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Single-trial dynamics of motor cortex and their
applications to brain-machine interfaces
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Increasing evidence suggests that neural population responses have their own internal drive,

or dynamics, that describe how the neural population evolves through time. An important

prediction of neural dynamical models is that previously observed neural activity is

informative of noisy yet-to-be-observed activity on single-trials, and may thus have a

denoising effect. To investigate this prediction, we built and characterized dynamical models

of single-trial motor cortical activity. We find these models capture salient dynamical features

of the neural population and are informative of future neural activity on single trials. To assess

how neural dynamics may beneficially denoise single-trial neural activity, we incorporate

neural dynamics into a brain–machine interface (BMI). In online experiments, we find that a

neural dynamical BMI achieves substantially higher performance than its non-dynamical

counterpart. These results provide evidence that neural dynamics beneficially inform the

temporal evolution of neural activity on single trials and may directly impact the performance

of BMIs.
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Consider the problem of estimating the trajectory of a
cannonball fired at dusk. At your disposal is a low-
resolution video camera that has only a few hundred pixels

with poor sensitivity to incoming photons. A naı̈ve approach is to
take a video of the cannonball’s flight and trace out its trajectory
frame-by-frame. However, the resultant trajectory would be very
noisy due to both the limited resolution of the camera and
Poisson noise in photon detection (Fig. 1a–c). In this case, the
observations are corrupted by noisy events that worsen trajectory
estimation. This ‘observations only’ based approach, however, can
be substantially improved by incorporating knowledge of New-
tonian mechanics. The cannonball has mass and is subject to
physical laws that dictate its trajectory, such as the laws of
motion, gravity and air resistance. These laws can be encapsulated
in a linear dynamical system, where the cannonball’s state (such
as its position, velocity and acceleration), zk, can be inferred from
its state a time step earlier, that is, zk¼ Fzk" 1. By leveraging
knowledge of the dynamical rules the cannonball obeys, we can
augment the noisy video camera observations to obtain a better
estimate of the cannonball’s trajectory (Fig. 1d) that more closely
matches the true flight of the cannonball.

In motor neuroscience, we have similar observation limita-
tions. Our neural observations are both low-resolution (on the
order of hundreds of electrodes) and noisy (with the arrival of
action potentials being Poisson-like). However, a recent body of
literature hypothesizes that analogous dynamical laws, describing
how the activity of population of neurons evolves through time,
exist in motor cortex1–7. These dynamics characterize how the
neural population activity modulates itself over time (for
example, through recurrent connectivity8,9) so that the neural
population activity at time k is informative of the population
activity at time kþ 1. Neural dynamical models of motor cortex
are descriptive tools of these dynamics and typically posit that the
spiking activity of a population of neurons arises from a latent
(unobserved) neural state3,5,10–12. This neural state captures the
shared variability in the neural activity, and as such summarizes
the activity of the population1,2,9,10,13–21. Because the activity of
the population is correlated, the dimensionality of the neural state
required to capture a substantial proportion of the neural
variance tends to be smaller than the number of cells recorded.
In simple reaching tasks, this dimensionality has been observed to
be 10–20 dimensions10. These latent state models have been
effective in modelling the correlated behaviour of a neural
population10–12 as well as in predicting behavioural correlates,
including reaction time22.

An important prediction of neural dynamical models is that
neural population activity observed up to the current time is
informative of neural activity that has yet-to-be-observed on
noisy single-trials. This concept, analogous to the cannonball
example, is pictorially illustrated in Fig. 1e. In this hypothetical
example, the neural state moves with purely rotational dynamics.
A neural state estimated from the observed neural population
activity alone without dynamics (for example, as with principal
component analysis, PCA, or factor analysis) is very noisy on
single trials. This is illustrated by the blue trajectory in Fig. 1e.
However, if we had knowledge that the neural trajectories obeyed
certain dynamics, as illustrated by the flow fields depicted in
Fig. 1e, then the dynamics could be used to compute an a priori
estimate of the next neural state (purple arrows in Fig. 1f). The
subsequent neural observation would then update this a priori
state estimate, as shown by the blue arrows in Fig. 1f, to yield a
dynamically estimated neural state, depicted by the orange
trajectory. This resultant trajectory incorporates information
from both the neural dynamics and the neural observations.
Performing dynamical estimation may have beneficial smoothing
and denoising properties; in our example, a neural state trajectory

rotating counterclockwise should not instantaneously traverse a
clockwise path, as might be observed due to single-trial noise, just
as a falling cannonball should not defy gravity and float up. This
dynamical estimation should result in more accurate neural state
trajectories than could be inferred by merely smoothing the
observations without knowledge of neural dynamics.

While previous studies have performed systems identification
to characterize the neural dynamics in motor cortex3,5, we sought
to see if neural dynamics were informative of future neural
activity and could therefore aid in single-trial neural state
estimation. As single-trials are very noisy, does a neural
dynamical model provide a measurable benefit over merely
assuming a local smoothness in the neural activity?
Demonstrating a benefit in forward prediction on single trials is
central for the dynamical systems framework. Thus, we not only
performed further systems identification of dynamical laws on
single-trials (by analogy, characterizing gravity and air
resistance), but also investigated whether these dynamical laws
could improve single-trial estimation by dynamically smoothing
and denoising the neural state (by analogy, improving our
estimate of the cannonball’s flight by using physical laws to
smooth and denoise the cannonball’s kinematics). We built and
characterized dynamical models of single-trial motor cortical
activity and asked if these models captured salient features of the
neural population responses and were informative of how neural
population responses evolve on single trials. We note that a ‘true’
neural state cannot be inferred from our noisy single-trial
observations. Thus instead, we used closed-loop brain–machine
interface (BMI) performance as an indicator of the quality of
neural state estimation. Further, if dynamical neural state
estimation improves closed-loop BMI performance, this may
have significant implications on BMI design23.

Results
To learn and evaluate dynamical models of motor cortical activity
during reaching, we recorded neural activity while rhesus
macaques performed a center-out-and-back reaching task with
eight targets positioned on the circumference of a circle with
12-cm radius (Supplementary Fig. 1, Methods). The monkey was
required to hold each target for 500 ms. Neural activity was
recorded from implanted electrode arrays in dorsal premotor
cortex (PMd) and primary motor cortex (M1). Monkey J had two
96-electrode Utah arrays, one implanted in PMd and one in M1,
while Monkey L had one array implanted at the border of PMd
and M1.

