapid optogenetic silencing and electrical stimula-
tion indicated that short-latency pathways linking
motor cortex with spinal motor neurons are selec-
tively activated during one behavior. Analysis of
motor cortical activity revealed a dramatic change
between behaviors in the coordination of firing pat-
terns across neurons that could account for this dif-
ferential influence. Thus, our results suggest that
changes in motor cortical output patterns enable a
behaviorally selective engagement of short-latency
effector pathways. The model of motor cortical influ-
ence implied by our findings helps reconcile previous
observations on the function of motor cortex.

INTRODUCTION

Muscle contractions are readily evoked by stimulation of themo-

tor cortex, indicating its capacity to drive movement (Leyton and

Sherrington, 1917; Penfield and Boldrey, 1937; Van Acker et al.,

2016). Although forms of movement that require motor cortical

involvement have been identified, the influence of motor cortex
on muscles during movement execution and its underlying neu-

ral mechanisms remain unresolved.

The behavioral consequences of inactivating motor cortex

suggest that it plays a limited role in motor control. After lesions

to motor cortex or the corticospinal tract, mammals exhibit

persistent deficits in grasping movements but regain the ability

to perform many motor behaviors (Alaverdashvili and Whishaw,

2008; Farr et al., 2006; Lawrence and Kuypers, 1968; Metz

et al., 1998; Piecharka et al., 2005). Similarly, pharmacological

inhibition of neural activity in the primary motor cortex of cats in-

duces deficits in the ability to step over obstacles yet leaves

basic treadmill walking essentially unaltered (Beloozerova and

Sirota, 1993; Drew et al., 1996). Such findings have given rise

to the view that motor cortex contributes to movements

that require sensory-guided adaptation or that involve novel

muscle activation patterns (Lemon, 1993; Shmuelof and Kraka-

uer, 2011).

The specificity of deficits following inactivation, however, of-

fers only limited insight into the influence of motor cortex during

movement execution. The deficits that follow lesions or pharma-

cological inactivation change over time (Martin and Ghez, 1993;

Passingham et al., 1983), implying the existence of compensa-

tory mechanisms that modify motor control circuits (Nudo,

1999; Shadmehr and Krakauer, 2008) and obscure the normal

role of motor cortical output. The specificity of inactivation defi-

cits could reflect a role for motor cortex in driving muscle activity

similarly across behaviors, with other motor areas compensating

for the loss of motor cortical output during certain movements.

Thus, it remains unclear whether deficit specificity reflects a se-

lective motor cortical influence on the execution of particular

movements.

Electrical recording and stimulation of motor cortex have not

thus far revealed a behavioral selectivity in motor cortical influ-

ence that can account for the specificity of inactivation deficits.

The firing patterns of motor cortical neurons correlate with
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Figure 1. The Precision Pull Task

(A) Schematic depicting the precision pull task and

its three stages.

(B) Trial-averaged EMG (black) ± SEM (gray, n =

103) for trapezius (Tra), pectoralis (Pec), biceps (Bi),

triceps (Tri), extensor digitorum communis (EDC),

and palmaris longus (PL) during precision pull. Scale

bar indicates a percentage of maximum in each

average; averages normalized by this maximum.

(C) Mean ± SEM (n = 6 mice) correlation between

trial-averaged EMG from six forelimb muscles for

individual sessions and their trial averages for the

last session plotted (session 14), excluding unre-

warded trials.

(D) Mean correlation between muscle activation on

individual rewarded trials within sessions on the 1st

and 14th days of training. Green bars show means

(six mice).

(E) Performance in terms of successful (rewarded)

pulls over several training sessions for three mice.

Unilateral injections of muscimol or saline alone

into the caudal forelimb region occurred 90 min

before training. Because sessions vary in length,

successes were totaled over the first 30 min.

(F) Performance before and after unilateral ablation

of the caudal forelimb area or sham ablations. Mice

were not trained between sessions 1 and 5 days

after surgery. See also Figure S1.
patterns of muscle activity across diverse behaviors, including

those that survive motor cortical inactivation (Armstrong and

Drew, 1984a; Beloozerova et al., 2010; Dombeck et al., 2009),

indicating that motor cortex could drive muscle activity similarly

across behaviors. In principle, during certain behaviors the

impact of motor cortical output on downstream effector path-

ways could be negated by changes intrinsic to these pathways

(Dyson et al., 2014; Schieber, 2011). However, electrical stimula-

tion of motor cortex perturbs muscle activity at short latency

during behaviors that endure after motor cortical inactivation

(Armstrong and Drew, 1985; Bretzner and Drew, 2005; Otchy

et al., 2015). Though the effects of electrical stimulation vary

during and across behaviors, the results are inconsistent with a

downstream attenuation of the influence of motor cortex. If

movements that require motor cortical involvement feature a

specialized influence of motor cortex on muscle activity, its

uniqueness likely arises from structure in the patterns of motor

cortical output that determines whether certain downstream

effector pathways are modulated.

Here, we aimed to clarify the influence of motor cortex on the

execution of movement. We first probed for a selective influence

of motor cortex during movements that require motor cortical

involvement. We compared the impact of motor cortical output

on muscle activity during a trained reaching task, which requires

motor cortex, and treadmill walking, which persists after elimi-

natingmotor cortical output.We used rapid optogenetic silencing

of motor cortex (Guo et al., 2014b) to reveal a short-latency influ-

ence on muscle activity that is specific to the trained reach

behavior. The latencyof this influencematched that atwhichmus-

cle activity responds to electrical stimulation of motor cortex,

indicating that relatively direct effector pathways are engaged

by motor cortical output selectively during the trained behavior.
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We then analyzed the structure of motor cortical firing patterns

to assess how selective pathway engagement is mediated.

Since the synaptic inputs to a neuron can be approximated as

a weighted sum of the activity in presynaptic neurons, we exam-

ined whether motor cortical activity could be approximated

by different weighted sums of neuronal firing patterns during

the two behaviors (Druckmann and Chklovskii, 2012; Elsayed

et al., 2016; Kaufman et al., 2014). We found that this was the

case, a consequence of changes in the correlations between

neuronal firing patterns. Thus, it appears that short-latency path-

ways used to drive muscle activity during the trained behavior

are only responsive to particular patterns of motor cortical

output. Collectively, our results support amodel of motor cortical

influence, which can account for the specificity of deficits

following motor cortical inactivation, as well as the pervasive

nature of muscle-correlated motor cortical activity and stimula-

tion-induced muscle activation.

RESULTS

Mouse Forelimb Movements that Differ in Their Motor
Cortical Dependence
To elicit movements in mice that require the motor cortex, we

developed a paradigm in which head-fixed mice learn to pull a

joystick a fixed distance with precision (Farr and Whishaw,

2002; Guo et al., 2015; Kawai, 2014). In this task, mice place their

right forepaw on a bar, then reach to a joystick and attempt to

pull it a short distance (�5 mm) that falls within an acceptable

range to earn a reward (Figure 1A; Figure S1A; Movie S1).

Training for this precision pull task involved behavioral shaping

over twice daily training sessions, during which the acceptable

range was adaptively changed to maintain the fraction of



rewarded trials at 25%–40% (Figure S1B; Kawai et al., 2015).

Trials were initiated by the rapid motorized positioning of the

joystick, which prompts trained mice to begin reaching. The

median duration from reach initiation to pull initiation in trained

mice was 176 ms, and the median duration of joystick pulling

was 119ms (n = 659 trials across 3mice). To quantify muscle ac-

tivity during limb movement, we performed chronic electromyo-

graphic (EMG) recordings from three pairs of antagonist muscles

arrayed proximo-distally along the forelimb (Figure 1B; Figures

S1C–S1E; Akay et al., 2006).

Measurements of muscle activity during the precision pull task

exhibited two hallmarks of motor behaviors learned through

practice (Shmuelof and Krakauer, 2011). First, the correlation be-

tween trial-averaged muscle activation patterns for individual

training sessions revealed a gradual change in mean activity

patterns across sessions (Figure 1C). Second, the correlation

between muscle activation patterns on individual trials within

sessions showed an increase in the degree of stereotypy over

time (Figure 1D).

The precision pull task was found to require motor cortex.

Unilateral injection of the GABAA agonist muscimol (74 nL of

1 ng/nL), but not saline alone, into contralateral primary motor

cortex greatly diminished motor performance as assessed by

the incidence of rewarded pulls (Figure 1E). Muscimol injection

profoundly disturbed task execution: the frequency at which

mice contacted and deflected the joystick to any degree was

reduced by 85% ± 6% (mean ± SEM, n = 3 mice). Second, uni-

lateral ablation of contralateral primary motor cortex caused a

similar behavioral impairment, both 1 and 5 days after surgery

(Figure 1F).

For comparison with the precision pull task, we had mice walk

on amotor-driven treadmill (Movie S2). This behavior requires no

training; mice placed on the treadmill without restraint walked

naturally at speeds ranging from 10 to 20 cm/s, without prior

exposure. Critically, interruption of motor cortical output via

lesion or pharmacological inactivation did not impede the ability

of mice to perform this task (Figures S1F and S1G). Thus, the

precision pull and treadmill walking tasks exhibit a markedly

different dependence onmotor cortex, with the execution of pre-

cision pull selectively disrupted by motor cortical inactivation.

Behavioral Selectivity of Fast Timescale Motor Cortical
Influence
We next asked whether motor cortical activity influences muscle

activation in a behaviorally selective manner. To avoid compen-

sation from other motor control circuits, we rapidly silenced mo-

tor cortical output and analyzed the immediate effects onmuscle

activity during both the precision pull and the treadmill walking

tasks (Figure 2). Unilateral silencing was achieved by activating

channelrhodopsin2 expressed in vGATon cortical inhibitory inter-

neurons using a 2-mm-diameter spot of 473 nm light projected

onto the surface of the caudal forelimb area in one hemisphere

(upper left inset in Figure 2A; Figure S2A). We used a light inten-

sity (10 mW/mm2) sufficient to cause nearly complete cessation

of firing among putative vGAToff neurons throughout motor

cortical layers (Figures S2B–S2E; Guo et al., 2014b).

Light-induced inactivation demonstrated the involvement

of motor cortical activity throughout the precision pull task. A
500 ms inactivation (20 Hz, 50% duty cycle) beginning immedi-

ately before trial initiation dramatically altered movement (Fig-

ure 2A, left column, and 2G) and essentially abolished reward

attainment (1 trial rewarded out of 293 inactivation trials versus

181 rewarded out of 701 control trials, n = 3 mice; Figure 2C).

Inactivation lasting 200 ms triggered at the onset of reaching

or joystick pulling also had a dramatic effect on movement (Fig-

ure 2A,middle and right columns, and 2G), prolonging the time to

reward by a comparable duration (n = 4 mice; Figures S2F and

S2G). In both of these cases, the effect of inactivation during

ongoing movement began rapidly: muscle activation diverged

from control patterns about 10 ms after the onset of light stimu-

lation (Figures 2D–2G). These results indicate that the output of

motor cortex during precision pull rapidly influences muscle

activation.

During treadmill walking, the influence of motor cortical output

on muscle activation was markedly different. As mice walked

on the treadmill for the first time, 200 ms inactivations were

triggered sporadically (minimum interval of 5 s, mean interval

of 15 s) at a constant phase within the step cycle, just after the

peak activation of biceps. During the first 35 ms after stimulation

onset, the divergence from control activation patterns was

not significantly different from 0 (mean fractional change ±

SEM = �0.000 ± 0.013, p = 0.516, one-tailed t test, n = 8 mice)

andwas significantly less than that for inactivation at reach onset

(mean ± SEM = 0.099 ± 0.029, p = 0.002) and at pull onset

(mean ± SEM = 0.073 ± 0.031, p = 0.015; Figures 2B, 2D, and

2E). However, at later times after stimulation onset, divergence

from controls that appeared to vary across muscles could be

seen during walking, such that significant divergence from con-

trols was detected in the next 35 ms epoch (mean ± SEM =

0.102 ± 0.044, p = 0.023; Figures 2B, 2D, 2F, and 2G). Record-

ings of motor cortical neurons during 20 Hz light stimulation re-

vealed no neurons (0/104) that fired in response to light-pulse

offsets throughout 200 ms of stimulation (Figure S2C), indicating

that the timing ofmuscle activity divergence here does not reflect

a response to light extinction.

To address how the latency of perturbation responses during

treadmill walking depended on the locomotor phase of inactiva-

tion, we sporadically inactivated motor cortex for 200 ms during

walking regardless of the current phase. Trials were divided into

ten groups based on the phase of light stimulation onset. At all

phases, the divergence from control muscle activation was not

significantly different from 0 during the first 35 ms after stimula-

tion onset (p > 0.05 with Bonferroni correction, one-tailed t test,

n = 4 mice; Figure S2H). Divergence from controls was apparent

at later times, though it was not prominent during the next 35 ms

epoch at all phases (Figures S2I–S2K). Thus, the short-latency

control of muscle activation evident during precision pull is ab-

sent during treadmill walking, suggesting that, in this context,

relatively direct effector pathways are not activated by motor

cortical output.

