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Scaling Multidimensional Inference for Structured
Gaussian Processes

Elad Gilboa, Student Member, IEEE , Yunus Saatci, and John P. Cunningham

Abstract—Exact Gaussian process (GP) regression has O(N?) runtime for data size N, making it intractable for large N. Many
algorithms for improving GP scaling approximate the covariance with lower rank matrices. Other work has exploited structure
inherent in particular covariance functions, including GPs with implied Markov structure, and inputs on a lattice (both enable O(N)
or O(N log N) runtime). However, these GP advances have not been well extended to the multidimensional input setting, despite
the preponderance of multidimensional applications. This paper introduces and tests three novel extensions of structured GPs to
multidimensional inputs, for models with additive and multiplicative kernels. First we present a new method for inference in
additive GPs, showing a novel connection between the classic backfitting method and the Bayesian framework. We extend this
model using two advances: a variant of projection pursuit regression, and a Laplace approximation for non-Gaussian
observations. Lastly, for multiplicative kernel structure, we present a novel method for GPs with inputs on a multidimensional grid.
We illustrate the power of these three advances on several data sets, achieving performance equal to or very close to the naive

GP at orders of magnitude less cost.

Index Terms—Gaussian processes, backfitting, projection-pursuit regression, Kronecker matrices

1 INTRODUCTION

G AUSSIAN processes (GP) have become a popular tool for
nonparametric Bayesian regression. Naive GP regres-
sion has O(N?) runtime and O(N?) memory complexity,
where N is the number of observations. At ten thousand or
more observations, this problem is for all practical purposes
intractable, given current hardware.

A variety of approaches are suggested in the literature for
improving the computational complexity of GP for large
data sets. Some approximate the GP using simpler models
on a lower dimensional subspace, e.g., kernel convolution
[1], [2], moving averages [3], or fixed number of basis func-
tions [4]. Other approaches enable fast computation by work-
ing in the spectral domain or using algorithms based on the
fast Fourier transform (FFT) [5], [6], [7]. Though these meth-
ods confer great advantage in the univariate case, extensions
to the multivariate case often require restrictive assumptions
[7]. A significant amount of research has also gone into
sparse approximations, including covariance tapering [8],
[9], [10], conditional independence to inducing inputs [11],
[12], or a Gaussian Markov random field approximation [13].
However, the results of these algorithms depend strongly on
the properties of the data [11], [13]. Since different
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assumptions fit different data sets, it is imperative to explore
alternative avenues for attaining scalability.

The central aim of this paper is to introduce methods for
structured GPs on multidimensional inputs. While efficient
methods for structured GPs are known in the case of scalar
inputs, many regression applications involve multivariate
inputs. We will extend two common types of GP structures,
namely: models with additive kernels and models with
multiplicative kernels. These structures have a long history
and are well used in GP literature [13], [14]. We present
three novel advances which allow efficient and sometimes
exact inference, or at least a superior runtime-accuracy
tradeoff than existing methods. Our first advance extends
the additive model using a variant of projection pursuit
regression (PPGPR-Greedy), which significantly improves
the expressivity of the model. Our second advance is an effi-
cient method for multidimensional GPs with non-Gaussian
likelihood (Additive-LA). Our third advance is an algorithm
for GPs with a multiplicative kernel structure, which arises
naturally, for most common kernels, when multidimen-
sional inputs are on a lattice (GP-grid). We also extend this
algorithm to cases of incomplete grids and non-i.i.d. noise.

1.1 Gaussian Process Regression

In brief, GP regression is a Bayesian method for non-
parametric regression, where a prior distribution over
continuous functions is specified via a Gaussian process
(the use of GP in machine learning is well described in
[12]). A GP is a distribution over a function f indexed by
an input space X such that any finite selection of input
locations xi,...,xxy € X gives rise to a multivariate
Gaussian density over the associated targets N (my, Ky),
where my = m(x1,...,xy) is the mean vector and Ky =
{k(xi,x;)},; ; is the covariance matrix, for mean function
m(-) and covariance function k(-,-). Here we are
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specifically interested in the basic equations for GP
regression, which involve two steps. First, for given data
y (zero-mean data), we calculate the predictive mean
and covariance at M unseen inputs as:

w. =Kyn (Ky + U?LIN)A)G (1)

2. =Ky —Kyy (KN + O'iIN)ilKNM. (2)

For model selection, since the function k(-, -;0) is parame-
terized by hyperparameters such as amplitude and length-
scale (which we group into 6), we must consider the
marginal likelihood Z(6):

1 _
log Z(6) = —3 [y (K +o;Ly) 'y + N log (27)
+ log’KN + oiINH. (3)

Here we use this log marginal likelihood to optimize over
the hyperparameters in the usual way [12]. The runtime of
GP regression and hyperparameter learning is O(N?) due to
(Ky + o2Iy) "', which is present in all equations.

2 EXTENDING STRUCTURED GP ON MULTIPLE
INPUT DIMENSIONS

We will extend two common types of GP structures, namely
models with additive kernel structure: K = K; + Ky + - - - +
Kp; and models with multiplicative kernel structure:
K=K ®Ky,® - --®@Kp. We first deal with the additive
case (Section 2.1), extending it to an efficient and more
expressive projected additive GP regression (Section 2.1.1),
and secondly innovate to the case of non-Gaussian likeli-
hoods (Section 2.1.2). Thirdly, we address the case of multi-
plicative kernel structure (Section 2.2).