Learning single-trial motor cortical dynamics. We modelled
recorded spiking activity during reaching using an autonomous
latent-state linear dynamical system (LDS). In the LDS, the
observed neural population spike counts at time k, yk, can be
interpreted as a noisy observation of a low dimensional and
dynamical neural state, sk. In this work, yk was the threshold
crossing spike counts on each electrode in non-overlapping
15-ms bins. We chose the neural state to be 20-dimensional as to
be sufficiently high enough to capture a substantial proportion of
the neural variance10. We modelled this system in the linear
Gaussian form:

sk ¼ Msk" 1þ nk ð1Þ

yk ¼ Pskþ rk; ð2Þ
where nk and rk are zero-mean Gaussian noise terms. We refer to
equation (1) as the dynamics process and equation (2) as the
observation process. The LDS parameters were learned in an
unconstrained fashion from neural population responses
observed during 500 reaching trials (corresponding to B30,000
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bins of data) with expectation maximization (Methods,
Supplementary Fig. 2). This approach finds LDS parameters,
which (locally) optimize the log-likelihood of the observations
under the assumptions of equations (1) and (2) (ref. 24). We
found that M always converged to a full-rank, non-normal
matrix with unique and stable eigenvalues, as characterized in
Supplementary Figs 3 and 4.

Equations (1) and (2) describe how the previous neural state,
sk" 1, and the current neural observation, yk, are informative of
the current neural state, sk. To estimate sk given sk" 1 and yk we
used the Kalman filter, which is a minimum mean-square error

estimator of a Gaussian LDS. We denote the Kalman filter
estimate of sk as ŝk. With the Kalman filter, the contribution of
the dynamics process (using the previous neural state estimate,
ŝk" 1) versus the ‘innovations process’ (using the neural
observations, yk) in estimating the neural state can be computed
by calculating the norms of the vectors in Fig. 1f (described
further in the Methods). Across 13 experimental days in Monkey
J and 16 days in Monkey L, where a new LDS was learned on each
experimental day, we found that the dynamics process con-
tributed 37±2% (mean±s.d.) and 49±4% to the state estimate.
The consistency of this proportion across days suggests that LDS
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Figure 1 | Incorporating dynamics into trajectory estimation. (a) An illustration of a cannonball being fired at dusk, following a parabolic trajectory
(orange) according to physical dynamical laws. Photo courtesy Christine Wong. (b,c) The flight of the cannonball is recorded by a low-resolution video
camera. However, two factors obscure the true path of the cannonball. First, the camera is low resolution, only being able to capture hundreds of pixels with
poor colour resolution. Second, the incoming photons are characterized by Poisson noise, which in part corrupts the image. As a result, the trajectory path
recorded in the video might appear very noisy, as illustrated by the dotted-blue trajectory. (d) By incorporating knowledge of Newtonian mechanics,
zk¼ Fzk" 1, we can arrive at a better estimate of the flight path of the ball. This estimate incorporates knowledge of the laws of motion, the theory of gravity,
and air resistance. For example, the ball should not defy gravity by floating up while it is falling. (e) An illustrative analogue of the cannonball in a 2D
projection of neural state space. In this toy example, the arrows indicate the dynamics of the neural state, so that for the purposes of this illustration, it
rotates counterclockwise. When the dynamics are not taken into account, the neural state trajectory inferred only from noisy single-trial neural
observations may be very noisy (blue trace). However, the neural state trajectory noise may be ameliorated by accounting for the neural state dynamics
(orange trace). (f) One way in which dynamical information may be included is to linearly weigh the predicted neural state, as a result of a dynamical model
and the neural ‘innovations’, which is derived from the neural observations. The relative weight given to the dynamical process versus the observation
process is influenced by factors such as their noise processes. The relative weight of the contribution from the dynamical process versus the neural
innovations is reported in the Results.
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learning was fitting underlying structure in the neural population
activity rather than simply fitting noise, as further supported by
cross-validating the model likelihoods (Supplementary Fig. 2).
Thus, for our parameters, linear dynamics explained 35–50% of
how the neural population responses evolve through time.
Further, we found that these contributions were consistent across
experimental days within subject, but differed between subjects
(due to different cell sampling). This suggests that there is
consistent structure in how observed neural population responses
evolve that can be robustly captured by a linear dynamics process.
Moreover, we found that the single-trial neural dynamics had
consistent eigenvalue characteristics that were qualitatively
similar to previous reports in non-human primates5 and
humans with ALS7 (Supplementary Figs 3 and 4).

We emphasize that our estimate of the neural state
incorporates a dynamics process in contrast to other dimension-
ality reduction techniques based on PCA5,14,15,25 and factor
analysis26,27. For example, jPCA5,7 (trajectories shown in Fig. 2a)
does not use a dynamics process, but rather finds a rotation of the
principal components showing rotational structure in the neural
population activity. In the cannonball example, this is analogous
to systems identification (that is, characterizing the dynamical
laws governing the movement of the cannonball), whereas we
actively use the dynamics to infer a new trajectory (that is,

denoising the observed trajectory of the cannonball). To visualize
the neural state trajectories of an LDS, we learned a highly
constrained LDS with a 2-dimensional (2D) (rather than a 20-
dimensional) latent state, since it is infeasible to visualize
dynamics of a 20-dimensional space. We stress that the 2D
LDS is only shown for visualization purposes and is a very limited
model because it does not capture a substantial proportion of the
neural variance. Moreover, because these 2D dynamics are far less
rich than those of a 20-dimensional system, it is prone to
underfitting and may not fully model different portions of the
reach where dynamics differ14,15. Nevertheless, as shown in
Fig. 2b using cross-validation neural activity (where trajectories
are condition-averaged across single trials), we observed that the
neural state trajectories travelled along directions guided by the
neural dynamics, as depicted by the flow fields, during the center-
out and hold epochs of the reach. This was also the case on single
trials, as shown in Fig. 2d (with the corresponding behavior
shown in Fig. 2c).