We then used electrical stimulation in motor cortex to address

two issues raised in interpreting the findings from fast timescale

inactivation. First, we assessed how the �10 ms latency of

muscle activity perturbation following optogenetic silencing

compares to the shortest latency response following electrical

stimulation, which is believed to reflect the fastest pathway
Neuron 95, 683–696, August 2, 2017 685
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Figure 2. Fast Timescale Motor Cortical In-

fluence Is Behavior Specific

(A) Mean ± SEM EMG for trapezius (Tra), pectoralis

(Pec), biceps (Bi), triceps (Tri), extensor digitorum

communis (EDC), and palmaris longus (PL) during

trials with and without 20 Hz blue light stimulation

(blue rectangles) starting prior to movement initi-

ation, at reach onset, or at pull onset. Upper left

inset shows light stimulus position on the caudal

forelimb area (CFA). Vertical blue lines indicate

light onset.

(B) Same as (A) but for inactivation triggered at a

fixed phase of the step cycle during treadmill

walking. The biphasic activation of Pec with a

larger activation more aligned with that of flexor

muscles seen here was present in a minority of

mice (2/14). The more common monophasic,

extensor-aligned Pec activation pattern during

locomotion is seen in Figures S1E–S1G.

(C) Success rate with or without light stimulation

prior to movement initiation.

(D) Mean ± SEM normalized fractional change in

muscle activity between control and inactivation

initiated during reaching (n = 4 mice), joystick

pulling (n = 4), and treadmill walking (n = 8).

(E–G) Mean ± SEM normalized fractional change in

muscle activity between control and inactivation

trials summed over the first 35 ms (E), the next

35ms (F), or the full duration (G) of light stimulation.

See also Figure S2.
linking motor cortex to spinal motor neurons (Lemon, 2008;

Woolsey et al., 1972). Second, we attempted to distinguish

two potential explanations for the differential influence of motor

cortical output between behaviors. Changes intrinsic to down-

stream circuits could attenuate the impact of this output during

treadmill walking, or downstream circuits are capable of being

engaged during walking, but motor cortical output fails to

do so. The former possibility is not consistent with previous

observations in cat (Armstrong and Drew, 1985; Bretzner and

Drew, 2005), but we used electrical stimulation to test whether

motor cortical output induces short-latency muscle activation

throughout treadmill walking in mice.

We stimulated the caudal forelimb area with different current

levels as mice stood still, with minimal muscle activity in most
686 Neuron 95, 683–696, August 2, 2017
forelimb muscles (Figures 3A and 3B).

The latency of response initiation in

EMG recordings was measured at each

current level (Figure 3C). As current

level increased, latencies decreased but

then plateaued. To estimate the shortest

response latency, we then fit a decaying

exponential with a variable asymptote to

the relation between latency and current

level (Figure 3D). Themean ± SEM latency

was 9.6 ± 0.2 ms (n = 3 mice), which is

comparable to previous estimates made

in anesthetizedmice using a different esti-

mation procedure (Ayling et al., 2009). Our

latency estimate also matches closely
with the latency at which motor cortical inactivation disturbs

muscle activity during precision pull (Figure 2D). This implies

that motor cortex influences muscles during precision pull via

short-latency pathways that link cortical projections with spinal

motor neurons.

To test whether the motor cortical influence on downstream

effector pathways is attenuated during treadmill walking, we

electrically stimulated motor cortex as mice performed this

task.We first identified an appropriate level of stimulation current

from responses measured as mice stood still. For each mouse,

we identified a current level that was just large enough reliably

to evoke responses at the shortest observed latency (e.g.,

arrowhead in Figure 3D; range = 70–90 mA). Stimulation at

these current levels during treadmill walking perturbed activity
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(A) EMG from biceps (Bi), triceps (Tri), extensor

digitorum communis (EDC), and palmaris longus

(PL) in response to electrical stimulation (top) in the

caudal forelimb area as amouse stood still. Vertical

magenta lines indicate stimulation onset.

(B) Mean ± SEM EMG for muscles in (A) (n =

25 trials).

(C) Mean ± SEM absolute change in activity from

resting level (n = 25), summed across all four

muscles. Current was 90 mA. Dotted line marks the

initiation of divergence.

(D) Relation between stimulus current and

response latency for one mouse (circles) fit by an

exponential function (red) with a variable asymp-

tote (dotted). Arrow indicates the current level

chosen for subsequent stimulation in this mouse.

(E) EMG from Bi, Tri, EDC, and PL in response to

stimulation (top) during walking.

(F) Mean ± SEMEMG formuscles in (E) during trials

with and without stimulation. Stimulation averages

used trials for which stimulation onset fell within a window spanning 1/10th of the step cycle, and themean stimulation phase for each trial group is given (bottom).

(G) Normalized fractional change in EMG during the 50 ms following stimulation onset versus locomotor phase at which stimulation began in one mouse. Trials

were grouped according to onset phase, and data are plotted along the x axis according to the mean phase for each group. Values are normalized by the

maximum absolute change for the given muscle.
in forelimb muscles at all phases of the step cycle (Figures 3E

and 3F; n = 3 mice).

Importantly, though the latencies of muscle activity distur-

bance after silencing were longer during treadmill walking, re-

sponses to electrical stimulation were as rapid as those seen

when mice stood still (Figure 3F). As has been observed in cats

(Bretzner and Drew, 2005), stimulation effects varied across

muscles and changed as a function of the locomotor phase at

which stimulation occurred (Figures 3F and 3G). Thus, results

from electrical stimulation of motor cortex in mice are similar to

those obtained in cats and argue against downstream attenua-

tion of motor cortical influence during treadmill walking.

Motor Cortical Activity during Precision Pull and
Treadmill Walking
The above results indicate that short-latency pathways linking

motor cortex with spinal motor neurons are activated during pre-

cision pull, but not treadmill walking, but that this is not because

such pathways are unable to respond to motor cortical output

during walking. This implies that structure in the patterns of mo-

tor cortical output dictates how downstream effector pathways

are modulated. To resolve how such pathways can be engaged

differentially, we examined neural activity in primary motor

cortex.

We monitored the activity of motor cortical neurons during

precision pull and treadmill walking using chronically implanted

microwire tetrodes initially targeted 500 mm below the pial sur-

face. After 3 weeks of precision pull training, recordings were

made over 45 min during behavioral sessions and for 15 min

immediately afterward as mice walked along the treadmill. Tet-

rodes were lowered by 50 mm after each recording session,

permitting the isolation of �300 single units in cortical output

layers V and VI of each mouse over 11 days of recording

(mean = 297 units, n = 3).
We first verified that neural activity in mouse motor cortex

shares features observed in other mammals. Neuronal firing

rates averaged across trials of precision pull behavior and across

individual step cycles exhibited a wide array of patterns (Figures

4A and 4B; Figures S3A–S3I, S3K, and S3M) that showed sub-

stantial correlations with muscle activity. For nearly all neurons,

firing rate time series during both the precision pull behavior

and during walking were significantly correlated with the activity

of at least one forelimbmuscle, after accounting for false discov-

ery (Figure 4C; Figure S3J, S3L, and S3N). Among neurons firing

above 1 Hz on average, correlation magnitudes were substantial

during both behaviors (Figure 4D), though there was a small, sig-

nificant increase seen during precision pull (pull median = 0.708,

walk median = 0.641; p = 0.00003, Wilcoxon rank-sum test).

These findings are consistent with results from other mammals

during behaviors that vary in their requirement for motor cortical

involvement (Armstrong and Drew, 1984a; Drew et al., 1996;

Kargo and Nitz, 2004).

Despite observed correlations between motor cortical and

muscle activity, previous reports have also noted deviation be-

tween the activity patterns of individual motor cortical neurons

and those of particular muscles (Churchland and Shenoy,

2007; Schieber and Rivlis, 2007). This is true even for neurons

that directly contact spinal motor neurons innervating the mus-

cles in question (Cheney and Fetz, 1980; Muir and Lemon,

1983). Despite this deviation, correlation between motor cortical

and muscle activity en masse has been demonstrated. In partic-

ular, certain weighted sums of neuronal firing rates can be found

that strongly resemble the activity of muscles (Morrow and

Miller, 2003; Oby et al., 2013; Schieber and Rivlis, 2007).

We searched for similar correlation between motor cortical

and muscle activity in mice, using canonical correlation anal-

ysis (CCA; Hotelling, 1936; Sussillo et al., 2015) to compare

the set of trial-averaged neuronal firing rates with the set of
Neuron 95, 683–696, August 2, 2017 687
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Figure 4. Muscle-Correlated Motor Cortical Firing during Precision Pull and Treadmill Walking

(A) Spike rasters and histograms (top, trial-averaged firing rates overlaid) for one neuron and the trial-averaged activation (bottom) of biceps (Bi) and palmaris

longus (PL), with correlation scores (r) for each EMG trial average with the corresponding neuronal firing rate.

(B) Trial-averaged firing rates for eight neurons during pull and walk. Scale bars represent 20 Hz, and their bases indicate 0 Hz along the vertical. Arrowheads

indicate muscle activation onset during pull and a step cycle phase of 0�.
(C) Fractions of recorded neurons with firing rates significantly correlated with the activity of at least one muscle. Fractions were also computed after ignoring

neurons with very low firing rates, which may be poorly estimated.

(D) Histograms of themaximum absolute correlation of neuronal firing rates with muscle activity during pull andwalk, measured using trial averages. Neuronswith

mean firing rates < 1 Hz, which may be poorly estimated, were excluded.

(E) Waveform widths, with values from 0 to 0.8 ms fit by a sum of two Gaussians, and boundaries for assigning narrow- and wide-spiking subtypes.

(F) Fractions of neurons assigned to each subtype. Green bars show means (three mice).

(G–J) Histograms of mean firing rates (G and I) during pull, walk, and inactivity and of firing rates as a factor of their level during inactivity (H and J) during pull

and walk for wide-spiking (G and H) and narrow-spiking (I and J) neurons. Means are measured as the mean of the trial-averaged time series. See also

Figures S3 and S4.
trial-averaged muscle activations for individual mice (Figure S4).

Starting with two sets of variables, CCA finds weighted sums of

each set (‘‘canonical variables’’) that are maximally correlated

and then iteratively repeats this process to find additional ca-

nonical variables uncorrelated with all previous ones. For both

pull and walk, CCA identified canonical variables that are

strongly correlated and account for a substantial fraction of

the variance in neural and muscle data. This indicates substan-

tial correlation between motor cortical and muscle activity en

masse, as observed in primates. Nevertheless, such correla-

tions imply little about the downstream influence of motor

cortical output.

To further compare mouse motor cortical activity to previous

observations, we took advantage of the relationship between

spike width and neuronal identity to assess activity specifically
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in narrow-spiking, putative inhibitory interneurons and wide-

spiking neurons expected to be primarily pyramidal neurons

(Barthó et al., 2004; McCormick et al., 1985). Histograms of

trough-to-peak spike widths appeared well fit by a sum of two

Gaussians for widths ranging from 0 to 0.8 ms (Figure 4E). We

thus used this fit to assign neurons to either narrow- or wide-

spiking groups. We set boundaries for assignment that were ex-

pected to yield a rate of misclassification of 1% of neurons under

the assumption that each group shows aGaussian distribution of

waveform widths (see STAR Methods). Using this assignment

scheme, 81% ± 2% of neurons were wide-spiking, 18% ± 1%

of neurons were narrow-spiking, and 5/890 were unassigned

(Figure 4F). These fractions are similar to those seen previously

in mice (Guo et al., 2014b) as well as those observed histolog-

ically in rats (Beaulieu, 1993).
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Figure 5. Scaling between Motor Cortical

Firing and Muscle Activity

(A) Schematics of the scaling between firing rates

and muscle activity during pull plotted versus that

during walk in hypothetical scenarios.

(B, E, and F) Scaling between firing rates and

muscle activity during pull plotted versus that during

walk for all cells (B), wide-spiking cells recorded in

layer 5b (E), and wide-spiking cells recorded in layer

5b with mean firing rates > 10 Hz during at least

one behavior (F) for three mice. Scaling was only

calculated for neurons having mean firing rates >

1 Hz during at least one of the two behaviors.

(C) Histograms of the log of the ratio between pull

and walk scaling for all cells, wide-spiking cells re-

corded in layer 5b, and wide-spiking cells recorded

in layer 5b havingmean firing rates > 10 Hz during at

least one behavior.

(D) Mean fractions of recorded wide- and narrow-

spiking neurons versus tetrode depth (thick lines,

three mice). Connected black dots are for individ-

ual mice.
Consistent with previous observations across mammals, ac-

tivity among both neuronal groups was increased on average

during movement, as compared with periods of no muscle activ-

ity that fell between precision pull trials (‘‘inactivity’’; Figures 4G–

4J). Mean firing rates divided by their corresponding means

during inactivity were, on average, 3.47 for wide- and 6.61 for

narrow-spiking neurons during pull and 3.11 for wide- and 2.85

for narrow-spiking neurons during walk. In particular, as has

been recently described for primates (Kaufman et al., 2013), nar-

row-spiking neurons did not appear to decrease in firing when

movement began during the precision pull, countering the idea

that cortical inhibition gates voluntary movements. Interestingly,

our observations contrast with recent reports of activity in rat

vibrissa motor cortex (Ebbesen et al., 2017), where firing rates

tend to increase during movement suppression. Collectively,

our observations show that activity in the mouse caudal forelimb

area shares basic features with that seen in the forelimb motor

cortices of other mammals.