2.1 GP with Additive Kernels

We begin by considering the simplifying (and overly restric-
tive) assumption of creating a multidimensional GP from
additive single-dimensional GPs. Additive GP regression
can be described using the following generative model:

D
Y; = Zfd(xi,li)+€ izl,...,N,
d=1
fi()  ~ GP(0,ki(xa,x;604)) d=1,...,D,

N(0,62),

~
€ ’ n

where X ; is the dth component of input i, kq(-,-) is the ker-
nel of the scalar GP along dimension d, 6; represents the
dimension-specific hyperparameters, D > 1 is the dimension-
ality of the input space, and o? is the (global) noise hyper-
parameter [14].

Given an additive GP model, it is possible to efficiently
solve it using a variation of the classical backfitting algo-
rithm (Algorithm 1). In brief, the backfitting algorithm fits
an additive model over a D-dimensional space with the
same overall asymptotic complexity of a scalar input space
[15], [16]. The backfitting technique is particularly useful for
GPs because convergence to the exact posterior mean is
guaranteed [17], and can be viewed as a GP extension of the

original Bayesian backfitting method in [18]. For full details
see our supporting work [19].

Algorithm 1: Efficient Computation of Additive GP
Posterior Mean via Backfitting

inputs : Training data {X,y}. Suitable covariance
function. Hypers 0 = {61,...,0p,02}.

outputs: Posterior training means: >, ; g, where
g = E(fd|y, X, 9d7 0'721)

1 Zero-mean the targets y;

2 Initialize the p, (e.g., to 0);

3 while The change in p, is above a threshold do

4 ford=1,...,D do

5 pq < E(faly =X, a1, %4, 0a,07); > Use
Gauss-Markov processes.

6 end

7 end

While this approach to solve additive GPs is encourag-
ing, we are still left with a series of unidimensional GP
problems, each of size N. Fortunately, if we further assume
some special structure (e.g., kernel corresponding to a state-
space model, equispaced inputs, etc.), we can use efficient
methods to reduce complexity to O(N). Here we use the
well-studied structure of Gauss-Markov Processes. As a
starting point, we briefly review the use of Gauss-Markov
processes for efficient GP regression over scalar inputs.

2.1.1 Gauss-Markov Processes

Although Gauss-Markov processes are well studied, their
use for exact and efficient GP regression is under-appreci-
ated. A GP with a kernel corresponding to a state-space
model can be viewed as a Gauss-Markov process, enabling
linear runtime. Gauss-Markov processes can be viewed as
the solution of an order-m linear, stationary stochastic dif-
ferential equation (SDE), given by:

d" f(z) d" ' f(z)

dx™ daxm—1

df(z)
dx

=+ aof(l') = UJ(ZL‘),
(4)

where w(x) is a zero-mean white noise Gaussian process over
any scalar input (often time), and f is also a GP (see [20] for
an introduction to SDEs). We can rewrite Eq. (4) as a vector
Markov process:

m—1 + a;

dz(r)
5 = Az(2) + Lu(z), (5)
where
gy W@ @]
Z((L‘) - .f('r)a dZC [ d{L'mfl ’ (6)
and where L =[0,0,...,1], and A is the coefficient matrix.

The Markov structure of Eq. (5) is the key enabler of efficiency
gains.

Earlier work [19], [21], derived the SDEs corresponding to
several commonly used covariance functions including the
Matérn family, spline kernels, and a good approximation to
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the exponentiated-quadratic kernel. Once the SDE is known,
the Kalman filter and Rauch-Tung-Striebel smoothing (belief
propagation) can be used to perform GP regression in O(N)
time and memory, a noteworthy leap in efficiency.'

Although Algorithm 1 allows for an efficient calculation
of the posterior mean, to calculate the posterior variances
and learn hyperparameters we must investigate further.
Under the additivity assumption, and using the Gauss-
Markov properties, the latent variables Z consist of D Mar-
kov chains. The resulting model regresses a sum of D
Gauss-Markov processes Z; (which are independent a pri-
ori). However, the true posterior p(Z,...,Zply,X.6) is
hard to handle computationally because all variables Z; are
coupled in the posterior. Although everything is still Gauss-
ian, we are no longer able to use the efficient state-space
methods of the Gauss-Markov process, returning us to the
original computational intractability at large N. Thus, we
require an approximate inference technique such as varia-
tional Bayesian expectation maximization (VBEM) or Mar-
kov Chain Monte Carlo (MCMC) (e.g., [22]). Full details of
both approximation methods are deferred to our supporting
work [19]. We will use the results of these additive GP
methods (Additive-VB and Additive-MCMC) for compari-
son to the more advanced projected additive GP regression,
presented in the next section.

2.1.2 Efficient Projected Additive GP Regression

So far, we have shown how the assumption of additivity
can be exploited to derive non-sparse GP regression algo-
rithms which scale as O(N). These considerable efficiency
gains can however decrease accuracy and predictive power
versus a full unstructured GP, due to the limited expres-
sivity of the simple additive model. To address this, we
now demonstrate a relaxation of the additivity assumption
without sacrificing the O(N) scaling, by considering projec-
tion pursuit GP regression (PPGPR), a novel fusion of the
classical projection pursuit regression algorithm with GP
regression. The graphical model illustrating this idea is
given in Fig. 1. We refer to the following projected additive
GP prior:

P
i =y () +e (7)
p=1
¢p - pr7 (8)
€~ N(O, ai),
for i =1,..., N. Each of the linear projections {wy,ws, ...,

wp} € RP projects the D dimensional input space to a differ-
ent scalar input space. Forming linear combinations of the
inputs before feeding them into an additive GP model signifi-
cantly enriches the flexibility of the functions supported by the
prior above, including many terms which are formed by taking

1. Note that the Gauss-Markov process framework requires sorted
input points. Else, a preprocessing step of O(N log N) is needed.

Fig. 1. Graphical model for Projected Additive GP Regression. In gen-
eral, P # D. We present a greedy algorithm to select P, and jointly opti-
mize W and {6,}

p=1"

products of covariates, and thus can capture relationships
where the covariates jointly affect the target variable [23], [24].
In fact, Egs. (7-9) are identical to the standard neural network
model where the nonlinear activation functions are modeled
using GPs.