Neural dynamics are slower during holding than reaching. In a
dynamical system, the position of the state predicts the velocity of
the state, as depicted by the flow fields in Figs 1e,f and 2b,d.
Therefore, we asked: do the modelled neural dynamics capture
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salient features of the neural state velocity? Two distinct regions
explored by the neural state are the region where the monkey is
holding the target and the region where the monkey is reaching to
the target, as illustrated in Fig. 3a. We first asked if the neural
population speeds, given by the difference ||ykþ 1" yk||, are faster
or slower during the hold epoch (from 100 ms after hold initia-
tion to 150 ms before hold completion) versus the reach epoch
(center-out trials). Across seven experimental sessions in Monkey
J and six in Monkey L, we found that the ratio of the mean neural
population speeds during the hold epoch to those during the
reach epoch was on average 0.72 and 0.88 (Fig. 3b,c; blue bars).
Thus, the neural population responses exhibit a smaller rate of
change when the monkey is holding a target than reaching to a
target. This may be a result of the monkey producing more static
kinematics and electromyography when holding rather than
reaching to a target.

We next assessed whether single-trial dynamical models
predicted slower neural-state speeds during the hold
epoch versus the reach epoch. We calculated the first-order

model-predicted neural-state speed, ||skþ 1" sk||¼ ||(M–I)sk||, for
all neural states in the hold epoch and in the reach epoch using
cross-validation data. We found that the ratio of the mean model-
predicted speeds between holding and reaching was 0.55 in
Monkey J and 0.79 in Monkey L (Fig. 3b,c; purple bars).
Therefore, the neural dynamics produced relatively smaller neural
state velocities during holding than reaching. In this sense, the
neural population responses during target holding reside in a
region of slower dynamics of the neural state space. Incorporating
neural dynamics into state estimation may therefore beneficially
accentuate neural state velocity differences between holding and
reaching on noisy single-trials. For example, if the neural
dynamics denoise noisy observations by accelerating the neural
state more during the reach epoch than during the hold epoch, we
may be able to decode a more accurate dynamic range of hand
velocities on single trials. We found this was the case (Fig. 3d,e
and further described in Supplementary Table 1), as a decoder
using the neural state (rather than the neural observations) to
estimate cursor velocity was as quick as the hand during the reach
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Figure 3 | Neural dynamics accentuate the dynamic range of velocities in hold versus reach. Bar plots in this figure represent the average across seven
experimental days in Monkey J and six experimental days in Monkey L, and the error bars denote the s.e.m. (a) A 2D illustration of neural state trajectory
regions during the hold and reach epochs, as well as the dynamics they obey. The goal of this analysis is to assess the relationship between
k _sHold k and k _sReach k. (b) The ratio of the (high-dimensional) neural population speed during the hold epoch to the reach epoch is 0.72 (blue), indicating
that the rate of change of the neural population activity is less in the hold epoch than in the reach epoch. The dynamical model captures this feature, with
the ratio of the neural state speed predicted by the model in the hold epoch to those in the reach epoch being 0.55 (purple). (c) Same as (b), but for
Monkey L. The ratio of the high-dimensional neural velocities is 0.88; the ratio of the model-predicted neural state velocities is 0.79. (d) The averaged
single-trial hand velocities during the hold and reach epochs are shown in grey. The average of the decoded single-trial velocities during the hold epoch are
comparably low for both the high-dimensional neural data (yk, blue bar) and the dynamical neural state (sk, orange bar). However, during the reach epoch,
the dynamical neural state is able to decode significantly higher velocities. (e) Same as (d) but for Monkey L.
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epoch with appropriately low velocities during the hold epoch
(Supplementary Table 1). The ability of a decoder to generate
both quick and slow velocities is crucial for high-performance
BMIs28,29.

Neural dynamics as a predictor of future neural activity.
Because the neural dynamics predict how the neural state evolves
differently depending on its location state space, we next asked if
neural dynamics predict yet-to-be-observed future neural popu-
lation activity better than just assuming a local smoothness in the
neural activity. We evaluated how much of the variance in the
neural observations at time k, yk, could be explained given neural
observations up to time k" 1. Because observed spike counts are
noisy at the single trial level, we performed predictions over
B15,000 bins of neural observations on each of 13 different
experimental days in Monkey J and 15 experimental days in
Monkey L.

We first evaluated if using neural dynamics could better predict
the neural population activity at time k than merely assuming
that the neural activity is locally smooth and constant at a 15-ms
bin resolution (with no dynamical predictive model). Therefore,
we first calculated how much variance in yk could be predicted by
the causally smoothed neural observations at time k" 1, given by
~yk" 1. The smoothing kernel was a causal Gaussian kernel with a
s.d. of 100 ms. We found that the smoothed neural observations
captured 22% and 25% of the future neural variance in Monkeys J
and L, respectively. To predict future neural observations with the
neural dynamical model, we used the single-trial dynamics to
estimate the a priori neural state at time k. This estimate of the
next neural state at time k was then used to estimate the neural
activity at time k (via the observation process). Therefore, the
estimator of yk was ŷk ¼ PMŝk" 1. We found that the neural
dynamical model captured 31% and 29% of the future neural
variance. This represents an increase in the captured variance by
9 and 4%, a 43 and 16% (Po0.01, paired t-test, both monkeys)
improvement over using the smoothed neural observations from
15 ms earlier.

Further, we asked: are single-trial neural dynamics better
descriptors of future neural population responses than those
learned from condition-averaged neural population responses5? If
neural population responses obey dynamical laws, then these laws
would operate on single trials. We learned LDS’s from condition-
averaged neural population responses and found that they
captured 28 and 25% of the future neural variance in Monkeys
J and L. Hence, the single-trial dynamics still increased the
captured variance by 3 and 4%, which is an improvement of 10
and 16% over the condition-averaged LDS (Po0.01, paired t-test,
both monkeys). This shows that single-trial dynamics better
model the evolution of single-trial neural population responses
than do condition-averaged dynamics, suggesting that learning
dynamics on single-trials captures dynamical features that are
obscured in the condition-averaged neural activity.

Incorporating neural dynamics increases BMI performance. By
using neural dynamical models to predict how the activity of a
neural population evolves over time, can we arrive at a ‘better’
and potentially denoised single-trial neural state? An obstacle in
addressing this question is that a ‘true’ neural state cannot be
known from our observations. Therefore, we used an online BMI
as an indicator of the quality of neural state estimation. If the
dynamical model had good predictive power, we would expect the
performance of the BMI to increase over one that did not
incorporate a dynamical model. On the other hand, if the
dynamical model had poor predictive power, we would expect the
performance to decrease. We built a closed-loop BMI system

where the neural dynamics were used to augment neural state
estimation in a real-time feedback loop. We performed this study
online (1) so that the subject could adjust his neural activity as a
result of feedback of the cursor movements28,30, reflecting the
newly and dynamically predicted neural state and (2) to assess the
utility of incorporating neural dynamics into a clinical BMI.