Probing the Mechanism of Differential Influence on
Downstream Pathways
One possible mechanism for behavior-specific engagement of

short-latency effector pathways is that separate neuronal popu-

lations are predominantly active during each behavior, and only

the population that is highly active during precision pull engages

such pathways (Dombeck et al., 2009; Hayashi-Takagi et al.,

2015). To test this possibility, we calculated a ‘‘scaling’’ index

for each neuron that measures how the degree of change in its

firing rate compares to the degree of change in muscle activity

during the two behaviors. This was computed by dividing the

range of a neuron’s trial-averaged firing rate time series for a

given behavior by the mean of the ranges of the trial-averaged

EMG time series for the simultaneously recorded muscles. If

separate neuronal populations exist, plots of scaling values

computed for precision pull against those for walking would

show groups of neurons with scaling values much larger for

one of the two behaviors (Figure 5A, left). We did not observe
this outcome (Figure 5B), providing evidence against the exis-

tence of separate neuronal populations active during individual

behaviors.

We also considered the possibility that, during precision pull,

short-latency effector pathways could be engaged only by activ-

ity levels above those seen during treadmill walking (Beloozerova

et al., 2010; Hosp et al., 2013). If this were the case, variation in

neuronal firing would be larger relative to variation in muscle ac-

tivity during precision pull, assuming firing generally increases

with muscle activity. This quantitative difference would have to

be substantial, because neural activity during theweakestmove-

ment involving short-latency pathway engagement would have

to be higher than the activity during the strongest movement

lacking this engagement. In this scenario, plots of precision

pull scaling versus walking scaling would display a preponder-

ance of points above the line where pull scaling equals walk

scaling (Figure 5A, right). However, this feature was not observed

(Figure 5B). Indeed, the ratio of the pull scaling to walk scaling

for each neuron has a distribution centered below 1 (log10

median = �0.21; Figure 5C), indicating more points below the

line where pull scaling equals walk scaling. This finding does

not support the possibility that short-latency effector pathways

are engaged only bymodulation in motor cortical activity beyond

the levels seen during treadmill walking.

We further tested the two above-stated hypotheses by

repeating analyses on subsets of recorded neurons that may

be particularly relevant to the downstream influence of motor

cortex. Among wide-spiking neurons, we analyzed specifically

those recorded between 650 and 850 mm below the pia, where

the cell bodies of most subcerebral projection neurons reside

in cortical layer 5b (S. Fageiry, personal communication). The va-

garies of electrical recording do preclude assigning neurons re-

corded in this depth range to layer 5b. However, consistent with

an overrepresentation of subcerebral projection neurons among

our recorded populations, the number of wide-spiking units iso-

lated per recording session was, on average, 72% higher when

tetrodes were located in this range compared with other depths,
Neuron 95, 683–696, August 2, 2017 689
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(A) Schematic depicting how changes in firing rate correlations for two input neurons, n1 and n2, can change their modulation of a downstream neuron. Activity

depicted in the downstream cell is the sum of input firing rates.

(B) Schematic depicting an analogous scenario in which weighted sums of neural activity are modulated differently between behaviors, which could enable

behavior-specific effects.

(C) Matrices of firing rate correlations in one mouse during precision pull (left) and treadmill walking (right) ordered to cluster neurons with similar correlation

patterns during pull (top) and walk (bottom). Each row and the equivalently numbered column correspond to one neuron. Neurons having mean firing rates < 1 Hz

during either behavior were excluded.

(D) Firing rate correlation for neuron pairs during pull plotted versus their correlation during walk. Every tenth pair plotted from three mice.

(E) Histogram of firing rate correlation changes between behaviors and 105 iterations of the same histogram calculated after data permutation. See also Figure S5.
while a similar trend was not seen for narrow-spiking units (Fig-

ure 5D). The distribution of scaling values for wide-spiking

neurons recorded in this range was similar to that seen for

the full population (Figures 5C and 5E). To focus on those neu-

rons that may exert the strongest influence downstream, we

further excluded neurons that did not fire above 10 Hz on

average during at least one of the two behaviors. The distribution

of scaling values changed only minimally (Figures 5C and 5F).

Collectively, these results argue against both of the above-

stated hypotheses.

Behavioral Selectivity in the Correlation of Firing
Patterns across Motor Cortical Neurons
We next probed for behavior-dependent changes in the correla-

tion between the firing patterns of motor cortical neurons. To see

how this could account for differential engagement of short-

latency pathways, consider first a downstream neuron within

such a pathway that receives input from two motor cortical neu-

rons (Figure 6A). During one behavior, the input neurons’ firing

patterns are positively correlated, so their activities add cumula-

tively and the downstream neuron is strongly modulated. But

during a second behavior, the firing patterns are negatively

correlated, diminishing their impact on the downstream neuron.

Similarly, we can envisage a downstream neuron that receives

direct and/or indirect input frommotor cortex that is effectively a

weighted sum of the firing patterns of motor cortical neurons

(Figure 6B). If the correlations between the firing patterns of mo-
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tor cortical neurons change between behaviors, weighted sums

of these firing patterns that show particularly strong modulation

during one behavior will show weaker modulation during the

other. So if firing pattern correlations change such that a

weighted sum of motor cortical output that matches the effective

weighting of inputs to the downstream neuron varies strongly

during only one behavior, then the downstream neuron may be

strongly influenced by motor cortex during only one behavior.

Thus, this neuron can respond in a behaviorally selective

manner, even if upstream neurons are active during both

behaviors.

To assess the plausibility of such a mechanism, we calculated

correlations between trial-averaged firing rate time series for

each pair of neurons from individual mice, separately for each

behavior. Matrices of the resulting correlation scores were or-

dered to reveal groups of similarly active neurons (Figure 6C, up-

per left and lower right). This structure largely disappeared

in identically ordered matrices constructed using correlation

scores from the alternate behaviors (Figure 6C, upper right and

lower left), indicating that groups of similarly active neurons dur-

ing one behavior are less similarly active during the other

behavior. Indeed, the fact that two neurons were similarly active

during one behavior implied little about whether they were simi-

larly active during the other behavior (Figure 6D).

The change in correlation scores between behaviors was

large. We computed a null distribution using data permuted

under the assumption that correlations were similar in both
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Figure 7. Behaviorally Selective Variation in Weighted Sums of Motor Cortical Firing Patterns

(A) Left: trial-averaged firing rates for two neurons during pull and walk. Scale bars represent 20 Hz, and their bases indicate 0 Hz along the vertical. Arrowheads in

(A) and (B) indicate muscle activation onset during pull and a step cycle phase of 0�. Right: relations between the firing rates over the first 350 ms of the averages

for pull and walk, with best-fit lines (solid black). To highlight trends, we computed firing rates for this panel with a 20 ms, rather than a 10 ms, Gaussian.

(B) Projection of neuronal population activity from one mouse during pull (red) and walk (black) onto the top four principal components for the activity during pull

(left) and walk (right).

(C) Relation between neuronal population activity from one mouse during pull and walk projected onto the first principal component for activity during walk and

the first principal component for activity during pull minus its projection onto the first axis (Orthogonalized).

(D and E) Mean ± SEM variance captured from pull and walk firing rates by the top principal components for pull and walk using all neurons (D) or wide-spiking

neurons recorded in layer 5b (E).

(F) Alignment of firing rates, permuted firing rates, and muscle activity during pull and walk. Green bars show means (three mice).

(G) Relation between the activity of all recorded muscles from onemouse during pull and walk projected onto the first principal component for their activity during

walk and the first principal component for their activity during pull minus its projection onto the first axis (Orthogonalized). See also Figures S6 and S7.
behaviors, but differences in observed correlations arise from

the use of separate sets of trials. The actual median correlation

score was more than 56 standard deviations beyond the median

of the resulting null distribution (p < 10�5, one-tailed Monte Carlo

test; Figure 6E). The change in correlation did not appear to be an

artifact of the behavioral event chosen for aligning trials or of the

inclusion of neurons with low firing rates that may have been

poorly estimated given the number of trials used (Figures S5A–

S5F).Moreover, we observed a similar change in correlation spe-

cifically among wide-spiking neurons recorded within layer 5b

(Figures S5G–S5I). Thus, correlations among neuronal firing pat-

terns change markedly between precision pull and treadmill

walking.

We used principal component analysis to quantify the result-

ing changes between behaviors in the modulation of weighted

sums of neuronal firing patterns that vary strongly during one

behavior. The first several principal components of firing pat-

terns here define weighted sums of those patterns that account

for a large fraction of firing rate variation across the population.

The first four principal components during either of the two

behaviors account for R90% of firing rate variation during the

given behavior (mean ± SEM, pull variance capture: 95% ±

1%, walk variance capture: 90% ± 0.3%). Because the corre-
lations between firing rates change between behaviors (Fig-

ure 7A), each set of top principal components accounted for

only a small fraction of firing rate variation during the other

behavior (Figures 7B–7D). Here again, the same held true spe-

cifically for wide-spiking neurons recorded within layer 5b (Fig-

ure 7E; Figure S6A). Thus, the top principal components define

weighted sums of firing rates that each vary strongly during only

one behavior.

To quantify the difference between behaviors in the firing rate

variation accounted for by each set of top principal components,

we measured the ratio between the small fractions of variance

accounted for during the other behavior and the fractions of vari-

ance accounted for during the behavior for which the compo-

nents were computed (alignment index, Figure 7F; Elsayed

et al., 2016). The mean ± SEM alignment index for neural activity

during pull and walk was 0.11 ± 0.02. As a control, we computed

the alignment index after permuting data as above under the

assumption that correlations were similar in both behaviors.

The resulting alignment index was 0.89 ± 0.02 (p < 10�5, one-

tailed t test). Among wide-spiking neurons, alignment was

0.07 ± 0.01, and among those recorded within layer 5b, it was

0.14 ± 0.05. Changes in alignment were not primarily due to a

small subset of recorded neurons and so reflect a general feature
Neuron 95, 683–696, August 2, 2017 691



of population activity (Figure S6B). Thus, weighted sums that

account for the vast majority of variation in motor cortical

firing patterns are much more strongly modulated during one

behavior, which could enable downstream pathways to be

engaged in a behavior-specific manner.

Most critically here, the fraction of firing rate variation during

walking that is accounted for by the pull principal components

is uniformly low (Figures 7D and 7E). This indicates that themotor

cortical firing patterns associated with engagement of short-la-

tency effector pathways during pull are weakly represented in

the activity during walking. This could ensure that those path-

ways are not activated during walking.

We next addressed whether the changes in neural activity

correlations between behaviors merely reflect changes in mus-

cle activity patterns. If motor cortical and muscle activity are

correlated, and correlations between the activity of different

muscles change between the two behaviors, then we might

expect some degree of difference in the correlations between

the firing patterns of motor cortical neurons. However, the dif-

ference between behaviors in the modulation of weighted

sums defined by prominent principal components for muscle

activity was smaller than it was for neural activity (Figure 7G),

and the alignment index for muscle activity was much higher

(0.65 ± 0.06) than that seen for neural activity (Figure 7F).

We note here though that this difference does not imply that

activity among small groups of neurons of a size similar to

the number of recorded muscles also show much less align-

ment than muscles. Nor do our claims require this to be true.

These results suggest that the changes in the weighted

sums that account for motor cortical activity do not merely

reflect differences in the patterns of muscle activation between

behaviors.

Lastly, variation in the weighted sums of motor cortical activ-

ity defined by principal components revealed another feature

that is consistent with a difference in downstream pathway

engagement between behaviors. We observed that while the

weighted sums defined by walk principal components varied

minimally after the onset of muscle activation during precision

pull, these weighted sums varied much more so immediately

before muscle activation onset (arrows in Figure 7B). We inves-

tigated this further by calculating principal components for

motor cortical activity after muscle activation onset during pre-

cision pull, in order to focus on weighted sums prominent during

movement (Figure S6C). We found that while the weighted sums

defined by these components varied prominently both before

and after muscle activation onset (Figures S6D and S6E),

weighted sums defined by walk components varied most prom-

inently prior to onset (Figures S6F and S6G). Moreover, the

degree of variation just prior to onset in the weighted sums

defined by walk components was comparable to that seen

throughout walking (Figures S6H and S6I) and 56% as great

as variation of the weighted sums defined by pull components

during the equivalent epoch (arrows in Figures S6E and S6G).

Since muscle activity is minimal during this epoch, these

results are consistent with the view that the weighted sums

of motor cortical activity prominent during walking are not

involved in driving muscle activity through short-latency effector

pathways.
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DISCUSSION

We have examined the influence of motor cortex on muscle ac-

tivity during movement execution and its underlying neural

mechanisms. Rapid silencing and stimulation of motor cortex

demonstrated that relatively direct effector pathways are

engaged by motor cortical output during a trained precision

pull behavior, but not treadmill walking. Downstream effector

pathways therefore respond to motor cortical output in a behav-

iorally selective manner.

We then probedmotor cortical activity for evidence of how this

behaviorally selective influence is mediated. Between behaviors,

we observed a dramatic change in the correlations among

neuronal firing patterns and, accordingly, a change in weighted

sums of firing patterns that vary strongly. This structure in motor

cortical activity represents a plausible strategy for behavior-spe-

cific influence of motor cortex, in which downstream neurons

respond to particular weighted sums of activity in motor cortical

output neurons (Figures 6A and 6B). Thus, our results suggest

that changes in the correlations between neuronal firing patterns

permit a behaviorally selective engagement of short-latency

effector pathways.

Differential Influence of Motor Cortex on Downstream
Pathways
Our findings argue that motor cortical output does not drive

muscle activity similarly across different behaviors. Muscle acti-

vation was disrupted at very different latencies when we rapidly

silenced motor cortical output. Disturbance began about 10 ms

after light stimulation onset during the precision pull behavior,

matching the latency at which forelimb EMG responses are first

detectable following electrical stimulation. Yet, during treadmill

walking, disturbance started with a delay of >35 ms. This varia-

tion in motor cortical influence suggests that the specificity of

behavioral deficits following lesions or pharmacological inactiva-

tion that eliminate motor cortical output does not merely reflect

an inability of other motor areas to compensate during a subset

of movements. Moreover, the agreement between the latencies

of silencing effects during precision pull and of stimulation re-

sponses implies a direct influence of motor cortical output on

muscle activity in rodents, contrary to recent claims (Lopes

et al., 2016).