The one-dimensional projection (P = 1) is known in the
literature as the Gaussian process single-index model (GP-
SIM), and was recently extended to the case of multiple out-
put regression [25]. For kernels that can be represented
as state-space models, we use an EM algorithm, where the
M-step involves optimizing the marginal likelihood with
respect to w; and 6. Notice that every step of parameter
learning scales as O(NN), since at every step we need to com-
pute the marginal likelihood of a scalar GP (and its deriva-
tives). These quantities are computed using the Kalman
filter by differentiating the Kalman filtering process with
respect to w; and 6, as described in [17] (supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2013.192).

The GP-SIM model is often used on the merits of simple
inference and interpretable results [26], [27]; however better
flexibility is gained by allowing for larger P. Extending P to
larger values is unwieldy, as noted in [28], unless used with
low complexity models (e.g., neural networks [28], or sim-
ple tree based approaches [29]). To deal with this, we use a
simple greedy approach with a low number of hyperpara-
meters (e.g., Matérn, squared exponential kernels), and limit
the size of P.

The greedy algorithm is similar to classical projection
pursuit regression [30]. In this case, at each iteration we find
the optimal projection weights w,,. The greedy nature of the
algorithm allows the learning of the dimensionality of the
feature space, P, rather naturally—we add feature dimen-
sions until there is no significant change in performance
over a validation set. In our implementation, we chose to
initialize the weights w,, via linear regression of X onto the
residual vector. Other initialization schemes, such as ran-
dom initialization, will also work; however, these schemes
typically require multiple runs to avoid convergence to
poor local optima.
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PPGPR is used for learning {wy,ws,...,wp} and {6,
0s,...,0p}; for inference, the backfitting approach of Sec-
tion 2.1 is used. The PPGPR algorithm offers a bridge
between the flexibility of the naive Full-GP, and the effi-
ciency of its approximate additive counterpart. For com-
pleteness, we also note that we implemented an MCMC
alternative to this greedy approach for learning PPGPR,
but we found it underperformed in all cases, and thus
we do not report on it.

2.1.3 Generalized Additive GP Regression

Here we extend these efficient methods to non-Gaussian
likelihood functions, as used in classification. Much work
has been done to address these likelihoods via MCMC sam-
pling or analytic approximations [31], but these works have
only considered important scalability questions via sparsifi-
cation approaches [32], [33], [34]. A natural and important
question is how to extend our structured GP methods to
this non-Gaussian case.

Here we derive an accurate and efficient O(N) algorithm
using Laplace’s approximation,” and we show that this
method is a Bayesian analog of the classical local scoring
technique [36].

Given the likelihood p(y|f) is non-Gaussian, we use the
standard Laplace approximation:

p(fly, X,0) = N (f,A7Y), (10)

where f = arg maxg p(fly, X,0) and the approximated covari-
ance matrix A = —VV log p(fly, X,0)|;_;. We define the fol-
lowing objective:

Q(f) = log p(y|f) + log p(f| X, 0). (11)

f is found by applying Newton’s method (the likelihood is typ-
ically log-concave in f, resulting in a convex program). If we
assume that f is drawn from an additive GP, then it follows
that the required gradient and Hessian (for Newton iterations)
are:

VQ(f) = Vi log p(y|f) — Koiif, (12)
VVQ(f) = VV¢ log p(y|f) —K,q- (13)
———

=W
This makes the Newton iteration:
g+ plR)

_ —1 _ A
+ (Ko + W) (Ve log p(ylf) | — Kogof ™)
= Koa(Kaaa + W [f0 4 WIVg log pylf) | ],
(14)

where the Woodbury matrix identity is used to get the final
result. Note that Eq. (14) is precisely the form of a poste-
rior inference (Eq. (1)) for target vector [f(k) + W V¢ log p
(y|f)|¢w] and a diagonal noise term WL, implying (i) that
Algorithm 1 will solve each Newton iteration, and (ii) f

2. Though literature often prefers the EP approximation [35], the
computational properties of the Laplace are far more attractive and, we
have found, do not involve a large loss in performance.

can be calculated in O(N) time. Wrapping backfitting itera-
tions inside a global Newton iteration is precisely how the
local-scoring algorithm is run to fit a generalized additive
model [36].

The above calculates the posterior Laplace approxima-
tion. To efficiently approximate the marginal likelihood, we
use the Taylor expansion of the objective function Q(F) for
F = [fy;...;fp] to obtain:

. 1 ~ - ND
log p(y|X) ~ Q(F) — §log det (W+K™) + 710g(2n)
(15)

A TP
= log p(y|F) -5 F'K'F

1 1 (16)
- ilog dot(K + Wﬁl) — ilog det(W),

where K is a block diagonal tiling of Ky, Ko, ..., Kp, and W
is a block diagonal tiling of the single (diagonal) W matrix.
This problem separates blockwise into matrix inverse and log
determinant problems over unidimensional GPs. Since each
GP has Gauss-Markov process structure, the Kalman filter
can be used to calculate these terms efficiently [19].

2.1.4 Parallelization of State-Space Models

The above algorithms can be parallelized to achieve even
greater speed up. For a fixed set of hyperparameters, the
values of evolution and emission matrices of the SDE for all
locations are independent, and hence can be precalculated
in parallel. This fact enables a very simple parallelization
scheme across multiple threads. We will further discuss
these gains in Section 3.1.1.