The concept of our experiment is illustrated in Fig. 4, where the
same decode algorithm can be driven by either the noisy single-
trial neural spike counts (blue traces) or by the dynamical neural
state (orange traces). The output of the decoder is cursor
kinematics (x̂k). As suggested by the offline analysis of Fig. 4, the
single-trial trajectories decoded by the neural state (thin orange
lines) better replicate the true hand trajectories (black) than those
decoded by the high-dimensional neural data (blue). To avoid
obfuscation of results by using more complex decoder models, we
decoded using simple least-squares regression. Therefore, we
found least-squares optimal (Ls, bs) and (Ly, by) to decode
kinematics according to the following equations:

x̂k ¼ Lsŝkþ bs ð3Þ

x̂k ¼ Lyykþ by: ð4Þ
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ŝk

x̂k

Figure 4 | Decoding with a dynamical neural state as opposed to noisy
neural observations. A decode algorithm takes neurally derived
observations and outputs decoded kinematics, x̂k . Most BMI systems
decode using noisy neural observations, yk, which comprise the single-trial
spike counts of the neural data. This data (smoothed) is shown for a single
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We refer to equation (3) as the neural dynamical filter (NDF),
while equation (4) is the optimal linear estimator (OLE)31. A
graphical representation of the NDF is shown in Fig. 5a, where the
neural state propagates with dynamics, at each point generating
the observed neural activity and kinematics. We note that despite
the NDF having more parameters than the OLE, it is not trivial
that the NDF would outperform the OLE in closed-loop
experiments, where the monkey was incorporated in a feedback
loop30,32,33. For example, if the learned dynamics did not describe
the temporal evolution of the population activity well, it may be
that merely smoothing the neural responses with a Gaussian kernel
and finding a least-squares optimal mapping to the kinematics
would result in similar or better generalization to online control.

We compared the performance of the NDF and OLE over 13
online experimental sessions in closed-loop BMI control on a
generalization grid task that allowed for the computation of an
achieved bitrate34,35 (Methods). We emphasize that this task
evaluates the generalization of neural dynamics learned from
center-out-and-back reaching to a scenario where targets are
randomly selected from a grid of 36 targets, sampling a much
more diverse set of conditions. Because the dynamics provide a
measure of smoothness to the dynamical neural state, we allowed
the neural spike counts to also be smoothed by convolution with
causal Gaussian kernels having s.d. ranging from 25 to 200 ms. As
shown in Fig. 6a,d, a BMI incorporating neural dynamics
achieved significantly higher performance (as measured by
achieved bitrate34,35 described in the Methods) than its non-
dynamical counterpart. The NDF achieved 31% and 83% higher
performance than the best OLE decoder in Monkeys J and L,
respectively (Po0.01, paired t-test, bitrates estimated from 16,245
total online trials for Monkey J and 8,572 trials for Monkey L,
breakdown in Supplementary Tables 2 and 3). We also found that
the NDF achieved higher success rates than the OLE, as shown in
Fig. 6g,j. A video of the performance of the NDF on the grid

task is shown in Supplementary Movie 1, and a table of mean
statistics can be found in Supplementary Tables 2 and 3. We also
performed a control to demonstrate that this performance benefit
was not solely a result of using smooth, low-dimensional
components. We performed PCA and selected the first 20
components (equalizing the dimensionality of the LDS neural
state) and effectively smoothed each component in time
with a causal Gaussian kernel with s.d. 100 ms (‘PC-smooth’).
We found that the performance of a decoder driven by
the smooth PCs was still worse than the performance of the
NDF (Supplementary Fig. 5). These results suggest that the
performance benefit of the NDF is not merely due to its low-pass
filtering properties, but rather may be a result of learning
underlying structure in the data.

To what extent does the NDF capture neural population
response structure as opposed to merely achieving high
performance by smoothness and regularization attributed to the
Kalman filter? We addressed this question with three additional
experiments. First, we implemented a control where we relearned
new decoders with a perturbed dynamics matrix; second, we
compared NDF performance with a kinematic-state Kalman
filter23,28,36–38 (KKF); third, we compared the NDF performance
with a more general regularized linear model, the Wiener
filter (WF).

In the first control, we permuted the columns of the dynamics
matrix, M, and learned a new decoder with the perturbed
dynamics. We observed that the performance of the decoder
substantially declined, sometimes to the point where the monkey
would not perform the task out of frustration. This demonstrates
that when the dynamics do not model the evolution of the
population responses well, performance substantially decreases.

Second, we predicted that the NDF should outperform a
KKF23,28,36–38, which has a far simpler dynamical model that
does not capture the richness of the neural population response
dynamics. The KKF effectively smooths neural data by use of a
dynamical model learned from the kinematic (cursor movement)
data, in stark contrast to smoothing neural data by use of a
dynamical model learned from the neural population, as
proposed here. These kinematic dynamical update rules are
characterized by exponential decay on the velocity23,26

(Supplementary Fig. 6). Over six experimental sessions, we
found that the NDF performed substantially better than the KKF
(47% and 61% improvement in Monkeys J and L, respectively,
Po0.01, paired t-test, bitrates estimated from 4,500 total online
trials for Monkey J and 3,683 trials for Monkey L) as shown in
Fig. 6b,e. We also found that the NDF achieved significantly
higher success rates and quicker acquire times28 than the KKF, as
shown in Fig. 6h,k and Supplementary Tables 2 and 3. These
results suggest that the neural dynamics capture structure in the
neural activity that cannot be described by relatively simpler
kinematic dynamical update rules alone.

Third, we compared an NDF with a more general linear
model, the WF. The WF finds the optimal linear least-squares
coefficients, L0, L1,y, Lp" 1 to decode the current kinematics as a
function of a history of neural data, so that x̂k ¼

Pp" 1
j¼0 Ljyk" j as

further described in the Methods section. Any linear state
estimation in a dynamical system can be written as a linear
operation on the history of the observed data. In this sense, the
WF represents the most general model of any linear approach in
that OLE, PC-smooth, KKF and NDF can be written in this
form23,39. Even so, this does not guarantee that the WF will have
superior generalization performance to other decoders, especially
in online control where the statistics of neural activity differ from
those during open-loop reaching because the monkey must
compensate for errors made during decoding. We optimized the
parameters of the WF (including the amount of history used, as

sk−1 sk sk+1

yk+1

yk+1

yk−1

yk−1

xk−1

xk−1

xk+1

xk+1

xk

xk

yk

yk

Figure 5 | Graphical representation of decoder algorithms. (a) A
graphical representation of a proposed neural dynamical filter, modelling
the dynamics of the neural state (sk). The neural state propagates through
time obeying modelled dynamics, at each point in time generating both the
kinematics (xk) and the observed neural data (yk). (b) Graphical
representation of the linear dynamical system underlying kinematic-state
Kalman filters, where the kinematics (xk) are related through a linear
dynamical update rule, and are causal to neural observations (yk). There is
no temporal structure modelled in the neural activity. We also note that this
model is of opposite causality to that of a, since kinematics are generative
of the neural activity rather than neural population activity (reflected by the
neural state) being generative of kinematics.
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process (for example, a nonlinear dynamics process3) may result
in a larger contribution from the dynamics process.