Though basic treadmill walking survives the elimination of

motor cortical output (Figures S1F and S1G), our results indi-

cate that motor cortical output can influence treadmill walking.

The increased latency of the disturbance in muscle activation

could reflect activity perturbation in a neuronal pathway

comprised of a larger number of neurons and synapses that

lead to spinal motor neurons. The longer latency would result

from delays due to conduction and synaptic transmission

along such a pathway. One possibility is that motor cortical

output is monitored by circuits that depend on the information

about movement that this output provides and can influence

movement at longer latency when motor cortical output is

disturbed. Even when muscle activity is not directly driven

through short-latency pathways, motor cortical output could

still convey information about movement since afferent

sensory pathways drive responses in motor cortex and can



modulate its output (Armstrong and Drew, 1984b; Hatsopoulos

and Suminski, 2011).

The model of motor cortical influence supported by our results

can resolve the ambiguity posed by the specificity of deficits

following motor cortical inactivation (Drew et al., 1996; Kawai

et al., 2015; Passingham et al., 1983) despite the pervasive na-

ture of muscle-correlated motor cortical activity and stimula-

tion-induced muscle activation (Armstrong and Drew, 1984a,

1985; Griffin et al., 2011; Kargo and Nitz, 2004; Otchy et al.,

2015). The circumscribed deficits seen from blocking motor

cortical output with lesions or pharmacological inhibition could

result from the inability of other motor areas to compensate for

the engagement of short-latency effector pathways. Because

electrical stimulation in motor cortex will induce broad changes

in activity that should modulate almost any possible weighted

sum of that activity, any given downstream pathway could

readily be activated. Muscle activity is likely then to be modu-

lated at short latency regardless of behavioral context, consis-

tent with prior observations (Armstrong and Drew, 1985; Bretz-

ner and Drew, 2005). And the observation of muscle-correlated

motor cortical activity during a broad range of behaviors does

not contradict behavior-specific engagement, because correla-

tion between neural and muscle activity does not by itself imply

direct control of muscle activity.

Here, we have employed methodology that may be generally

useful in assessing functional influence in the motor system.

Certain observations have cast doubt on the capacity of pharma-

cological and optogenetic perturbations to elucidate motor

circuit operation (Martin and Ghez, 1993; Otchy et al., 2015).

Of particular concern is the possibility for delusive effects of per-

turbations to pathways normally unimportant for the behavior in

question. Our results demonstrate that such concerns can be

allayed by combining optogenetic perturbation with the milli-

second precision readout EMGprovides andwith electrical stim-

ulation of relevant pathways. The muscle activity perturbations

we observed following optogenetic silencing during precision

pull matched the latency of relevant pathways, were reproduc-

ible across animals, and were not observed during another

behavior. Such criteria may be applicable when assessing the

direct influence of neuronal populations during circuit operation.

Interpreting the Downstream Influence of Cortical
Output
Findings from analysis of our entire recorded population held

specifically for wide-spiking neurons and the subset thereof re-

corded within layer 5b. Still, the degree of difference between

behaviors in firing rate correlations among subcerebral projec-

tion neurons themselves is not directly specified by our results.

We note, however, that subcerebral projection neurons may be

overrepresented in our recorded populations, as the number of

wide-spiking units isolated in a given recording session was

72% higher when tetrodes were located within layer 5b. More-

over, the very limited similarity in neuronal correlations we

observed between behaviors (Figures 7D–7F) suggests that

such correlations will vary within any substantial fraction of re-

corded motor cortical neurons.

Our findings do not preclude that changes intrinsic to down-

stream effector circuits also influence the manner in which they
respond to motor cortical output. Indeed, previous studies using

electrical stimulation show that responses in spinal circuits to

descending input vary across movements and during different

phases of particular movements (Bretzner and Drew, 2005;

Drew and Rossignol, 1984; Dyson et al., 2014). Moreover, previ-

ous measurements of spike-triggered average muscle activity

indicate that the impact of individual motor cortical neurons on

muscle activity can vary across different movement types

(Schieber, 2011), though such variation is not prominent in

certain contexts (Buys et al., 1986). Our observation that electri-

cal stimulation during treadmill walking perturbs muscle activity

does, however, indicate that the behavioral selectivity of motor

cortical influence on downstream effector pathways is not attrib-

utable to a negation of motor cortical influence by changes

intrinsic to those pathways. Thus, there should be structure in

the patterns of motor cortical output that at least partly deter-

mines whether downstream effector pathways are modulated.

Behavior-specific responses in downstream neurons do not

necessarily require that most all of the firing rate variation during

a given behavior is captured by weighted sums of motor cortical

output that are minimally modulated during other behaviors.

Rather, specificity would merely require that some fraction

of motor cortical output is captured by weighted sums that

vary sufficiently to modulate downstream pathways only during

certain behaviors. A downstream neuron sensitive to only this

fraction of output could then respond in a behavior-specific

manner. Here, we show that the top principal components for

motor cortical activity during precision pull capture only �10%

of the firing rate variation during walking. Though much of the

variance captured by these weighted sums during pull may not

be involved in engaging downstream pathways, large fractions

of the variance during pull are at least available for this purpose

without the consequence of much downstream pathway modu-

lation during walking.

The changes in neural activity correlations we see do not

appear to be a simple consequence of the fact that we recorded

frommany neurons. Because our weighted sums of activity have

one term for each neuron in the recorded populations, the

weights from each individual sum constitute a vector that repre-

sents a direction in a neural activity space—a high-dimensional

space in which each cardinal dimension represents the firing of

one neuron. We might imagine that our sets of principal compo-

nents during pull and walk define two small sets of randomly

selected vectors in such a space and so are expected to be

mostly orthogonal, consistent with our findings. However, if

we assume that there are static neuronal correlations across be-

haviors so that any observed correlation changes only reflect

chance variation, we would have expected the principal compo-

nents we found to define vectors that were much less orthogonal

(Sadtler et al., 2014). This is indicated by the alignment indices

we calculated for permuted datasets, which assume static

neuronal correlations yet showed much more similarity than

the actual neural data (Figure 7F).

Implications of the Variation in Motor Cortical Activity
Correlations
Much of the structure in motor cortical firing patterns can be

explained by a role in driving muscle activity and in helping
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generate the requisite output commands (Churchland et al.,

2012; Evarts, 1968; Oby et al., 2013; Todorov, 2000). However,

a corollary of our results is that correlations between the activ-

ities of motor cortical neurons and muscles can vary substan-

tially across different movement types (Figure S7). This is

implied by the marked difference between behaviors in the

correlations among neuronal firing patterns that far exceeds

the difference in correlations among muscle activity patterns.

This extends previous reports of dissimilarity in primates be-

tween the activities of individual muscles and individual motor

cortical neurons, even those that synapse onto spinal motor

neurons (Morrow and Miller, 2003; Schieber and Rivlis,

2007). These previous studies have been used to argue that

meaningful descending commands emerge at the level of the

motor cortical population (Churchland and Shenoy, 2007;

Kaufman et al., 2014), a point that is underscored by our

results.

The finding of changes in the downstream influence of motor

cortical output paired with changes in correlation betweenmotor

cortical and muscle activity also helps to reconcile certain other

observations. A recent study in cats reported substantial similar-

ity in the correlation of motor cortical and muscle activity during

forelimb reach and obstacle avoidance (Yakovenko and Drew,

2015), though a previous study had noted substantial differences

in such correlations between obstacle avoidance and generic

treadmill walking (Drew et al., 1996). In this earlier study, both

the motor cortical dependence and the muscle activation pat-

terns differed between movements, whereas in the more recent

study, both movements are known to require motor cortex and

involve similar muscle activation patterns. Thus, the apparent

discrepancy between studies may reflect the fact that forelimb

reach and obstacle avoidance require motor cortical involve-

ment and so rely on engagement of specific downstream

effector pathways by motor cortical output. The particular pat-

terns of activity required for this engagement could in turn

change the correlations between motor cortical and muscle

activity.

The view that certain weighted sums of neuronal firing pat-

terns serve distinct functions (Druckmann and Chklovskii,

2012; Seung, 1996) is supported by other characterizations of

firing dynamics in motor areas. Motor cortical neurons are active

during both the planning and the execution of movement, but

different weighted sums of their activities vary strongly during

each phase (Elsayed et al., 2016), potentially ensuring that mus-

cles are inactive during planning (Kaufman et al., 2014).

Weighted sums of motor cortical firing patterns that are predic-

tive of a decision-making behavior show preferential recovery

following transient activity perturbations (Li et al., 2016). And

in the oculomotor system, different weighted sums of firing pat-

terns in the oculomotor neural integrator encode eye position

during different types of eye movement (Daie et al., 2015). These

movement-related neural dynamics exhibit parallels to those in

other systems, such as the remapping of spatial representation

across place cells in the CA1 region of hippocampus when the

surrounding environment changes (Leutgeb et al., 2005). Func-

tional distinctions between weighted sums of neuronal firing

patterns may therefore prove broadly valuable in defining princi-

ples of neural system function.
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G. (2004). Characterization of neocortical principal cells and interneurons by

network interactions and extracellular features. J. Neurophysiol. 92, 600–608.

Beaulieu, C. (1993). Numerical data on neocortical neurons in adult rat, with

special reference to the GABA population. Brain Res. 609, 284–292.

Beloozerova, I.N., and Sirota, M.G. (1993). The role of the motor cortex in the

control of accuracy of locomotor movements in the cat. J. Physiol. 461, 1–25.

Beloozerova, I.N., Farrell, B.J., Sirota, M.G., and Prilutsky, B.I. (2010).

Differences in movement mechanics, electromyographic, and motor cortex

activity between accurate and nonaccurate stepping. J. Neurophysiol. 103,

2285–2300.

Bretzner, F., and Drew, T. (2005). Contribution of the motor cortex to the struc-

ture and the timing of hindlimb locomotion in the cat: a microstimulation study.

J. Neurophysiol. 94, 657–672.

Buys, E.J., Lemon, R.N., Mantel, G.W., and Muir, R.B. (1986). Selective facili-

tation of different hand muscles by single corticospinal neurones in the

conscious monkey. J. Physiol. 381, 529–549.

Cheney, P.D., and Fetz, E.E. (1980). Functional classes of primate corticomo-

toneuronal cells and their relation to active force. J. Neurophysiol. 44, 773–791.

Churchland, M.M., and Shenoy, K.V. (2007). Temporal complexity and

heterogeneity of single-neuron activity in premotor and motor cortex.

J. Neurophysiol. 97, 4235–4257.

Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D.,

Nuyujukian, P., Ryu, S.I., and Shenoy, K.V. (2012). Neural population dynamics

during reaching. Nature 487, 51–56.

Daie, K., Goldman, M.S., and Aksay, E.R. (2015). Spatial patterns of persistent

neural activity vary with the behavioral context of short-term memory. Neuron

85, 847–860.

Dombeck, D.A., Graziano, M.S., and Tank, D.W. (2009). Functional clustering

of neurons in motor cortex determined by cellular resolution imaging in awake

behaving mice. J. Neurosci. 29, 13751–13760.

Drew, T., and Rossignol, S. (1984). Phase-dependent responses evoked in

limbmuscles by stimulation of medullary reticular formation during locomotion

in thalamic cats. J. Neurophysiol. 52, 653–675.

Drew, T., Jiang,W., Kably, B., and Lavoie, S. (1996). Role of themotor cortex in

the control of visually triggered gait modifications. Can. J. Physiol. Pharmacol.

74, 426–442.
Druckmann, S., and Chklovskii, D.B. (2012). Neuronal circuits underlying

persistent representations despite time varying activity. Curr. Biol. 22,

2095–2103.

Dyson, K.S., Miron, J.P., and Drew, T. (2014). Differential modulation of de-

scending signals from the reticulospinal system during reaching and locomo-

tion. J. Neurophysiol. 112, 2505–2528.

Ebbesen, C.L., Doron, G., Lenschow, C., and Brecht, M. (2017). Vibrissa motor

cortex activity suppresses contralateral whisking behavior. Nat. Neurosci.

20, 82–89.

Elsayed, G.F., Lara, A.H., Kaufman, M.T., Churchland, M.M., and

Cunningham, J.P. (2016). Reorganization between preparatory andmovement

population responses in motor cortex. Nat. Commun. 7, 13239.

Evarts, E.V. (1968). Relation of pyramidal tract activity to force exerted during

voluntary movement. J. Neurophysiol. 31, 14–27.

Farr, T.D., and Whishaw, I.Q. (2002). Quantitative and qualitative impairments

in skilled reaching in the mouse (Mus musculus) after a focal motor cortex

stroke. Stroke 33, 1869–1875.

Farr, T.D., Liu, L., Colwell, K.L., Whishaw, I.Q., and Metz, G.A. (2006). Bilateral

alteration in stepping pattern after unilateral motor cortex injury: a new test

strategy for analysis of skilled limb movements in neurological mouse models.

J. Neurosci. Methods 153, 104–113.

Griffin, D.M., Hudson, H.M., Belhaj-Saı̈f, A., and Cheney, P.D. (2011). Hijacking

cortical motor output with repetitive microstimulation. J. Neurosci. 31,

13088–13096.