2.2 GP with Multiplicative Kernels
Another natural and common structure to consider is multi-
plicative kernels. A tensor product kernel has the form
K=K; ®K;®---® Kp. Unlike in the additive section, the
one-dimensional kernels K,; will require no additional
assumptions on the kernel structure itself; however, the
multiplicative structure requires inputs to be on a multidi-
mensional grid. This is commonly seen for regression prob-
lems, e.g., regular measurements at evenly spaced weather
stations, or video captured by a CCD camera. Much work
has gone to applications of scalar lattice data, such as Toe-
plitz and spectral approaches [5], [6], [37]. However, these
methods are very restrictive when extended to multidimen-
sional grid input [7]. Another approach that is used exten-
sively in the fields of computer vision and image analysis is
the Gaussian-Markov random field (GMRF) model; how-
ever, this model often proves too simplistic for real data,
and is known to be inconsistent over different subsets of lat-
tice data [38]. Other work exploits separability with the Kro-
necker product [39], but this approach is rarely used in
practice because it requires the restrictive assumptions of
noiseless, full (regular) grid measurements. Here we pres-
ent a novel extension of the Kronecker method to perform
exact inference in (’)(DN%]) time for cases of incomplete
grids, missing observations, and variable noise.

A covariance function is a tensor product kernel if it com-
putes covariances which can be written as a separable
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product over dimensions d = 1,...,D. The assumption of
tensor product kernel is quite general as most commonly-
used kernels are of this form; for example, the squared
exponential kernel factorizes as

When the inputs lie on a grid, the kernel decomposes to a
Kronecker product over the kernels of the individual
dimensions [19], [39], [40]. To exploit this structure, we first
describe matrix-vector multiplication across a Kronecker
product, which is an O(N?) operation using standard
matrix-vector multiplication. However, we will show that
with problems of this form, it is possible to attain close to
linear runtime using tensor algebra, which will later be
the key component in our GP-grid method. Using the
Kronecker property (B ® C)vec(X) = vec(CXB '), we have

(&a)p-ve(am(Ba))

where B is a matrix with dimensions N'/P x N“5*3 and
b = vec(B). We can write Eq. (18) as

voe( (vee (vec((@Ad)(ADB)T>>)T), (19)

where we define the operator vec™!(+) as vec ! (vec(A)) = A.
The inner component of Eq. (19) can be written as

ec ( ( § Ad> (ADB)TIN%)

® <§ Ad> vec((ApB)").

(18)

(20)
= I 1
ND
Notice that Eq. (20) is in the same form as Eq. (18). By repeat-
ing DEqs (19)-(20) over all D dimensions, and noting that
(& 4_,I 1)b = b, we see that the original matrix-vector prod-
uct can ge written as

D
(& Ad)b=vec(Ar--(Apa 4B TT). (21
where the bracket notation denotes transpose and reshape, i.e.,
[AB] = reshape((AB) ). Iteratively solving Eq. (21) requires
O(DN D ) because each of D (D <« N) matrix-matrix multi-
D+1
plications requires O(N D) operations, which is much smaller
than the original O(N?). As an interesting side note, the prod-
uct in Eq. (21) can be viewed as a contraction operation in ten-
sor algebra [19]. Per standard practice in large scale
optimization, we never actually write down (or store in mem-
ory) the large kernel matrix (which will cost O(N?) in time and

3. For clarity of the derivation we assume the dimensions are all
equal; however, more generally the dlmensmnahty is Gp x [T Ga,
where G, is the number of elements in dimension d, and which
presents no change to the algorithmic complexity.

memory complexity); instead we treat it as linear operator act-
ing on its vector arguments. Algorithm 2 gives pseudo-code
illustrating Eq. (21).

Algorithm 2: kron_mvprod

> Efficient matrix-vector multiply for
Kronecker matrices

inputs : D matrices [A;...Ap], length-N vector b

outputs: o, where o = <®dD:1 Ag)b

X < b;
ford <+ D to 1 do
Ggq + size(Ay);
X + reshape (x, Gg, N/Gy);
Z +— A ;X > Matrix-tensor product
Z+— 7"
X < vec (Z);
end
o+ X;

> Tensor rotation

O© ® N Ul R W N =

2.2.1 GP-Grid with Spherical Noise

The critical second step is to note that our inversion of inter-
est (K + 021 ~) " is not a Kronecker product, due to the per-
turbation on the main diagonal. Nevertheless, it is possible
to sidestep this problem using the eigendecomposition:
(K+02Iy) 'y =Q(A+2Ix)'QTy. (22)
Importantly, the eigenvector matrix Q will also be a Kro-
necker product made up of the elgenbases of each Kro-
necker block K, such that K = ® 1 Kq. To efficiently
solve Eq. (22), we first perform eigendecompositions of
covariances along the individual dimensions to get [Q, A4].
Next, we calculate Eq. (22) in three steps:

o — kronmvprod( [QI, R Qg] , y), (23)
a— (A+ J?LIN)floz, (24)
o — kronmvprod([Q,...,Qpl,a), (25)

where we efficiently used kron mvprod twice and note that the
matrix A + o2 Iy is easy to invert as it is diagonal.

In summary, we exploited two important realizations:
both the eigendecomposition and matrix-vector product
can be done efficiently using properties of Kronecker prod-
uct. We call this new algorithm “GP-grid”, which allows for
exact GP inference at orders of magnitude lower cost than
the naive GP technique.

2.2.2 Generalizing GP-Grid for an Incomplete Grid and
Variable Noise

The above assumptions of (i) a full grid and (ii) spherical
noise are too simplistic for many applications, and can
cause GP-grid to substantially underfit (this claim will be
substantiated later in the results). First, examples of incom-
plete grids can often occur due to either missing values (e.
g., malfunctioning sensors), or when a region of interest has
an irregular shape (e.g., a segment of an image). Second, the
constant noise assumption is also not valid in many real
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systems as sensor noise can vary between sensors or can be
signal dependent. Other work considers an additional GP to
infer the noise model [25], [41] or uses gradient based maxi-
mum likelihood [24]. These approaches are general but
computationally burdensome and have the potential for
overfitting. In [40] the authors deal with missing observa-
tions by removing their locations from the covariance
matrix and sampling to calculate the posterior. On the other
hand, here we extend GP-grid to exactly and efficiently han-
dle both incomplete grids and variable noise.