We found that single-trial dynamics were more predictive of
future neural activity than simply assuming a local smoothness in
binned spike counts. One reason neural dynamics may improve
forward prediction is because the neural dynamics capture
distinct characteristics of the neural population responses in
different regions of neural state space. For example, during the
hold epoch of the reach, the neural state resides in a region with
slower dynamics which decreases the neural state velocity. An
important line of future work will be necessary to understand
how networks of neurons may implement such dynamics in
biologically plausible ways, and how empirically observed
dynamics may constrain network architectures. Recent studies
suggest that these type of neural dynamics may arise in
recurrently connected networks of neurons8,9.

To provide evidence that these dynamics aid in neural state
estimation, we used a BMI system as an indicator of the quality of
neural state estimation. Performing this study in a closed-loop
experiment was important because the dynamical neural state
estimate will be reflected, to an extent, by the movements of the
cursor, so that the subject could adjust his neural activity and
make online feedback-based corrections. (In contrast, we note
two related offline BMI studies by Wu et al.40 and Truccolo
et al.41, further discussed in the Methods.) We observed that the
online BMI controlled by the neural state achieved substantially
higher performance than its non-dynamical counterpart,
suggesting that these dynamics are aiding in neural state
estimation in a beneficial way. In contrast, when we altered the
dynamics process, or used a dynamical update rule learned only
from the kinematics, we observed a substantial decrease in
performance.

An interpretation from the point of view that motor cortex
represents kinematic variables is that the dynamics observed in
motor cortex may reflect the dynamical update rules of kinematic
intent. In this sense, the graphical model of Fig. 5b (KKF) can be
interpreted to demonstrate the progression of an ‘intended
kinematic variable’42. Our results that an NDF outperforms a
KKF suggest that this is not the case, and that the dynamics of
neural population responses in motor cortex are far richer than
those of kinematic intent. This further supports evidence that
complex, heterogeneous motor cortical responses may have their
own internal drive, as opposed to solely encoding external
kinematic variables43,44.

We note that in our study, the monkeys were free to move the
contralateral arm during BMI experiments. This is because we
characterized the dynamics of reaching, and so the BMI should be
controlled in a similar fashion. A subject who is constrained to
not move may not fully explore the neural state space, having
cortical activity that resides in a null space15 where neural
dynamics may be substantially different than those during
reaching. While we believe the monkey model where the
subject is free to move his arm more closely resembles that of a
paralysed patient than when both arms are restrained34,45, we
note that future work should investigate the characteristics of the
dynamics of imagined movements. For example, we may find that
the dynamics of imagined movements may be more nonlinear,
and require different dynamic modelling assumptions3,9,46,47.

The neural dynamical viewpoint has implications on the design
of BMIs, including how to better smooth neural activity through
time. Two standard techniques in BMIs, OLE and KKFs, smooth
the neural data in a manner that does not use any knowledge of
the neural data. Often times, OLE (or population vectors) will be
accompanied by a preset low-pass filter48,49, while KKFs perform
Bayesian smoothing using a Markovian update rule that is only
learned from the kinematic variables23,28,36. Neither of these

approaches smooth the neural activity using properties of the
neural activity. For example, the KKF dynamical update rule or
OLE low-pass filters may smooth on time-scales that mismatch
the time-scales at which the neural activity is informative of
kinematics. If the time-constants are too long, then significant lag
may be introduced into the system. This work suggests smoothing
of the neural data should instead be performed using parameters
learned from the neural population responses. That is, given that
neural dynamics are informative of the evolution of neural
activity through time, incorporating these dynamics (which
model the time-constants and rotatory characteristics of the
neural population responses) can lead to improved filtering and
denoising of neural population responses on single-trials. This
study shows that this approach to smoothing the neural activity
results in better performance than techniques that do not model
neural dynamics. Future work may also assess the extent to which
it is beneficial to learn the dynamics of the neural population
responses in conjunction with kinematic dynamical update rules.

Interestingly, the NDF achieved similar performance to the
state-of-the-art ReFIT-KF28 on a similar task with the same
monkeys and arrays34,35. A major reason why this is so is because
the NDF is capable of decoding a large dynamic range of
velocities, such that it is not only able to move quickly to targets,
but is also able to stop more precisely than other decoders, much
like the ReFIT-KF. However, the NDF utilizes a different
mechanism to achieve this (denoising via dynamical estimation
in neural state space) than the ReFIT-KF algorithm (kinematic
intention estimation28,50 and closed-loop adaptation). Future
work may assess the extent to which these two different
approaches can be combined, since the kinematic intention
estimation innovations of the ReFIT-KF are complementary to
neural dynamical estimation.

These results contribute to understanding motor cortex as a
dynamical system by characterizing the dynamics of single-trial
motor cortical activity, demonstrating forward predictivity of
neural dynamics on single-trials, and demonstrating an applica-
tion whereby using neural dynamics can increase BMI perfor-
mance. This work further supports the idea that motor cortex is
not merely an input driven cortical area, but may have its own
internal drive. This internal drive describes how previously
observed neural activity is informative of yet-to-be observed
neural activity. These dynamics can capture salient features of the
neural population responses and can beneficially augment single-
trial neural state estimation. In one application domain, brain-
machine interfaces, where decodes are performed on noisy single
trials, incorporating neural dynamics can substantially increase
decoder performance. This is a prime example where neuros-
cientific findings can beneficially inform the design of brain-
machine interfaces.