Guo, Z.V., Hires, S.A., Li, N., O’Connor, D.H., Komiyama, T., Ophir, E., Huber,

D., Bonardi, C., Morandell, K., Gutnisky, D., et al. (2014a). Procedures for

behavioral experiments in head-fixed mice. PLoS ONE 9, e88678.

Guo, Z.V., Li, N., Huber, D., Ophir, E., Gutnisky, D., Ting, J.T., Feng, G., and

Svoboda, K. (2014b). Flow of cortical activity underlying a tactile decision in

mice. Neuron 81, 179–194.

Guo, J.Z., Graves, A.R., Guo, W.W., Zheng, J., Lee, A., Rodrı́guez-González,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Muscimol hydrobromide Sigma Cat. #: G019-5MG

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory JAX stock #: 000664; RRID: IMSR_JAX:000664

B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)

8Gfng/J

The Jackson Laboratory JAX stock #: 014548; RRID: IMSR_JAX:014548

Software and Algorithms

MATLAB v.8.0 or 9.0 MathWorks https://www.mathworks.com/products/MATLAB/

KlustaKwik Rossant et al., 2016 http://klusta.readthedocs.io/en/latest/

Phaser algorithm Revzen and Guckenheimer, 2008 N/A

Bron-Kerbosch maximal cliques MATLAB file exchange https://www.mathworks.com/matlabcentral/

fileexchange/30413-bron-kerbosch-maximal-

clique-finding-algorithm

Other

Sound attenuating chamber Coulbourn Cat. #: H10-24A

Omniplex64 neural acquisition system Plexon Cat. #: OmniPlex/64

4-channel EMG amplifier University of Cologne Electronics Lab Model #: MA 102S

PCIe-6323 DAQ National Instruments Cat. #: 781045-01

Stimulus Isolator WPI Cat. #: SYS-A365D

Function generator Agilent Cat. #: 33522A

Pt-Ir wire for tetrodes California Fine Wire Cat. #: CFW0011173

Tetrode drive components Neuralynx Cat. #: VersaDrive-4
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for reagents should be directed to, and will be fulfilled by the Lead Contact Andrew Miri

(andrewmiri@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments and procedures were performed according to NIH guidelines and approved by the Institutional Animal Care and Use

Committee of Columbia University.

Experimental Animals
A total of 52 adult male mice were used, including those in early experimental stages to establish methodology. Strain details and

number of animals in each group are as follows: 16 VGAT-ChR2-EYFP line 8 mice (B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)

8Gfng/J; Jackson Laboratories stock #014548); and 34 C57BL/6J mice (Jackson Laboratories stock #000664).

All mice used in experiments were individually housed under a 12 hr light/dark cycle. At the time of the measurement reported,

animals were 10–20 weeks old. Animals weighed approximately 23-28 g. All animals were being used in scientific experiments for

the first time. This includes no previous exposures to pharmacological substances or altered diets.

METHOD DETAILS

Precision Pull Task
Malemice were trained via a behavioral shaping procedure to perform a precision pull task in which they first place their right forepaw

in a particular spot on a rung, then reach out to grab a joystick, and finally pull the joystick a set but short distance (Figure 1A; Figures

S1A and S1B; Movie S1). The shaping procedure involved three phases: a first phase in which mice learned to turn a 60mmdiameter
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wheel with their right forepaw, a second phase in which they learned to reach toward and pull a joystick positioned further away dur-

ing each successive training session, and a third phase during which the initial position of the joystick is fixed.

Apparatus

The training apparatus was housed inside a sound attenuating chamber (H10-24A, Coulbourn). Head-fixed mice were positioned

within an enclosure constructed from Delrin tubing (1.5’’ OD, 1.25’’ ID, McMaster-Carr). Enclosures had sections removed to allow

the mouse’s headplate to be fixed to a headplate holder. Enclosures also had a bottom section removed to allow the right forepaw

access to a small custom-designed wheel during the early stages of training (60 mm diameter, 11.5 mmwide; Shapeways) or a rung

outfitted with a copper foil electrode connected to capacitive touch sensor during later stages (SEN-12041, Sparkfun; the

AT42QT1010 chip was replaced with a AT42QT1011, Newark). Enclosures also had a rung for the left forepaw and a divider below

the mouse’s chest to prevent the left forepaw from gaining access to the wheel or joystick.

Experimental control was performed using the MATLAB Data Acquisition Toolbox and the NI PCIe-6323 DAQ. The wheel was af-

fixed to an 8 in. stainless steel shaft mounted on bearings (8600N1, McMaster-Carr). An angular encoder amounted around the shaft

(A2K-A-125-H-M, U.S. Digital) measured shaft position. A ratchet mechanismwas used to ensure the wheel could only rotate toward

the mouse. The joystick, which was mounted on a disk, was also affixed to a shaft similarly, except that one end of the shaft was

coupled to a DC motor (DCM-375, All Electronics). Joystick position was controlled by the motor and a linear actuator (L12-30-

50-12-I, Firgelli). The disk on which the joystick was mounted had a short bar attached that was parallel to the shaft. Prior to each

trial, the linear actuator was used to position a plastic guard in the rotational path of this bar. To rapidly set the position of the joystick

to initiate each trial, the DCmotor would quickly rotate the shaft until the bar hit the guard, stopping its rotation and the rotation of the

joystick. After amovement of the joystick by themousewas detected via the angular encoder, the actuator was retracted to rotate the

joystick out of the reach of the mouse. A one-dimensional laser displacement sensor was positioned in front of the mouse and aimed

just above the right forepaw rung to enforce the proper initial position of the paw.Water rewardswere dispensedwith a solenoid valve

(161T012, NResearch) attached to a lick tube (01-290-12, Fisher). A speaker was used to play a 5 kHz tone for 200 ms whenever

rewards were achieved on a given trial or white noise for 200 ms whenever reward criteria were not met.

Training

Under anesthesia induced with isoflurane (1%–3%; Henry Schein), mice were outfitted with titanium head plates (25 3 9 3 0.8mm)

affixed to the skull using dental cement (Metabond, Parkell). Headplates had an open center that enabled subsequent access to the

skull, whichwas coveredwith dental cement. During headplate implantation, the position of bregma relative tomarks on either side of

the headplate wasmeasured to facilitate the positioning of craniotomies during later surgeries. After recovery from headplate implan-

tation surgery, mice were placed on a water schedule in which they received 1 mL of water per day.

At least 4 days after the start of the water schedule, mice were acclimated to handling by the experimenter following established

procedures (Guo et al., 2014a). After two daily sessions of acclimation to handling, mice were acclimated to head-fixation over two

daily sessions (first 15min, then 30min) during which they were head-fixed in thewheel-turning apparatus and providedwater reward

(3 mL per reward) at regular intervals. During acclimation, the wheel was locked in place to prevent its rotation by the right forepaw.

Following acclimation, mice underwent twice daily 40 min training sessions of the precision pull task. The behavioral shaping pro-

cedure involved an initial stage aimed at trainingmice to perform a basic reach and pull behavior in order to receive reward. During the

first training session, the wheel was freed to allow it to rotate toward the mouse and reward were triggered by an experimenter’s key-

press whenever the mouse performed any slight rotation of the wheel in the desired direction (toward his body). Over the course of

this session, mice generally learned to associate rotation with reward and began iteratively rotating the wheel. In the uncommon case

a mouse failed to learn this pairing, sessions of this sort were repeated.

During the next �10 sessions, mice were gradually trained to pull the wheel with increasing rapidity. During these sessions, the

distance of wheel rotation was integrated in software until a certain threshold distance was achieved, the time to reach the threshold

distance was calculated, and the integrated distance was reset to 0. On the first ten instances during a training session when the

threshold distance was met, mice automatically received a water reward. On each subsequent instance, the time to reach threshold

was compared to those from the previous 10 instances. If the time was below the 75th percentile value from these 10, one water

reward was dispensed. If it was below the 40th percentile value, 2 reward were dispensed. And if it was below the 10th percentile

value, 4 reward were dispensed. Otherwise, no rewardwere dispensed. The threshold distancewas adaptively updated everyminute

to keep the reward rate at a level that ensures a mouse received about 0.5 mL of water over each training session. Accordingly, if the

recent reward rate was too high, the threshold distance was raised; if the recent reward rate was too low, the distance threshold was

lowered. The absolute number of rewards a mouse received during a given session was not capped, but the second training session

of a given day was stopped once mice reached their daily water allotment. Once mice were turning the wheel frequently and rapidly

enough to complete �250 rotations within one 40 min session, they progressed to the next stage of training.

During the next�10 training sessions, micewere gradually trained to perform a precision pull behavior that involved an increasingly

long reach component. For this training, the wheel was replaced with a joystick mounted to the shaft, and a rung on which the right

forepaw could rest between reaches was mounted. Trials began with the motorized positioning of the joystick. During the first ses-

sion, the joystick was positioned just a few mm beyond the rung. When mice reached out attempting to rotate the wheel as they had

previously learned to do, they came in contact with the joystick and displaced it, leading to reward. In order to receive a reward on a

given trial, the initial position of the paw measured by the laser displacement sensor had to be below an allowed absolute distance

away (‘‘paw error threshold’’) from a target position and the movement of the joystick had to fall below an allowed absolute distance
e2 Neuron 95, 683–696.e1–e11, August 2, 2017



(‘‘pull error threshold’’) away from a target distance of 5 mm. For the first session, these error thresholds were set to be liberal enough

that any joystick movement from any initial paw position would garner a reward. During subsequent sessions, the error thresholds

were each set to the 60th percentile value of the errors from the previous training session. This updating procedure was intended

to lead to roughly 30%–40% of trials being rewarded. After 10 trials had elapsed in a session, the mouse could then earn additional

rewards on a given trial: moving the joystick a distance closer than the 60th percentile pull error for the previous 10 trials earned 2

rewards, while moving it a distance closer than the 20th percentile pull error earned 4 rewards. If mice received at least 80 rewards

in a given session, the initial position of the joystick wasmoved 2mm further away from the rung for the subsequent session. Once the

initial position of the joystick reached 18 mm away from the rung, the initial position was no longer updated. Training continued with

updating of the error thresholds as before.

Treadmill Walking
Mice were placed on a custom-built motor-driven rodent treadmill (Model 802, University of Cologne electronics lab). Optogenetic

and electrical stimulation was performed as mice walked at 20 cm/s. Neural recording was performed as mice walked at 10 cm/s,

allowing them to better accommodate the weight introduced by the neural headstage and cabling.

Electromyographic Recordings
Electromyographic (EMG) electrodes were fabricated for forelimb muscle recording (Figures S1C–S1E) using a modification of es-

tablished procedures (Akay et al., 2006; Pearson et al., 2005). Each set consisted of six pairs of electrodes. Each electrode pair

was comprised of two 0.001’’ braided steel wires (793200, A-M Systems) knotted together. On one wire of each pair, insulation

was removed from 1 to 1.5 mm away from the knot; on the other, insulation was removed from 2 to 2.5 mm away from the knot.

The ends of the wires on the opposite side of the knot were soldered to a 12-pin miniature connector (11P3828, Newark). Different

lengths of wire were left between the knot and the connector depending on the muscle a given pair of electrodes would be implanted

within: 2 cm for trapezius, 3.5 mm for biceps and triceps, 4.5 cm for extensor digitorum communis and palmaris longus, and 5.5 cm

for pectoralis. The ends of wires with bared regions had their tips stripped of insulation thenwere twisted together and crimped inside

of a 27-gauge needle that facilitated insertion into muscle.

Micewere implantedwith EMGelectrodes during the surgery inwhich headplates were attached. The neck and right forelimb of the

mouse was shaved and incisions were made above the muscle to be implanted. Electrode pairs were led under the skin from the

incision on the scalp to the incision at the site of implantation. Using the needle, electrodes were inserted into muscle, and the distal

portion of the electrodes was knotted. The needle and excess wire was then cut away. Incisions were sutured and the connector was

affixed with dental cement to the posterior edge of the headplate (Figure S1D).

Recordings were amplified and bandpass filtered (250-20,000 Hz) using a differential amplifier (MA102withMA103S preamplifiers,

University of Cologne electronics lab). Data was digitized and acquired at 40 kHz using the Omniplex64 and PlexControl software

(Plexon).We used the presence of spike-like transients in records together with alternating activation and quiescence during treadmill

walking to verify that EMGmeasurements reflectedmuscle activity rather thanmotion artifact. We note though that we are not able to

rule out that EMG signals for certain muscles were influenced by the activity of adjacent, synergist muscles.

Movement strategies employed during precision pull varied across animals, as was reflected in a variation in muscle activation

patterns seen across animals. Muscle activation patterns during locomotion were largely consistent across animals, with one excep-

tion. A biphasic activation of pectoralis with a larger activation more aligned with flexor muscle activation was seen in a minority of

mice (2/14), and is exemplified in Figure 2B. The more common monophasic, extensor-aligned pectoralis activation pattern during

locomotion is exemplified in Figures S1E–S1G. This variation may be due to differences in the activation patterns of motor units most

strongly reflected in pectoralis EMG measurements, perhaps as a consequence of variation in the insertion position of the EMG

electrode.

Muscimol Injection
One day before injections were to begin, dental cement above the skull was removed and a 1 mm diameter craniotomy was made

above the left caudal forelimb area. After the craniotomywasmade, and following each round of injections, craniotomies were sealed

with Kwik-Cast (WPI). Injections were performed between the two training sessions on a given day, 90 min prior to the latter session.