We handle both of these enhancements by considering
non-spherical noise, first completing the grid with the
introduction of dummy observations in the missing loca-
tions. The GP formulation allows us to introduce these
variables without corrupting the GP inference. We view
these incomplete data as measured data with high noise
Yaummy ~ N (£, € '1,), where ¢ — 0, and w is the number
of dummy variables. Using Eqgs. (1) and (2), and reorder-
ing the observation vector so that the w dummy variables

are at the end of the observation vector y =[y,,y.]",
(N =n+w), we get
Ky = K]MN(KN + D)71Y7 (26)
S, =Ky — Kunv(Ky + D) 'K (27)
Notice that the D matrix is no longer o1, but
\% 0
D= |: 0 E—IIw:|7 (28)
where V is a diagonal matrix corresponding to the noise of
the true observations, [V],, = o7. The introduction here of

[V],, = o7 (as opposed to a multiple of the identity) allows us
to address the desire for variable noise with this same
framework.

First we show that the introduction of the dummy varia-
bles does not affect the results of the GP analysis. The analy-
sis will pertain to Eq. (26); however, the same approach can
be used for Eq. (27). Rewriting Eq. (26), where we reordered
the dummy observation to be at the end, we get

Kmu

w, = K]\[’IL - Y.
* Kﬂfw Kw—}—eil:[w Yu !

Using the block matrix inversion lemma for inverting a
matrix [AB; CE], we get

K,+V

(A—BEO)™" —A'B(E—-CAT'B)™* (30)
—E'C(A-BE'C)"" (E-CA'B)"! ’
where A=K, +V, B=K,,, C=K, B and E=K,+

¢ 'T,,. We can then take the limit by writing the terms in Eq.
(30) as:

1 e—0

B! (eK +1,) ' o, (31)
(A-BE"'C) = A (32)
—E'C(A - BE’]C)_l o, (33)
(E—cA'B) Lo, (34)
—A'B(E-cA B o, (35)

Putting the terms together, we rewrite Eq. (29) as

Ky = K]\IIL(KWL + V)_1Yn7 (36)

which is the exact GP over the non-dummy variables. Thus we
can introduce these dummy variables to enable the Kronecker
method without corrupting the result. To efficiently solve
Eq. (26), we will use the preconditioned conjugate gradient
(PCG) method. We iteratively solve

C'(Ky+D)Cx=Cy, (37)

where the preconditioner matrix C = D 2. Note that the pre-
conditioner masks out the dummy locations, in addition to the
usual standardization of CG.

The PCG algorithm can be efficiently calculated using
the kron_mvprod algorithm (Algorlthm 2). Using PCG,
Eq. (37) can be computed in O(QN D ), where @ is the
number of PCG iterations, and in practice is usually trivi-
ally small compared to N. PCG also allows elimination of
the memory burden.

We have thus dealt with the posterior, but in order to
learn the hyperparameters we also need to efficiently calcu-
late the log(det(Ky + D)) term in the marginal likelihood
(Eq. (3)). Since the complexity of solving the logdet term is
O(N?), we instead approximate it as

log(det(Kx + D)) ~ log(det(Ky + y(D)Iy)), (38)

where y(D) is a scalar function of the variable noise matrix D.
With this approximation, we can easily do the logdet and
derivative calculations via the Kronecker mgendecomposﬁmn
(as in Eq. (22)), reducing the complexity again to O(N D ).
For the approximation we chose to use the geometrlc mean of
the elements in D, formally y(D) = (HL 1D”) . Approximat-
ing this variable noise with spherical noise represents destroy-
ing the eccentricity of that ellipsoid while preserving its
volume. Intuitively, this approximation will be reasonable as
long as the eccentricity of D is not aligned with K (since the
addition represents a convolution of these two ellipsoids).
Because the diagonal structure of D has axis aligned eccentric-
ity, and because the eccentricity of Ky is always quite off-axis
(kernel stationarity implies that the marginal in each axis is
identical, namely the kernel variance o?), we should suffer a
small approximation penalty for this logdet calculation when
D has a reasonable range of values, as indeed we observe
empirically. This empirical investigation also showed that this
approximation preserved the robustness of the algorithm to
initial conditions.

3 RESULTS

Here we will compare the three methods for scalable GP
inference, namely: PPGPR (Section 2.1.1), Additive-LA (Sec-
tion 2.1.2), and GP-grid (Section 2.2.2) (all shown in blue), to
a naive Full-GP (black), other GP approaches (reds), and
other relevant machine learning methods (green). We will
examine both the runtimes and accuracies of the methods,
and perform an efficiency analysis.

3.1 Runtime Complexity
We begin by comparing runtime performance (in seconds),
taking into account both learning and prediction.
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3.1.1 PPGPR-Greedy

Here we will compare the runtime performance of PPGPR
to other GP based methods for multidimensional regression.
In each experiment, we used M = 1,000 points. If a particu-
lar algorithm has a stochastic component to it (e.g., if it
involves MCMC) its performance will be averaged over 10
runs. Every experiment was composed of training (.e.,
smoothing and hyperparameter learning given {X,y}) and
testing phases.