Methods
Experimental setup. All surgical and animal care procedures were performed in
accordance with National Institutes of Health guidelines and were approved by the
Stanford University Institutional Animal Care and Use Committee. Experiments
were conducted with adult male rhesus macaques (J and L) implanted with 96
electrode Utah arrays (Blackrock Microsystems Inc., Salt Lake City, UT) using
standard neurosurgical techniques. Electrode arrays were implanted in dorsal
premotor cortex (PMd) and primary motor cortex (M1) as visually estimated from
local anatomical landmarks. Monkey J had two arrays, one in M1 and one in PMd,
while Monkey L had one array implanted on the M1/PMd border. Monkey J was
11 years old, and Monkey L was 16-17 years old during experimentation, with
arrays implanted 40 and 60 months before experimentation. The monkeys made
point-to-point reaches in a 2D plane with a virtual cursor controlled by the
contralateral arm or by a BMI. The experimental setup has been previously
described28–30 and an illustration of the experimental setup is shown in
Supplementary Fig. 1. The virtual cursor and targets were presented in a
three-dimensional (3D) environment (MSMS, MDDF, USC, Los Angeles, CA).
Hand position data were measured with an infrared reflective bead tracking system
(Polaris, Northern Digital, Ontario, Canada). Spike counts were collected by
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applying a single threshold, set to " 4.5& root-mean-square of the spike voltage
per neural channel. The raw neural observations used for analyses were binned
threshold crossings counted in non-overlapping 15-ms bins. Behavioural control
and neural decode were run on separate PCs using Simulink/xPC platform
(Mathworks, Natick, MA) with communication latencies of 3 ms. This enabled
millisecond timing precision for all computations. Neural data were initially
processed by the Cerebus recording system (Blackrock Microsystems Inc., Salt Lake
City, UT) and were available to the behavioural control system within 5±1 ms.
Visual presentation was provided via two LCD monitors with refresh rates at
120 Hz, yielding frame updates of 7±4 ms. Two mirrors visually fused the displays
into a single 3D percept for the user, creating a Wheatstone stereograph. All tasks
presented in this study were restricted to a two-dimensional plane. Because this
study deals with the dynamics of reaching, we used an animal model where the
monkey was free to move the contralateral arm. In the context of BMI, we believe
this animal model more closely mimics the neural state of a human subject that
would be employing a BMI in a clinical study than a monkey with both arms
restrained45. However, as noted in the Discussion, we believe that it is important to
study the dynamics of imagined movements.

Tasks. For all experiments conducted in this work, two tasks were utilized. The
first was a center-out-and-back reaching task, which was used as a training set for
each decoder. The second was a grid task, which was used to evaluate the per-
formance of each decoder. The grid task was used as the evaluation task because it
is a selection task that can convey information in a clinically relevant way. The grid
task allows the computation of an achieved bitrate which quantifies the rate at
which the BMI can communicate information35.

Center-out-and-back task. In the center-out-and-back task, eight targets were
placed with uniform spacing on the circumference of a 12-cm radius circle. The
subject was required to acquire the center target, followed by one of the eight
(randomly chosen) radial targets. The subject was given 2 s to acquire each
prompted target. After successful acquisition of a radial target, or following the
failure to acquire any target, the subject was prompted to acquire the center target.
Each target had a 4& 4 cm acceptance window centered around the target. For
every target selection, the subject had to hold the cursor within the acceptance
window of the target for 500 contiguous milliseconds. Training sets for the decoder
were comprised of 500 successful trials during which the subject would repeatedly
acquire peripheral and center targets. When necessary, a variant of the center-out-
and-back task, with eight targets placed on the circumference of an 8-cm radius
circle, was used for cross-validating results.

Grid task. The grid task is a generalization task previously used and described by
our group which allows for the calculation of an achieved communication rate34. In
this study, the grid task comprised a 6& 6 array of targets, each with a 4& 4 cm
acceptance window. The targets were tiled end-to-end contiguously to create a
workspace that was 24& 24 cm. This grid of targets mimics a keyboard task34,35

where the subject can select any of 36 targets at any time by dwelling in the
acceptance window of a target for 450 ms. Because any target can be selected at any
time, a correct target selection conveys information; for example, the targets could
be alphanumeric characters or symbols from a keyboard. To evaluate performance,
the subject had to acquire 1 prompted target out of the potential 36 targets.
Although only one target was prompted, every target was selectable if dwelt on for
450 ms. The subject was given 5 s to acquire the prompted target; if no target was
selected in 5 s, no target selection would be made. Following target selection, a
‘lock-out’ time of 200 ms was enforced, during which the task would continue to
run (that is, the next target would be prompted) but dwell time was not counted;
this was done to account for the reaction time of the monkey. Targets were
randomly chosen according to a uniform distribution, and therefore, the
information conveyed per target selection is log2(36) bits. To be conservative in the
estimation of achieved bitrate, we compensated every incorrect selection with a
correct selection, much like an incorrect selection on a keyboard must be corrected
by pressing the delete key. Therefore, the information conveyed on the grid task is
calculated by considering the net number of correctly selected targets. Hence,
performing the task at a success rate of 50% results in a bitrate of 0 bits per second
(b.p.s.), so that no information is conveyed through the task. We calculated an
achieved information rate (bitrate) by dividing the amount of information
conveyed during target acquisition by the time taken to acquire the targets.
Therefore, if in T seconds, c correct selections were made, while c incorrect
selections were made, the bitrate was calculated to be:

I ¼ c" ‘ð Þlog2 36ð Þ
T

; if c4‘

and I ¼ 0 if crc. This is the achieved bitrate of the decoder on the grid task. To
evaluate the performance of a decoder, the monkey performed the grid task in
blocks of approximately 100 trials, from which a bitrate across those trials was
calculated. Because the monkey’s motivation degrades as the experiment
progresses, we evaluated the NDF as the last decoder in each block to ensure that
benefits were not due to degrading motivation; the order of decoders tested in each
block was therefore deterministic. Each block was run so that decoders were
effectively tested in an A–B–A–B–A–... manner (A–B–C–A–B–C–A–... for three

decoders, and so forth). The bitrates in each block were paired for statistical testing.
We compared the mean performance of each decoder by calculating the mean
bitrate across all experimental blocks. Because a positive bitrate, I , can be
approximated as (a scaled) sum of 100 binary random variables, which take on
values 1 or " 1, the distribution of their sum (that is, the bitrate within a block)
will approach a normal distribution as more trials are collected. We used the paired
t-test to test a difference in the means of the bitrates. Collecting the bitrate
estimates in a blocked setting, and across experimental days, better justified an
assumption of independence. We collected at least 1,000 trials (410 samples) to
determine the mean bitrate, based both on experimental constraints and to better
justify an assumption of normality in the mean bitrate. Nevertheless, although we
used the parametric t-test in this study, we also performed a Wilcoxon signed-rank
test on the paired bitrate differences under the null hypothesis that the median
bitrate difference is zero, as well as a Wilcoxon–Mann–Whitney rank sum test for a
difference in bitrate distributions. All bitrate differences were significant under
these non-parametric tests (Po0.05).