We used a Nanoject II (Drummond) to inject 1 ng/nl muscimol hydrobromide (G019-5MG, Sigma) in saline (DPBS with CaCl2 and

MgCl2, GIBCO) through pulled glass capillaries. Injections were positioned 1.5 mm left and 0.25 mm rostral of bregma, aligned

with the center of the caudal forelimb area as previously delineated (Tennant et al., 2011). Two extrusions of 36.8 nL were performed:

one 700 mmbelow pia, and one 400 mmbelow pia. Extrusion was verified immediately before and immediately after capillary insertion

into the brain. Injections of saline alone were performed identically.

Cortical Ablation
Here we followed methods described by Asante et al. (2010). Dental cement was removed from the skull and a 2 mm diameter

craniotomy was made above the left caudal forelimb area. The dura was removed with forceps. Brain tissue was then slowly

aspirated away through iterative removal of �100 mm of tissue depth at a time in a circular region spanning 0.5 to 2.5 mm left and

0.75 mm posterior to 1.25 mm anterior of bregma. Bleeding was controlled using Gelfoam (Pfizer) and the depth of tissue removal
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was continually measured. In each mouse, a total of between 800 and 1000 mm of tissue depth was removed. The cavity was then

filled with Gelfoam and the exposed brain surfacewas covered in Kwik-Cast. A fresh layer of dental cement was then applied to cover

the Kwik-Cast and any exposed skull. Sham ablations were performed identically, except no brain tissue was aspirated away.

On the day following surgery, precision pull performance was assayed during a training session (‘‘1d post’’ in Figure 1F). Behavior

was then assayed again 96 hr later (‘‘5d post’’) without any intervening training. Ablation had amarked effect on performance at both 1

and 5 days after surgery compared to sham surgeries (Figure 1F). Training was not performed between time points because the ab-

lated animals could not perform the task after surgery and so could not practice. Thus to enable a legitimate comparison at the 5 day

time point, no training of ablated or sham animals was performed. Because a lack of intervening training causes only a limited erosion

of performance in the sham animals (Figure 1F), we do not attribute the effects of ablation to an acute effect of tissue removal at 1 day

post-surgery and then a prolonged effect at 5 days from a lack of practice.

Optogenetic Inactivation
After several days of performing the precision pull task at the full reach distance in VGAT-ChR2-EYFPmice, dental cement above the

skull was removed and a 2-2.5 mm diameter craniotomy was made above the left caudal forelimb area. A thin layer of Kwik-Sil (WPI)

was applied over the dura and a 3 mm diameter #1 thickness cover glass (64-0720, Warner Instruments) was placed on the Kwik-Sil

before it cured. The gap between the skull and the cover glass was then sealed with dental cement around the circumference of the

glass. A custom stainless steel ferrule guide (Ziggy’s Tubes and Wires; Figure S2A) was then cemented to the headplate a certain

distance above the surface of the brain. This distance was set to ensure that the cone of light emanating from a 200 mm core,

0.39 NA optical patch cable terminating in a 2.5mmceramic ferrule (M81L01, Thorlabs) would project a spot of light 2mm in diameter

onto the surface of the brain. The ferrule guide enabled quick and reliable positioning of the ferrule above the brain surface so that a

large expanse of cortex could be illuminated.

To attenuate firing throughout motor cortical layers, we used a 473 nm laser (CL473-075-O, CrystaLaser) to apply pulses of light at

an intensity of 10mW/mm2 to the brain surface. The pulse frequency was 20 Hz and the duty cycle was 50%. Intensity and duty cycle

were set to match those in experiments calibrating the relation between light power and the cessation of firing (Guo et al., 2014b).

To inactivate motor cortex during trial initiation, a 500 ms light pulse train was triggered in software immediately before the com-

mand to the DC motor to quickly position the joystick, �70-100 ms before muscle activation began. To inactivate motor cortex near

the outset of reaching, a 200 ms train was triggered when the standard deviation of raw biceps EMG signal over a 16 ms window

reached a threshold set at the 90th percentile value from the distribution of such measurements over time during repetitive reaching.

To inactivate motor cortex at the outset of pulling, a 200 ms train was triggered when the rate of change in the position of the shaft’s

optical sensor reached a threshold set to be�6 standard deviations above the mean of this rate of change when the shaft is motion-

less. In each of the above three types of trials, light was applied during a random third of the trials on which the stimulation conditions

were met. Unstimulated trials were then used as controls.

To inactivate motor cortex at a consistent phase during treadmill walking, a 200 ms light pulse train was triggered when the stan-

dard deviation of raw biceps EMG signal over a 16 ms window reached a threshold set at the 98th percentile value from the distri-

bution of such measurements during walking. After each detected threshold crossing, at least 5 s elapsed before a subsequent

crossing could be detected. Light stimuli were applied on a random third of detections and unstimulated trials were used as controls.

To verify that disturbances in EMG did not result from retinal responses to light stimulation, identical experiments were performed

during treadmill locomotion in wild-type mice. Quantitative comparison of effects in wild-types and VGAT-ChR2-EYFP mice, dis-

cussed below, demonstrate that perturbation effects cannot be attributed to retinal responses to light stimulation.

For experiments looking at the relation between locomotor phase and EMGdisturbance following optogenetic inactivation, 200ms

light pulse trains were triggered at random times during treadmill walking. Inactivations were never performed less than 15 s apart.

Electrical Stimulation
Stimulation electrodes were fabricated by soldering an �5 mm length of insulated steel wire (790700, A-M Systems) to a male

connector pin (520200, A-M Systems). To implant stimulation electrodes, dental cement was removed from the skull and a 2 mm

diameter craniotomy was made above the left caudal forelimb area. Two electrodes were inserted to a depth of 700 mm below

the pial surface roughly 1 mm apart surrounding the center of the caudal forelimb area at 1.5 mm left and 0.25 mm rostral of bregma

(Tennant et al., 2011). The craniotomy was covered in Kwik-Cast (WPI) and then dental cement (Metabond, Parkell). A #000 screw

(B000FN0J58, Amazon) with the top half of a male connector pin soldered on its head was inserted above the contralateral posterior

parietal cortex for grounding.

Stimulation was performed in head-fixedmice sitting still in the enclosure used for the precision pull task, and inmice walking freely

on the treadmill regardless of phase. Current pulse trains (10 400 ms pulses at 333 Hz, 10-150 mA) were generated using a function

generator (33522A, Agilent) driving a stimulus isolator (A365D, WPI). Stimulations were never performed less than 15 s apart.

Neural Recording
Tetrode microdrives were assembled using VersaDrive components (Neuralynx) but the microdrive design was modified to be better

suited for targeting cortical neurons within forelimb motor cortex. Microdrive bases were outfitted with a 4.5 mm stainless steel

cannula (20 gauge, 660 mm I.D., Amazon) into which 4 0.008’’ polyimide tubes (Neuralynx) were positioned. Each drive housed 4
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independently moveable tetrodes made from twisted 18 mmPt-Ir wire (CFW0011173, California Fire Wire) plated with Platinum Black

solution (Neuralynx) to achieve final impedances of 80-200 kU at 1 kHz. Microdrives were wrapped in aluminum tape (McMaster-

Carr). Conductive silver epoxy (M.E. Taylor Engineering) was used to attach steel wires coming from the drive ground pin to both

the cannula and the aluminum tape to ground them during recording. An 0.002’’ insulated Pt-Ir wire was run from the reference

pin of the microdrive and affixed to the side of the cannula with regular epoxy so that upon implantation, the stripped tip of the

wire would protrude �1 mm into the cortex, about 1 mm caudal or lateral to the recording electrodes.

To implant microdrives, dental cement above the skull was removed and a 2 mm diameter craniotomy was made above the left

caudal forelimb area. Two small holes were drilled above the right posterior parietal and occipital cortex. A #000 screw

(B000FN0J58, Amazon) was inserted into each hole, and wire was run from the ground pin of the microdrive to each one. The micro-

drive was positioned on the brain surface with the cannula in contact with dura and centered at 1.5 mm left and 0.25 mm rostral of

bregma, unless large superficial blood vessels clearly obstructed the path of the tetrodes into the cortex. In this case, the microdrive

was translated 100-200 mm to allow tetrodes a clear path. The interface between the cannula and the brain was sealed with Kwik-

Cast, and dental cement was used to fix the microdrive in place. Tetrodes were slowly lowered down to 500 mm below pia and then

raised to 250 mmbelow pia during implantation surgery. Over the subsequent two weeks, tetrodes were lowered�30 mm every three

days. Recording commenced at least 14 days after implantation with tetrodes positioned 500 mm below pia. Recording from sites

spaced by 50 mm intervals between 500 and 1000 mm below the pia was done to focus recordings within layer 5, and ensure that

electrode tips resided in or near layers 5 and 6 during all recordings (Tennant et al., 2011). Recordings were made using a 20x

gain analog headstage (HST/16v-g20, Plexon). Data was digitized and acquired at 40 kHz using the Omniplex64 and PlexControl

software (Plexon).

Acute recordings using a 32-site silicon probe (A1x32-Poly3-5mm-25 s-177, NeuroNexus) were performed to gauge the efficacy of

light stimulation on motor cortical output in VGAT-ChR2-EYFPmice. To implant bone screws, the dental cement above the skull was

removed and 2 �0.7 mm diameter craniotomies were drilled in the skull above the right parietal and occipital cortex. A #000 screw

(B000FN0J58, Amazon) with attached male connector pin was positioned in each hole and rotated until in contact with the brain sur-

face. The screws and surrounding skull were covered in dental cement, leaving the male connector pins exposed. To expose the

recording area, dental cement above the skull was removed and a 2mm diameter craniotomy wasmade over the left caudal forelimb

area. The exposed brain tissuewas sealedwith Kwik-Cast. Male connector pins (520200, A-MSystems) were soldered to the probe’s

ground and reference sites. During recording, female connector pins (520100, A-M Systems) soldered to either end of 2-stranded 28

gauge ribbon wire (10647, SparkFun) connected the probe’s male connectors to the bone screws.

Before recording, the animal was head-fixed, the Kwik-Cast was removed, and the silicon probe was slowly inserted at a 45� angle
to vertical depths of 800, 1000, or 1200 mm from dura. Once the probe was in place, the tissue was allowed to relax for 20 min before

recording began. Recordings were made using a digital headstage (Cereplex M64, Blackrock Microsystems). Data was acquired at

30 kHz using the Cerebus 128-channel and Central software (Blackrock Microsystems).

Spike Sorting
Putative spikes were detected and sortedwith KlustaKwik (Rossant et al., 2016). For each animal and each session, recordingsmade

during the precision pull task and treadmill walking were concatenated and spike sorting was carried out as if they formed a single,

continuous recording. Thus the cluster of waveforms assigned to an individual unit could involve spikes occurring during either

behavior, and no matching of units between behavioral epochs was necessary. This allowed us to analyze the activity of the

same unit during both behaviors, though the usual caveats in interpreting individual units as individual neurons still apply. Clusters

of waveforms were deemed to correspond to well-isolated units if their spike autocorrelograms indicated an absolute refractory

period of at least 1 ms and a firing rate far less than the unit’s mean firing rate for at least 2 ms before and after spikes occurred.

Clusters that did not meet these criteria were discarded. If inspection revealed that the cluster contained activity from more than

one unit, as shown by the presence of dissimilar waveforms or refractory period violations, the cluster was manually split. If multiple

clusters contained spikes from the same unit, as shown by the presence of similar waveforms across clusters and the absence of

refractory period violation in their cross-correlograms, those clusters were merged.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analysis was completed in MATLAB v.8.0 or 9.0 (MathWorks).

EMG Processing and Analysis
With certain exceptions discussed below, EMG measurements were downsampled to 1 kHz, high-pass filtered at 40 Hz, rectified,

and convolved with a Gaussian having a 10 ms standard deviation.

EMG during Precision Pull Behavior

To define trials and identify the associated EMG segments for this analysis, we used the time at which the onset of joystick pullingwas

detected by the experiment control program from the angular encoder signal. This method used the mean change in the encoder

signal over 8 ms epochs, detecting a joystick pull when this value rose to �6 standard deviations above the mean value when the
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joystick was at rest. The analysis depicted in Figures 1C and 1D used EMG segments spanning 250 ms before to 200 ms after the

onset of joystick pull. Correlations between time series segments were measured using Pearson correlation.

To compute the duration from the initiation of reaching to the initiation of pulling and the duration of pulling, we used a more

involved method to detect the precise onset and offset of pulling. We first took the derivative of the angular encoder signal and

smoothed it with a Savitzky–Golay filter (MATLAB function smooth, span = 10, order = 3). Joystick pulls were then detected as

time points at which the resulting filtered time series rose to �6 standard deviations above the mean value when the joystick was

at rest. The filtered time series was then additionally smoothed by replacing each value by the median of the values spanning

from 5 ms before to 5 ms after it. For each detected pull, the onset and offset of pulling were identified as the last value before

and the first value after each detected pull at which this doubly filtered time series fell below 0. The onset of reaching was identified

from the activation of biceps (Bi) and extensor digitorum communis (EDC), by first rectifying the raw EMG measurements and

smoothing themwith a Savitzky–Golay filter (MATLAB function smooth, span = 10, order = 3). We then identified the onset of reaching

as the time point at which the sum of the resulting traces first rose above a threshold set�6 standard deviations above themean level

during inactivity.