We test the following algorithms (with the following
names): the full naive GP regression implementation (Full-
GP), additive models using VBEM inference (Additive-VB)
and MCMC inference (Additive-MCMCO), projected additive
models using greedy projection pursuit of Section 2.1.1
(PPGPR-Greedy) and a variation using MCMC (PPGPR-
MCMC). Finally, for the sparse GP regression method we
used the sparse pseudo-input Gaussian process (SPGP) [42].
For SPGP, to be conservative, we did not learn the pseudo
inputs (which can potentially greatly increase the algorithm
complexity and runtime) but rather used a random subset
of the inputs as the active set. For both the SPGP and the
Full GP, we used the GPML Matlab Code version 3.1 [43].
Also note that, for Additive-VB and PPGPR-Greedy we
have set the number of outer loop iterations (the number of
VBEM iterations for the former, and the number of projec-
tions for the latter) to be at maximum 10 for all N. Increas-
ing this number increased the cost with no meaningful
change to accuracy, so this is a reasonable choice. All algo-
rithms were run both as a single thread and using a parallel
multicore, but since SPGP and Full GP do not offer efficient
implementation of the parallel schemes, their results were
the same for both cases.*

We used synthetic data generated by:

D
vi=> Falxia)+e i=1,...,N, (39)
d=1
ff]() ~ glp(o;kd(xd?X:ﬁ [L 1])) d=1,...,D, (40)

e ~N(0,0.01),

where kq(xp,x; [1,1]) is given by the Matérn(7/2) kernel with
unit lengthscale and amplitude [12]. We used D =8 dimen-
sions, and collected runtimes for a set of values for N ranging
from 1,000 to 50,000.

Fig. 2 illustrates the significant computational savings
attained by exploiting the structure of the additive kernel,
with the PPGPR method of Section 2.1.1 (shown in blue)
having minimal runtime compared to other GP methods.
As expected, the log-log slope of the Full-GP is close to three
(2.52) due to its cubic complexity, and all the approximation
algorithms have runtimes that scale linearly (0.97, 0.62, 1.01,
0.98, 0.97) with the input size. We can also see that parallel
processing of the state-space model matrices offers further
improvement in scaling. These results serve only as a rough
estimate, because the performance can depend on the

4. When discussing parallel schemes we refer to only the learning
stage. As in all GP frameworks, parallelism can always be used for pre-
diction, since we are only interested in the predictive marginals per test
point. However, this does not have any noticeable effect on the runtime
and is thus unimportant to the comparison.

—— PPGPR-Greedy
—— PPGPR-MCMC
—— Additive-VB
—— Additive-MCMC
—SPGP
——Full-GP

Fig. 2. A comparison of runtimes for efficient Bayesian additive GP
regression, with D = 8. The algorithms ran on a Linux server, in a multi-
core parallel scheme using eight processors (solid lines). For compari-
son, we also added the runtime of PPGPR-Greedy using a single thread
(dash lines). At N = 7,168, we added an overlay of the runtime results
for the pumadyn8-nm data set (described in Section 3.2.1), showing that
this figure is representative of runtime in real data sets.

chosen algorithm parameters, such as: number of outer loop
iterations in the Additive-VB, number of projections in
PPGPR-Greedy, or number of samples in the MCMC meth-
ods. This runtime/accuracy consideration should be used
when comparing the efficiency of the algorithms.

Additionally, runtime on a modern computer is by no
means a perfect measure of algorithmic complexity. None-
theless, we will see that the results of Fig. 2 agree with all the
results from the real data sets. For example, in Fig. 2 we over-
lay the results of one of the real data sets, and one sees a close
correspondence between synthetic and real data. Thus, these
and subsequent results are highly representative and assert
the primary point of this section: our main contribution—
PPGPR (the greedy scheme in blue)—has roughly linear run-
time, versus the cubic scaling of the naive Full-GP.

3.1.2 Additive-LA

Here we will compare the runtime performance of our
Additive-Laplace method (Section 2.1.2) to other com-
mon methods for multidimensional binary classification.
As in Section 3.1.1, we used M = 1,000 points and the
Matérn(7/2) covariance function.

We used synthetic data generated by:

y; ~ Bernoulli(p;)

p() = 9( 200)

£a(-) ~ GP(0; ka(xa,X;04))

where g(-) is the logistic link function.

Within the GP framework, we compared generalized
additive GP Regression from Section 2.1.2 (Additive-LA),
standard GP classification with Laplace’s approximation
(Full-GP) [12], the sparse GP methods of informative vector
machine (IVM) [34], and fully independent conditional (FIC)
[11]. For completeness, we also include support vector

i=1,...,N,

d=1,...,D, (41)
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Fig. 3. This figure shows the runtime of the classification algorithms for
the synthetic data set with D = 8. For the learning stage we used 50 iter-
ations, and we did prediction on 1,000 points. The log-log slopes of the

algorithms are: Full-GP = 2.75, Additive-LA =1.07, FIC =1.53, IVM
=0.80, SVM = 2.16.

machines (SVM) [44].” For the Full-GP we used GPML Mat-
lab Code version 3.1 [43]; for FIC we used the GPstuff Matlab
package [46]; for SVM we used LIBSVM [47]; and for IVM
we used the implementation given in [34]. We tested the
algorithms on the synthetic data from the model above using
eight dimensions while varying the number of inputs NV =
[2; 4; 6; 8; 10; 20; 30; 40; 50] x 10°. We stopped running the
Full-GP at N = 10,000 as it took too long to finish. A com-
parison of the runtime results is shown in Fig. 3. To be consis-
tent, we used exactly 25 iterations for all algorithms during
the learning stage. As can be seen from the figure, Additive-
LA offers excellent scaling for large input sizes. The only
algorithm that offers faster runtime than the Additive-LA
is IVM. This can be expected as the IVM only uses the
information in the active set. Our algorithm, on the other
hand, makes use of all the data, and is thus able to achieve
a more accurate estimation, as the results in Section 3.2.2
demonstrate.