Contribution from the dynamical versus innovations process. As in Fig. 1f, we
sought to calculate the contribution of the dynamics process versus the innovations
process (taking into account the neural observations) in estimating the next neural
state. By the definition of the linear dynamical system used in this work, we have
that Esk ¼ MEsk" 1, where E denotes expectation. That is, the progression of the
neural state is on average given by the dynamics update. The innovations process,
which is a process with zero mean, updates the estimate of the neural state, Mŝk" 1
by using the observed neural data, yk. The innovations are what cannot be
explained in the neural data by our observation process, i.e., yk "PMŝk" 1.
These innovations are projected by the Kalman filter gain,
Kk ¼ ðIþðM!k" 1MT þNÞPT R" 1PÞ" 1ðM!k" 1MT þNÞPT R" 1, where !k" 1 is
the covariance of the estimate ŝk" 1. Hence, the Kalman filter estimate of the neural
state at time k is

ŝk ¼ Mŝk" 1 þKk yk "PMŝk" 1

! "
:

We calculated the contribution of both the dynamics process and the innovations
process in predicting the next state from the previous state, that is, ŝk " ŝk" 1. The
contribution from the dynamics process is k Mŝk" 1 " ŝk" 1 k, while the con-
tribution from the innovations process is k Kk yk "PMŝk" 1

! "
k. Therefore, to

calculate the contribution from the dynamical state update process versus the
innovations process, we calculated the ratio:

rk ¼
k M" Ið Þ̂sk" 1 k

k M" Ið Þ̂sk" 1 k þ k Kk yk "PMŝk" 1

! "
k : ð5Þ

(An intuition for this ratio is that ~M ¼ M" I is the first order approximation to the
continuous dynamics matrix, _sk ¼ ~Msk , where _sk ¼ skþ 1 " sk . Thus, this ratio
calculates the relative contribution to the neural state velocity, as implied by
Fig. 1f).

We measured the average of this ratio, Erk ¼ 1
K

PK
k¼1 rk where K is the number

of neural observations (i.e., number of observations across time). Across 13
experimental days in Monkey J, where a new LDS was learned on each
experimental day, we found the average of this ratio, Erk , to be 0.37±0.02
(mean±s.d.), while for 16 experimental days in Monkey L, we found it to be
0.49±0.04.

Decode algorithms. We utilize the following abbreviations for decoders: the
neural dynamical filter (NDF), the optimal linear estimator (OLE), the Wiener
filter (WF), and the kinematic-state Kalman filter (KKF). In all decoders, the
decoded kinematics are the 2D position (p̂k) and 2D velocity (v̂k) of a computer
cursor. Neural spikes were counted in non-overlapping 15-ms bins, and were used
as the observations for all decode algorithms. Our choice of bin width is informed
by a previous result in online BMI experiments, which demonstrated that smaller
bin widths lead to increased performance30. Given that the decoded position and
velocity of the cursor at time k were p̂k and v̂k respectively, the decoded position
shown to the subject, pk, was calculated as:

pk ¼ ð1" aÞp̂k þ a pk" 1 þ v̂k" 1Dtð Þ ð6Þ
with a¼ 0.975 and Dt being the bin width of the decoder. This indicates that the
final decoded position is a weighted sum, with 2.5% contribution from the decoded
position, and 97.5% contribution from the integrated velocity. The small position
contribution in part stabilizes the position of the decoder in the workspace29. Other
work has noted the importance of taking into account the position contribution of
the signal28.

All decoders were trained using data collected while a subject made reaches on a
center-out-and-back task for 500 successful trials. Although the decoders were
trained using data collected while the subject performed a center-out-and-back
task, all decoders were evaluated on the grid task.

Neural dynamical filter. To learn a NDF, we modelled the following latent state
linear dynamical system:

skþ 1 ¼ Msk þnk ð7Þ

yk ¼ Psk þ rk ð8Þ
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where nk and rk are zero mean Gaussian noise terms with diagonal covariance
matrices N and R, respectively. We learned this latent state linear dynamical system
in an unsupervised fashion from the sequence of observed neural activity. The time
series of neural observations {yk}k¼ 1,2y,K were treated as the observed output
of a latent state LDS. We did not perform any preprocessing steps on the binned
spike counts, yk. We performed expectation maximization (EM) to learn the
parameters (M, P, N, R) of the LDS, as described in a previous report24. Briefly,
the E-step involves computing the expected joint-log likelihood of the neural state
and the neural observations, which can be deduced from the graph structure of
Fig. 5a:

log p s1; ... ;K ; y1; ... ;K

# $
¼"

XK

k¼1

1
2

yk"Psk
! "TR" 1 yk "Psk

! "% &
" K

2
log Rj j

"
XK

k¼2

1
2

sk "Msk" 1ð ÞTN" 1 sk "Msk" 1ð Þ
% &

" K " 1
2

log Nj j

" 1
2

s1 " p1ð ÞTS" 1
1 s1 " p1ð Þ" 1

2
log S1j j"

K N þ dð Þ
2

log 2p;

where s1 ' N p1; S1ð Þ and N and d are the number of channels and the
dimensionality of the latent state, respectively. The joint log-likelihood, given all
parameters, can be computed via Kalman smoothing. The M-step then involves
maximizing the parameters (M, P, N, R, p1, S1) with respect to the joint log-
likelihood. We note that while we computed p1 and S1, they were of no practical
consequence when running in closed-loop after several seconds. The E-step and
M-step alternated to increase the log-likelihood of the observed data. More details
can be found in the report by Ghahramani and Hinton24. When performing EM,
we utilized an approximation in the E-step: we assumed that the Kalman
smoothing parameters remained constant after convergence of the estimated state
covariance matrix within reasonable tolerance. In the offline analyses of this study,
the EM algorithm was initialized with factor analysis. In online prosthetics
experiments, we also learned dynamical systems where the EM algorithm was
initialized using previously learned dynamical systems. Initialization from a
previously learned LDS decreased the convergence time and sometimes resulted in
more optimal LDS’ (since EM is subject to local optima). We briefly evaluated the
performance of NDF algorithms using each of the learned dynamical systems, and
chose the one with the highest performance.