EMG during Optogenetic Inactivation

For optogenetic inactivation, we chose a method for smoothing EMG that used causal filtering to enable precise assessment of

perturbation latencies. Thus, in this case EMG time series were high-pass filtered at 40 Hz, rectified, and convolved with a 10 ms

Gaussian, except the Gaussian filter kernel had amplitudes for times < 0 – its ‘‘backwards in time’’ side – set uniformly to zero.

The modal EMG value from periods of quiescence was then subtracted off each measurement to set the baseline to 0. Segments

surrounding inactivation or control detections were aligned by the time at which the laser command pulsewas initiated after detection

(though on control trials this pulse was only sent to the acquisition system and not to the laser itself).

Before EMG trial averages were assembled, outliers were removed. Separately for either inactivation or control trials, we found the

mean EMG array (time points x muscles) for the first half of trials. We then found the distance of each and every trial array – not just

those in the first half – from this mean (MATLAB function pdist), generating distributions of distances from which we computed the

standard deviation. We then eliminated those trial arrays that were more than 2 standard deviations away from the mean EMG array.

This procedure was then repeated using the mean EMG array for the second half of trials, eliminating those trials more than 2 stan-

dard deviations away from this mean. This method was aimed at ensuring that individual outlying trials would be compared to mean

EMG arrays to which they did not contribute. This prevents the inclusion of outlying trials because they skewed a mean EMG array

used for comparison.We note that no outliers were removedwhen calculating the success rate (rewarded trials/total trials; Figure 2C)

or the latency to pull or to reward (Figures S2F and S2G).

To calculate the normalized fractional change following inactivation (Figures 2D), we found for eachmuscle the difference between

themeans for EMG time series from control and inactivation trials. All values in the resultingmatrix (time xmuscles) were squared, the

mean across muscles at each time point was taken, and the square root of each value in the resulting time series was found. Each

time point in the resulting time series was then divided by the corresponding time point in a similarly constructed time series

computed using EMG time series from control trials without subtracting values from inactivation trials. We then corrected these frac-

tional change time series for the difference expected by chance due to the use of separate sets of trials. On 1000 different iterations,

we divided the control trials into random halves and similarly calculated a fractional change time series using the two halves in place

of the control and inactivation trial sets. The mean fractional change time series across these 1000 iterations was computed, and this

mean was subtracted from the fractional change time series computed with the actual data. Lastly, we subtracted the mean value

across the 25 ms preceding stimulus onset time from the resulting time series. The result was what we refer to as the normalized

fractional change time series. Themean normalized fractional change was computed over the following epochs: 1 to 35ms from light

onset, 36 to 70 ms from light onset, and the full duration of light stimulation.

The normalized fraction change in VGAT-ChR2-EYFP mice over the full duration of light stimulation during locomotion was signif-

icantly different from that attributable to retinal responses or other unintended behavioral effects of stimulation seen in wild-typemice

(one-tailed t test, p = 0.0068). Themean normalized fractional change during locomotion in VGAT-ChR2-EYFPmice was 0.224 ± 0.05

(n = 4), which was 28x as large in magnitude as the mean normalized fractional change in wild-types (�0.0079 ± 0.003, n = 3).

To analyze EMG following inactivation at variable locomotor phases (Figures S2H–S2K). Locomotor phase was defined from EMG

time series using the Phaser algorithm (Revzen and Guckenheimer, 2008), which computes a one-dimensional phase variable

(range: -p to p) from multidimensional time series. To ensure that locomotor phase was defined in an equivalent manner across ses-

sions, we trained the algorithm’s phase classifier only once for each animal, using data from just one session. Phase assignment ap-

peared consistent across animals, in terms of the relation of particular phase values to particular muscle activation features.

Trials were divided into ten groups based on the locomotor phase at which the light stimulus began and were aligned by stimulus

onset time. The phase boundaries between groups were defined to ensure approximately equal numbers of trials in each group, but

the same boundaries were used for all animals. Outlying trials were removed from each group using the distance from mean EMG

arrays for the first and last half of trials as above. A mean EMG array across trials was computed for each trial group.

An equivalently-sized number of EMGarrays identified from the time series intervening between inactivations served as controls for

each group of trials. This set was identified as follows. First, all the time series samples at which the locomotor phase reached the

mean stimulus onset phase for the given group were identified. Second, samples were eliminated if the length of the current step was

more than 50 ms different from the mean step length for the full dataset. Third, a random subset of �1000 of the remaining samples
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was identified. From this set, 50,000 different random subsets of a size equal to that of the given trial group were taken. For each

subset, we computed the sum squared difference between the mean EMG array over the preceding 300 ms and the trial group’s

mean EMG array over the 300ms preceding stimulus onset. We defined our control trials using the subset for which this sum squared

difference was lowest.

Normalized fractional change was then computed as described above for each trial group, with one difference. Here, in order to

correct fractional change time series for the difference expected by chance due to the use of separate sets of trials, we needed to use

groups of control trials selected using the same method we used to find control trials for each trial group. Thus on each of 25 iter-

ations, we selected a random subset with a size equal to that of the trial group from the �1000 samples found based on the length

of the current step above. From the remaining samples, we identified 50,000 different random subsets of the same size, computed

the sum squared difference between the mean EMG array over the preceding 300 ms and the mean EMG array over the 300 ms pre-

ceding the samples in the first random subset, and found the subset for which this difference was lowest. On each of the 25 iterations,

time series of the fractional change between EMG arrays for this subset and EMG arrays for the first random subset were found, the

mean time series across the 25 iterations was computed, and this mean was subtracted from the fractional change time series

computed with the actual data to yield the normalized fractional change time series for the given trial group.

EMG during Electrical Stimulation

Analysis of EMGdata during electrical stimulation experiments utilized the same filtering and smoothing procedures as were used for

optogenetic inactivation. However, the latency of stimulation response onset was measured using time series that were rectified but

not smoothed andwere subsampled only to 10 kHz. Latencymeasurements for a given stimulation current level weremadewith data

only frommuscles inactive as mice stood still, and utilized the following procedure. First, rectified time series for a given muscle sur-

rounding the time of stimulation onset were subtracted by themean value during the epoch from 100 to 10ms prior to onset. Second,

time series were normalized by dividing by their standard deviation during this same epoch. Third, each time series element was

squared. Fourth, the resulting time series were summed across simultaneously recorded muscles. Fifth, the mean across trials

(nR 25) was taken, and the mean during the epoch from 100 to 10 ms prior to onset was again subtracted. Sixth, the first time point

following onset at which the resulting time series rose above a threshold set to be 7 times the standard deviation of the time series

from 100 to 10 ms prior to onset was determined. Lastly, the last time point at which the time series was below zero prior to this

threshold crossing was defined to be the time of response onset for the given current level.

The relation between stimulation current level, s, and latency, L, was then fit with the following equation for a decaying exponential

with a variable asymptote:

L= a+be
�s=c:

The constants a, b and cwere fit using the simplex method implemented byMATLAB’s fminsearch function. The fit result for awas

taken to be the response latency for a given animal.

Electrical stimulation responses during treadmill walking were quantified as follows. Locomotor phase was again defined from

EMG time series using the Phaser algorithm. To ensure that phase was defined in an equivalent manner across sessions, we again

trained the algorithm’s phase classifier only once for each animal, using data from just one session. Our analysis procedures then

followed those of Bretzner and Drew (2005) who used data collected in cats. Stimulation trials were divided into ten groups based

on the locomotor phase of stimulation onset and were aligned by onset time. Outlying trials were removed from each group using

the distance from mean EMG arrays for the first and last half of trials as above. A mean EMG array across trials was computed

for each trial group. The response magnitude for a given muscle for each trial group was computed as the integral over the 50 ms

following stimulation onset, of the difference of the across-trial mean time series and a mean of control trials aligned on the mean

stimulation onset phase for the given trial group. These control trials were identified from time series intervening between stimula-

tions. Response magnitudes were then normalized by the largest response across groups.

EMG during Neural Recording

All comparison between neural and muscle activity used EMG high-pass filtering at 40 Hz, rectified, and convolved with a symmetric

10msGaussian. For analysis of trial-averaged neuronal firing rates, trial segments were defined using EMGmeasurements. To define

precision pull trials, two types of events were detected for each instance of the behavior: the activation of biceps (Bi) and extensor

digitorum communis (EDC) at the onset of reaching, and the onset of joystick movement during pulling. The activation of Bi and EDC

was determined as described above. To identify the onset of joystick pulling, we first took the derivative of the angular encoder signal

and smoothed it with a Savitzky–Golay filter (MATLAB function smooth, span = 10, order = 3). We then identified the onset of pulling

during each trial as the time point at which the resulting trace rose above a threshold set�6 standard deviations above themean level

when the shaft is motionless. Epochs for trials aligned to reach onset were set to span 150 ms before to 350 ms after onset. Epochs

for trials aligned to pull onset were set to span 400 ms before to 100 ms after onset. In both cases, these definitions ensure that

epochs begin with a period of quiescence prior to task initiation.

We defined sets of precision pull trials in a manner meant to maximize the similarity between the muscle activation across trials

both within a given recording session and also across different recording sessions. For each animal, we therefore employed a

two-step process: first, we defined a template for the activation of each muscle during the pull task using data from all recording

sessions, then we found the 40 trials from each session in which the EMG activation was most similar to these templates. Templates
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were defined separately for trials aligned to reach onset and pull onset. To construct EMG templates, we first identified, separately for

each recording session, sets of EMG arrays aligned to either reach onset or pull onset. We next smoothed EMG measurements as

described above. EMGmeasurements were next baseline subtracted as above. We then aimed to identify the subset of sizeR 25 in

which trials were maximally similar in terms of the Euclidean distance between time series arrays. The task of identifying a maximally

similar subset is known as the clique problem, and we solved it here using a routine available on the MATLAB file exchange (Bron-

Kerbosch maximalCliques, downloaded 11/21/2013). After the clique problem was solved yielding trial subsets of each type, we

found themean EMG array across each subset. To compute across-session EMG templates, we then took themean across sessions

of these mean arrays for individual sessions. After identifying templates, we then went back through all trials from each session and

identified the 40 for which EMG arrays had the smallest distance from the template.

To delineate steps fromEMG recordings during treadmill walking, we used the Phaser algorithm to define a one-dimensional phase

variable from the multidimensional EMG recordings, as above. Here again, to ensure that locomotor phase was defined in an equiv-

alent manner, we trained the algorithm’s phase classifier only once for each animal, using data from just one session. For animals C20

and C31, the algorithm defined 0 radians to be a phase just before the onset of triceps activity. This phase occurred at 0.94 radians

(54�) after the peak in biceps activity for C20, and 0.82 radians (47�) after the peak in biceps activity for C31. For animal C32, the

algorithm set 0 radians much later in the step cycle, so we applied an offset to phase measurements so that 0 radians occurred

0.89 radians (51�) after the peak in biceps activity.

We applied the Phaser algorithm to data from each session, identified each instance when this phase variable reached p and

defined the intervals between these instances as individual step cycles. We found the median step cycle duration across sessions,

discarded step cycles less than half this duration or more than twice this duration, and calculated the median duration again (377 ms

for C20, 387ms for C31 and 363ms for C32). We then defined an ideal phase variable time series as one cycle running from -p top at

a constant rate of change over a duration equal to the median cycle duration, followed by a second cycle of the same form. For every

instance at which the phase variable reached p, we took the phase variable segment from one median step cycle duration before to

one median step cycle duration after the instance and computed its distance from the ideal time series. For each session we found

the 50 segments that had the shortest distance from the ideal and found the corresponding EMG array for each spanning the epoch

from one half the median step cycle duration before to one half the median step cycle duration after the instance. From these 50, we

then removed a small number (4%–12%) using the EMG outlier removal procedure outlined above for optogenetic inactivation and

electrical stimulation experiments.

To identify time series segments during which muscles were inactive between precision pull trials, full EMG time series from pre-

cision pull behavior sessions were divided into successive 500 ms segments. For each segment, we measured the summed muscle

activity as the sum of the integrals of the EMG time series for each muscle. The 40 segments having the lowest summed muscle ac-

tivity were used for subsequent analysis of neuronal firing during inactivity. Visual inspection determined that such segments involved

no discernable movement related EMG activity.

Firing Rate Calculation
Firing rate time series were computed at 1 kHz for each isolated unit by defining for each identified spike a time series approximating a

Gaussian function with a mean at the time of the spike and a standard deviation of 10 ms, and which was normalized so that it had a

temporal integral equal to 1. TheseGaussian time series were then summed to form a smoothed firing rate time series. All plotting and

analysis of firing rates used these smoothed firing rate time series. Trial averages were assembled using smoothed firing rate seg-

ments from the epochs corresponding to those of trials identified using EMGmeasurements (see above). All analysis discussed in the

paper or depicted in figures was performed using precision pull trials aligned to reach onset unless otherwise noted. Mean firing rates

were computed as the mean value of trial-averaged firing rates, separately for precision pull and treadmill walking. The lower median

values we find across neuronal mean firing rates compared to other published accounts may result from the spike sorting procedures

we employed, which could have enabled us to better resolve lower firing rate units from multiunit recordings.

Pearson correlations between firing rates and EMG activation for individual muscles were computed (MATLAB function corr) both

using time series from all individual trials (Figures 4C) and from trial averages (Figure 4D).When using all trials, trial segments for either

firing rate or EMGwere concatenated. P values for the significance of these correlations used all individual trials. Because there were

multiple muscles recorded, p value thresholds for statistical significance were adjusted to account for the multiple comparisons.

Instead of setting the threshold at a = 0.05, we used a= 0:05
1
=# of muscles.