3.1.3 GP-Grid

Here we will compare the runtime performance of the GP-
grid method from Section 2.2.2 to both the naive Full-GP
regression method, and GP-grid with spherical noise (GP-
grid spherical) from Section 2.2.1. We conduct the compari-
son using a segment of real image data, where we mask out
part of the picture. At each iteration the size of the window is
increased, thereby increasing both the number of input loca-
tions n (pixels we did not mask out) and dummy locations w
(masked pixels). For the naive Full-GP we consider only the
input locations (without the dummy locations), but for the
GP-grid algorithms we used the dummy locations to com-
plete the grid, N = n + w. Fig. 4 illustrates the time complex-
ity of the three algorithms as a function of input size n
(pixels). The time complexity presented for all algorithms is
for a single calculation of the negative log marginal likeli-
hood (NLML) and its derivatives (ANLML), which are the

5. To calculate the MNLL, we used the probabilistic predictions
from the SVM using cross-validation and the cross-entropy metric [45].

\ — GP—grid
10° | = = = GP-grid spherical
—Full-GP
=
£
< 0
= 10"
]
o
102 Jammm=m"
10*

Input Size (N)

Fig. 4. Runtime complexity of naive Full-GP, GP-grid, and GP-grid
spherical. The runtime illustrated is for a single calculation of the nega-
tive log marginal likelihood and its derivatives (ANLML). The ratio of input
size to the complete grid size (n/N) is 0.7. The slope for the naive Full-
GP is 2.9, for GP-grid is 1.1, and for GP-grid spherical is 1.0 (based on
the last eight points). This empirically verifies the improvement in
scaling.

needed calculations in GP learning (and which carry the
complexity of the entire GP regression algorithm). Both the
naive Full-GP and GP-grid spherical methods calculate
the mentioned values for four parameters including a
learned global noise parameter, the two lengthscales, and
the signal variance. GP-grid learns just three parameters (but
accounts for variable noise). In GP-grid, the noise model is:

0% = 0.24951; + 15.9858, (42)

where at location 1, af is the noise variance and I; is the mea-
sured image intensity. This model was chosen as a sensible
model of known camera properties [48]. In all cases we used
the Matern(5/2) covariance function. As can be seen in Fig. 4,
GP-grid scales just superlinearly with the input size, while
Full-GP is cubic. Furthermore, the introduction of the vari-
able noise and dummy variables does increase the computa-
tional time of the GP-grid compared to GP-grid spherical;
however, it does not hurt the scalability of the algorithm (and
we will show that it has significant performance implications
that easily warrant this increase).

3.2 Performance
Next, we extend the comparison to real data sets, which will
allow thorough accuracy comparisons.

3.2.1 PPGPR-Greedy

We use two standard performance measures on the test set:
normalized mean square error (NMSE) and mean negative
log probability (MNLP):

s - S0 — )"
N, N ()
mﬂﬂﬂ>:§%7§: Qﬁﬁ%zé%ill~+bgv4@-%bg2n,

* =1
where u, = E(f,|X,y, X.,0), v. = V(f,|X,y, X.,0), and 5 is
the training-set average target value. These measures have

)
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Fig. 5. These figures offer a comparison between the different GP meth-
ods discussed in the text, taking into account both speedup and accu-
racy. For comparison we used several known data sets from the
literature and ran the algorithms on a multicore (eight-core) computer.
The top figure illustrates the speedup of the approximation algorithms
runtimes with respect to the Full-GP (exact inference) runtime. The bot-
tom two figures show two metrics for calculating regression accuracy.

been chosen to be consistent with those commonly used in the
sparse GP regression literature.

We test seven well-known data sets: synth-8D
(IV = 8,000 synthetic data from Section 3.1.1). The pumadyn
family is a robotic arm data set, and consists of three data
sets: pumadyn8-fm1000 (IV =1,000, fairly linear data
with D = 8 dimensions), pumadyn8-fm7168 (N = 7,168,
fairly linear data with D = 8 dimensions), pumadyn32-nm
(N = 7,168, highly nonlinear data with D = 32). Eleva-
tors data set consists of the current state of the f16 aircraft
(N = 8,752, 17-dimensional) [49], and kin40k is a highly
nonlinear data set (N = 10,000, eight-dimensional).® Fig. 5
demonstrates the central analysis of this section. In each
subplot, we calculate speedup (as an inverse multiple of the
Full-GP runtime), MNLP, and NMSE across all seven data
sets and six algorithmic options. We compared the same
methods as in Section 3.1.1. The top subplot in Fig. 5 indi-
cates the substantial speedups offered by all algorithms
over the full GP, with the exception only of the N = 1,000
data set (pumadyn8-fm1000; this is not surprising given
small N). Further, our PPGPR-Greedy achieves the largest
speedup across all data sets, and in most cases the error
(MNLP and NMSE in the second and third subplots) is the
same as competing methods. We also see that the simple
additive models almost always underperform in accuracy,
which is as expected given their limited expressivity; thus
our PPGPR innovation of Section 2.1.2 is well warranted.
The one exception where Additive-VB outperforms
PPGPR-Greedy is the synthetic data set. However, this is
expected as we used an additive model to generate data
and the greedy nature of PPGPR-Greedy causes it to under-
perform. In the final two data sets, we see that SPGP and
the full GP have better accuracy. This may be explained as

6. Pumadyn and the synthetically generated Kin40k data sets are
from the DELVE archive. Elevators from KEEL archive.

PPGPR-Greedy
PPGPR-MCMC
Additive-VB
Additive-MCMC
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Fig. 6. The two fundamental desiderata of our algorithms are accuracy
and speed. Here we plot error versus runtime to quantify the tradeoff
between these two objectives using the notion of Pareto efficiency.
Every algorithm is represented using a unique marker and with a color
scheme chosen according to the data sets. For each data set, the Pareto
efficient frontier is shown as a color line passing through the efficient
algorithms for that data set.

both these data sets are highly nonlinear, making the addi-
tive assumption inaccurate.