After learning the parameters of the latent state dynamical system via EM, we
used the steady-state form of the Kalman filter to estimate the neural state, ŝk , at
each point in time from the sequence of neural observations, yk, in the training
data. It was reasonable to use the computationally efficient steady-state form of the
Kalman filter, since convergence to steady-state occured on the order of seconds.
We thus had a sequence of decoded neural states, S ¼ ŝ1; ŝ2; . . . ; ŝK½ ) and a
corresponding sequence of observed training set kinematics, X ¼ x1; x2; . . . ; xK½ ),
where xk contains the position and velocity of the hand-controlled cursor at
time k. We then found the matrix Ls, which minimizes the mean squared error,
||X–Ls[S; 1]||2, where 1 refers to a row of 1’s appended to the bottom of S to
allow for a bias to be learned. After defining Sb¼ [S; 1], the solution is
Ls ¼ XST

b SbST
b

! "" 1.
We note two related offline BMI studies; the study by Wu et al.40 utilized a

latent state, while the study by Truccolo et al.41 modelled temporal interactions
across the neurons. In the study by Wu and colleagues, a latent state model was
learned in conjunction with the observed kinematics, so that the latent dynamical
process is coupled to the kinematics. Interestingly, it was found that with this
model, the parameters could not be identified with EM when the hidden state
dimensionality was 43, which suggests that it does not adequately capture the
relatively higher-dimensional neural dynamics10. In the study by Truccolo and
colleagues, it was found that the interactions across neurons was only significant
for 3–5 ms, which are of far shorter time scales than those used in this study.

Optimal linear estimator. The OLE31 was fit by solving the least-squares
regression problem between the sequence of observed kinematics in the training
set, X, and the corresponding sequence of observed neural data, Y¼ [y1,y2,y,yK].
Analogous to the NDF case, we solved for the matrix Ly minimizing the mean
squared error ||X–Ly[Y; 1]||2. We then defined Yb¼ [Y; 1], so that a row of 1’s was
appended to the bottom of the matrix to account for a bias term. The solution is
Ly ¼ XYT

b YbYT
b

! "" 1. To allow for the sequence of neural data to have smoothness,
we also convolved every row of Y with causal Gaussian kernels having standard
deviations ranging from 25–200 ms.

Wiener filter. The WF incorporates neural history into the regression problem
by finding the optimal coefficients for historical neural data. The Wiener–
Kolmogorov filtering approach finds the optimal matrices, L0, L1,y, Lp" 1 such
that x̂k ¼

Pp" 1
j¼0 Ljyk" j , where the difference between the decoded and observed

kinematics is minimized in the least-squares sense. Hence, the WF operates on a
history of neural data of length pDt, where Dt is the bin size in which spikes were
counted. To fit the WF, we first define X[i:j]¼ [xi xiþ 1yxj] for ioj, and the
following matrix:

~Y ¼

yp ypþ 1 * * * yK
yp" 1 yp * * * yK " 1

..

. ..
. . .

. ..
.

y1 y2 . . . yK " pþ 1

2

6664

3

7775:

where p is a parameter denoting the amount of history used in the decoder, and K
is the total number of bins observed. By defining LW¼ [L0 L1yLp" 1 bWF], the
horizontal concatenation of the matrices Lj for j¼ 0, 1,y,p" 1 (and a bias term),
we could solve for LW such that the error metric kX p:K½ ) " LW ½~Y; 1)k2 was
minimized. After defining ~Yb ¼ ~Y; 1)

'
, the solution is LW ¼ X p:K½ )~YT

b
~Yb ~YT

b Þ
" 1!

.
Analogously to least-squares, the term X p:K½ )~YT represents the time-averaged cross-
correlations between the kinematics and neural activity up to p bins in the past,
while the term ~Y~Y

T
represents the time-averaged autocorrelations of the neural

data up to p bins in the past. To avoid overfitting, we also regularized the
regression, so that we found LW ¼ X p:K½ )~YT

b
~Yb ~YT

b þ lIÞ" 1!
. Both parameters p and

l were found by optimization in online control, where p and l were swept and the
performance of the WF evaluated. We found that the optimal amount of history to
use was B250 ms for both subjects, although the minimum was shallow in the
range of 200–300 ms. This is a significantly smaller history than that used in
previous works33,37,51,52. We observed a degradation in performance when the
history was greater than 500 ms due to a noticeable lack of fine-control in the
cursor. This is because assigning significant weight to neural data relatively far into
the past will cause the decoder to have significant lag in responding to the subject’s
changing intention.

Kinematic-state Kalman filter. The KKF models the kinematics at time k, xk, as
the state of a linear dynamical system, while the simultaneously observed neural
population spike counts, yk, are the corresponding output of the system. This is
represented by the two equations,

xkþ 1 ¼ Axk þwk ð9Þ

yk ¼ Cxk þ qk ð10Þ

where wk and qk are zero mean Gaussian noise terms with covariance matrices
W and Q, respectively. As the sequences {xk}k¼ 1,y,K and {yk}k¼ 1,y,K were
observed in the training set while wk and qk are zero mean terms, A and C
can be learned via least-squares regression: A and C can be calculated as:
A ¼ X½2:K)XT

½1:K " 1)ðX½1:K " 1)XT
½1:K " 1)Þ

" 1 and C¼YXT(XXT)" 1. After learning A
and C, W was calculated as the sample covariance of the residuals X[2:K]–AX[1:K" 1],
while Q was analogously the sample covariance of the residuals Y–CX. Given these
parameters, and an initial condition (x̂0 ¼ 0), the Kalman filter is a recursive
algorithm which estimates the state at time k, x̂k , given the previous state estimate,
x̂k" 1, and the current observation, yk. A strength of this construction is the
smoothness in the kinematics afforded by modelling kinematic update laws in the
matrix A. However, we note that this model does not capture any temporal
structure in the neural population activity. While x̂k reflects, to an extent, the history
of the neural data in that x̂k can be written as a linear combination of yk, yk" 1,y,
y1, the temporal evolution of x̂k is governed by the linear dynamics of the
kinematics, and does not take into account any temporal correlations in the neural
data. When presenting decodes to the monkey, we found that a pure velocity
Kalman filter performed inferiorly to one where the position is decoded as in
equation (6).
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