To estimate the fraction of all neurons whose firing rates were significantly correlated with at least one muscle, we had to account

for the rate at which these significance tests would fall below the adjusted threshold by chance (‘‘false discovery’’). As expected,

histograms of p values were roughly flat above p = 0.5. To estimate the rate of false discovery for the correlation of neuronal firing

rates with the activation of each muscle, we assembled histograms for the p values resulting from the correlation calculation having

a bin size equal to the adjusted a. We then defined the number of expected false discoveries for that muscle to be the mean of the

counts within bins starting above p = 0.5, rounding the mean to the nearest integer. To then estimate the number of neurons that will

be correctly assigned as significant with at least one muscle after accounting for the rate of false discovery, we used a simulation-

based approach. For 1,000 different iterations, we took the p values for all neurons for a given muscle and selected a random subset

of p values < a, with the subset having a size equal to the number of expected false discoveries for that muscle, and set those p values
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equal to 1. After doing this for all muscles on a given iteration, we then calculated the percentage of cells that still had p values < a for

at least onemuscle, and returned the p values to their original values. The percentage of neurons whose firing was significantly corre-

lated with at least one muscle was the mean percentage across all iterations.

Waveform-Based Subtype Assignment
For each isolated unit, the electrode on which spike-related voltage transients were largest in amplitude was identified. The mean

spike waveform was then computed as the mean voltage time series on the identified electrode from 1 ms before spike time to

2 ms afterward for the first 300 recorded spikes. If less than 300 spikes were identified for a given unit, then all spikes were used.

Trough-to-peak spike widths were measured as the duration between the mean spike waveform’s minimum and its subsequent

maxima.

Histograms of waveform widths appeared well-fit (MATLAB function fminsearch) by a sum of two Gaussians for widths ranging up

to 0.8 ms (Figure 4E). We then assumed that two groups of neurons, one with relatively narrow and one with relatively wide wave-

forms, each show a Gaussian distribution of waveform widths over this range of widths. This allowed us to identify width boundaries

such that the expected rate of misclassification as narrow or wide was below a proscribed level. That is, we could find awidth bound-

ary so that among those neurons with smaller widths, we would expect only a proscribed fraction to come from the distribution of

wide-waveform neurons. And similarly, we could find a width boundary so that among those neurons with larger widths, we would

expect only a proscribed fraction to come from the distribution of narrow-waveform neurons.

We thus used themeans (mN and mW ) and standard deviations (sN and sW ) for the narrow and wide waveform distributions resulting

from the fit to calculate these two boundaries using the following equations:

erfðxÞ= 1ffiffiffi
p

p
Zx

�x

e�t2dt
cdfWðxÞ= 1

2

�
1+ erf

�
x � mW

sW

ffiffiffi
2

p
��
cdfNðxÞ= 1

2

�
1+ erf

�
x � mN

sN

ffiffiffi
2

p
��

Using these, than the expected fraction of neurons classified as wide-spiking that are actually narrow-spiking for a given width

boundary b, mWðbÞ, is given by the following:

mWðbÞ= 1� cdfNðbÞ
ð1� cdfNðbÞÞ+ ð1� cdfWðbÞÞ

And the fraction of neurons classified as narrow-spiking that are actually wide-spiking for a given width boundary b,mNðbÞ, is given
by the following:

mNðbÞ= cdfWðbÞ
cdfWðbÞ+ cdfNðbÞ

Using these equations, we found boundaries that yield an expected rate of misclassification of 1% of assigned neurons. The width

boundary below which neurons were classified as narrow-spiking was 0.475 ms. The width boundary above which neurons were

classified as wide-spiking was 0.519 ms. These boundaries left 5 out of our 890 recorded neurons unclassified.

Canonical Correlation Analysis
Canonical correlation analysis (MATLAB function canoncorr) was applied to sets of all trial-averaged firing rate and smoothed EMG

time series from a given animal after reducing the dimensionality of each set to four. The choice of four was based on the fact that

plots of neural variance capture versus dimensionality quickly flattened out above 4. Four dimensions also captured essentially all

EMG variance (�99%). Dimensionality was reduced by performing principal component analysis (MATLAB function princomp)

and retaining the projection of the data onto the first four principal component vectors.

We next identified a temporal offset, ranging from the muscle activation being offset 0 to 60 ms forward in time relative to neural

activity, at which the quality of agreement between the canonical variables that result from canonical correlation analysis was maxi-

mized. The parameter we maximized was computed as follows: for each pair of canonical variables, we took the product between

their correlation, the amount of additional variance captured by the muscle variable, and the amount of additional variance captured

by the neural variable. We then took the mean of this product across all pairs and all animals, arriving at a single scalar value for each

lag tested. There was a reasonable agreement between the lag at which this parameter reached a peak – 31ms for pull and 36ms for
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walk. We thus used a lag of 34ms, themedian of the two values. Similar results were obtained when excluding the fourth and last pair

of canonical variables from these calculations.

To provide a baseline for comparing the quality of agreement between canonical variables, we also performed canonical correla-

tion analysis on neural and muscle activities after reformulating the neural data to change its structure. In one case, each neuron’s

averaged firing rate was replaced by a trial average recomputed after randomly shuffling the sequence of interspike intervals for the

given neuron. Since firing rates are much higher during movement, we only shuffled the intervals occurring during trials of the task. In

a second case, each neuron’s averaged firing rate was replaced by one recomputed after replacing that neuron’s full firing rate time

series with one generated by simulating a Poisson process having an event rate equal to the mean of the trial-averaged firing rate for

the given neuron.

We note here that the canonical variables resulting from this analysis are not constrained to be orthogonal. To compute the addi-

tional variance capture by each canonical variable, we then orthogonalized the sets of neural or muscle canonical variables via the

Gram-Schmidt process. The additional variance captured by a given canonical variable is then the fraction of the variance captured

by the corresponding orthogonalized variable. We also note here that in Figures S4D and S4G, we plot the neural variance captured

as a fraction of that of the dimensionally reduced data, not the full neural dataset. This is necessary for comparison with the results

from the comparator datasets made by reformulating the neural data, in which cases the relation between variance capture and

dimensionality differs substantially compared to the actual data.

Scaling
For each neuron, we computed a scaling index to measure howmuch changes in the firing of that neuron scale with changes in mus-

cle activation during either of the two behaviors. This was computed by dividing the range of a neuron’s trial-averaged firing rate for a

given behavior by themean of the ranges of the trial-averaged EMG activity. Scaling values were calculated for neurons havingmean

firing rates > 1 Hz during at least one of the two behaviors to exclude neurons with very low firing rates, which may be poorly

estimated.

Correlation Differences
Correlation matrices (Figure 6C; Figures S5A, S5D, and S5G) were computed by finding the Pearson correlation between each

possible pair of trial-averaged firing rates having means > 1 Hz during both behaviors to exclude neurons with very low firing rates,

which may be poorly estimated. We note here that Pearson correlation is insensitive to relative magnitude of data series values; no

normalization of firing rates was performed prior to these calculations. Correlation scores for walking used the full trial averaged firing

rate, which comprised one step cycle (363 to 387 ms, depending on the animal). For precision pull, segments of trial-averaged firing

rates from 150 to 50ms prior to the onset ofmovement were omitted for these calculations, as they reflect to a lesser extent the neural

activity during themovement. Segments of the firing rate time series starting from50msbeforemovement and lasting for a time equal

to the duration of the step cycle in the given animal were used. Row and column orderings based on correlations for pull or walk data

used the symmetric approximate minimum degree permutation (MATLAB function symamd).

Correlation difference values (Figure 6E; Figures S5C, S5F, and S5I) were computed for each pair of neurons as the absolute value

of the difference between the correlation scores for the two behaviors. We also computed the distribution of such differences that

could be expected under a null hypothesis that the neuronal correlations are the same between behaviors and estimates from

data vary merely because the trials used to compute trial averages for pull and walk are distinct. We computed this distribution

by taking the firing rate segments for each neuron for the two sets of trials and assembling two new sets. One set was comprised

of the firing rate segments from a random half of the trials for one behavior and the segments from a random half of the trials

from the other. The second set was then assembled from the remaining half of trials from each behavior. Trial averages were then

computed for each new set of trials for each neuron, and absolute correlation differences were calculated. A cumulative distribution

of these differences was computed from the permuted firing rates for each of 100,000 different permutations. Monte Carlo-based

tests were performed to probe the differences between the medians of these null distributions and those of the observed data.

P values signifying differences were calculated as (1 + # of permutations for which the median was higher than that of the observed

data) / 100,001.

Analysis of Weighted Sums Defined by Principal Components
Principal components were computed separately for each behavior using matrices of trial-averaged neuronal firing rates, D, each

having rows corresponding to different time points and columns to different neurons. Projections onto individual principal compo-

nents were computed by multiplying D by the column vector comprised by the weight on each cardinal neural dimension for a given

component.

To plot changes in the projection across all dimensions from one set of components (Figures S6D, S6F, and S6H), the vectors re-

sulting from projecting onto individual components were collected in matrices having 4 columns. Each row of these matrices corre-

sponds to a point in a four-dimensional space in which the principal components serve as cardinal dimensions. For each successive

point in these matrices, the Euclidean distance from the first point was calculated, yielding the distance from the activity at time = 0.

To compute the normalized variance in individual epochs (Figures S6E, S6G, and S6I), datamatricesDwere first divided temporally

into 10 equally sized segments and then the dimensionality of each segment was reduced to 4 by projecting it onto the sets of
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components for the full data matrices, as above. Normalized variance for each segment was then computed as the trace of the

covariancematrix for each of these projected segments, normalized by the trace of the covariancematrix for the full projectionmatrix

of activity during precision pull. Normalizing by the total variance during the precision pull permits comparison of magnitudes across

the two behaviors.

The alignment index (Figure 7E) measuring alignment between neural activity during pull and walk was computed for sets of trial-

averaged firing rates, muscle activations, and for 1000 different sets of trial-average firing rates computed after regrouping trials as

was done above for correlation score changes. Here again, permuted data reflects a null hypothesis that underlying neuronal cor-

relations are the same between behaviors. For each of the 3 types of data here, we begin with two datasets, one from each behavior,

comprised by matrices D1 and D2 with each row corresponding to a different time point and each column to a different neuron or

muscle. For each matrix, we then compute matrices P1 and P2 comprised of principal component vectors. Here we used matrices

with four such vectors as columns. We then computed the alignment index a using

a=
trace

�
PT
1,covðD2Þ,P1

�
trace

�
PT
2,covðD2Þ,P2

�:
Segments of trial-averaged firing rates from 150 to 50 ms prior to the onset of movement were omitted for these calculations. In

each case, the alignment index was computed a second time after reversing the identities of behaviors 1 and 2, and the mean of both

resulting values was used.

Regression
Ridge regression was used to fit two types of models in which the activation of each muscle is determined by neuronal firing rates. In

the first type (‘‘static model’’), the trial-averaged activation of each muscle was fit by a linear combination of the trial-averaged firing

rates. For matrices N of firing rates and M of muscle activations in which each row corresponds to a different time point and each

column to a different neuron/muscle, this model has the form M=NW where W is a matrix of weights. Results plotted in Figure S7

were obtained using no temporal offset between neural and muscle activity. Similar results were obtained though when imposing

temporal offsets ranging from the muscle activation being offset 10 to 50 ms forward in time relative to neural activity.

In the second type (‘‘dynamic model’’), the trial-averaged muscle activations were fit by a linear combination of trial-averaged

neuronal firing rates at several different time lags ranging from 0ms to 50ms in 5 ms increments. Regressors were the neuronal firing

rate time series at all 11 time lags, corresponding to 11n variables, where n is the number of neurons. This model is equivalent to one

in which muscle activity is fit by a linear combination of the outputs from a linear dynamical system that has neuronal firing rates as

inputs (Kailath, 1980).

For both model types, the ridge parameter was selected via a three-fold cross-validation procedure. Sets of trials were partitioned

into three subsets. The training set was obtained by averaging across trials in two of the three partitions, and a test set was obtained

by averaging across trials in the remaining partition. The ridge parameter was selected as the one that minimizedmean squared error

on the test sets. A different ridge parameter was calculated for each day of recordings, since each day corresponded to different sets

of neurons.

For the fits to each muscle, the difference between behaviors was computed by subtracting the two vectors of weights, taking the

norm of the resulting difference vector, and dividing it by the sum of the norms of the original two weight vectors. These normalized

differences then can range from 0 to 1. To test the null hypothesis that the underlying relationship between firing rates and muscle

activation was the same between behavioral contexts, models were also fit using 1000 different sets of trial-average firing rates

computed after regrouping trials as was done above for correlation score changes. Here again, Monte Carlo-based tests were per-

formed to probe the differences between themedians of these null distributions and those of the observed data. P values were calcu-

lated as (1 + # of permutations for which the median was higher than that of the observed data) / 1,001.

To compute the variance captured by the weight matrices for each model, we orthogonalized each set of weight vectors using the

Gram-Schmidt process, computed the projection of the firing rate matrices N onto the resulting vectors, computed the covariance

matrix for this projection, and then took the trace of that covariance matrix. For the dynamic model, the weights on a given neuron’s

activity at each different lag were summed, resulting in one matrix the same size asW for the static model, before the Gram-Schmidt

process was applied. This ensured that neural dimensions used at each time lag were reflected equally in measurements of variance

captured.

DATA AND SOFTWARE AVAILABILITY

Custom software are available. See Key Resources Table above for details.
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