PPGPR-Greedy achieves the best runtimes but at times
with an accuracy cost. Thus we want to quantify the notion
of a runtime-accuracy tradeoff. We plot all data sets and
algorithms in a runtime versus error plot (Fig. 6), and we
use the economics concept of Pareto efficiency: efficient
points in the runtime versus error plot represent algorithms
with minimum runtime for a given error rate. Pareto ineffi-
cient algorithms are then those points that are unambigu-
ously inferior. The efficient frontier is the convex hull of all
{runtime, error} points (algorithms) for a given data set.
This will give us a clear picture of which algorithms are
optimal choices across a range of data sets. Fig. 6 details
this, with one efficient frontier for each data set (a given
color). Each algorithm has a given marker type. This imme-
diately shows what one would expect: the full GP imple-
mentation is typically most accurate, but only if one is
willing to invest substantial runtime. Secondly, most often
the PPGPR-Greedy is the other efficient choice for a sub-
stantially reduced runtime, albeit higher error.

Three algorithms stand out in their overall efficiency:
PPGPR-Greedy (efficient in all seven data sets), SPGP (effi-
cient in 4), and full GP (efficient in six data sets). Unsurpris-
ingly, the additive model is typically inferior to the more
expressive PPGPR model. The PPGPR-Greedy is the only
efficient algorithm for all data sets as it achieves the fastest
runtime. However, more interestingly, it also achieves very
good accuracy results making most other algorithms ineffi-
cient. Of course, any trivial algorithm could achieve effi-
ciency by having minimal runtime and arbitrary error, but
the data demonstrates that this is not the case with our algo-
rithms: the PPGPR-Greedy error in almost all data sets is
competitive or better than all alternatives. As can be seen by
the results of this section, PPGPR-Greedy is a bridge
between the fast and overly simplified additive model and
the slower more flexible Full-GP. Its efficiency to a wide
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TABLE 1
Performance Comparison of Efficient Additive GP Classification
Algorithms with Commonly-Used Classification Techniques on
Larger Data Sets

Algorithm | Error Rate | MNLL |  Runtime (s)

Synthetic Additive Data (N = 4000, M = 1000, D = 8)

Additive-LA 0.28 0.59 161
Full-GP 0.60 0.74 2244
FIC - 50 0.28 1.06 525
FIC - 400 0.45 1.36 850
IVM - 50 0.28 0.69 65.1
SVM 0.29 0.58 345
Magic Gamma Telescope (N = 15216, M = 3804, D = 10)
Additive-LA 0.14 0.34 2345
Full-GP NA NA NA
FIC - 50 0.14 0.36 3340
FIC - 1522 0.14 0.36 7331
IVM - 50 0.66 0.69 118
SVM 0.12 0.30 8070
IJCNN (N = 49990, M = 91701, D = 13)
Additive-LA 0.05 0.16 14505
Full-GP NA NA NA
FIC - 50 0.05 1.18 4390
FIC - 4999 0.08 0.82 16728
IVM - 50 0.09 0.69 369
SVM 0.02 0.05 22170

range of data sets stems mainly from its ability to capture
more degrees of freedom and is considerably faster to train
than SPGP. However, its performance will depend on the
structure of the data set, and its accuracy will degrade for
highly nonlinear data sets with high dimensionality (e.g.,
kin40k and pumadyn32-nm). Thus, we believe PPGPR-
greedy to be most appropriate in cases of moderate nonline-
arity and large data size.

3.2.2 Additive-LA

In this section we will compare the generalized additive-GP
from Section 2.1.2 to other kernel classifiers (both Bayesian
and non-Bayesian). We use common performance metrics
from the sparse GP classification literature, enabling
straightforward comparison with other experimental
results. In this paper we will focus on the task of binary clas-
sification; however in principle, extensions to tasks such as
multi-class classification and Poisson regression can be per-
formed without affecting asymptotic complexity. For per-
formance measures we use algorithm runtime (in seconds),
test error rate, and mean negative log-likelihood (MNLL):

#(incorrect classifications)

E Rate = 43
rror ate #(test cases) ’ (43)

1 &
MNLL = > [yi log pi + (1 —y)log(1 = p1)]. (44

* =1

For both the test error rate and MNLL measures lower
values indicate better performance.

We tested the classification algorithms from the previous
section on the synthetic data and on two additional popular
data sets: Magic Gamma Telescope [49], and IJCNN [50].

1.5¢

Additive-LA
Full-GP
FIC-50
FIC 10%
IVM 50
SVM

*

Aoxpxeo

MNLL
X

synthetic

0.5F

10° 10° 10* 10°
Runtime (s)

Fig. 7. As in Fig. 6, here we plot error (MNLL) versus runtime to quantify
the tradeoff between these two objectives using Pareto efficiency.

We again only allowed 25 iterations in the learning stage.
For sparse methods we tested two activeset sizes: 50, and
0.1N. Table 1 summarizes the classification results across all
algorithms and data sets. Each column gives the classifica-
tion error rate, MNLL, and runtime.

Similar to Section 3.2.1, we quantify the notion of a run-
time-accuracy tradeoff using the Pareto efficiency in Fig. 7.
As opposed to the regression case, here the Full-GP is never
efficient, while the Additive-LA is highly efficient. The three
algorithms that stand out in their overall efficiency are: IVM-
50 (efficient in all three data sets), Additive-LA (efficient
in 2), and SVM (efficient in 3). The IVM has the best runtime
performance across all data sets; however, it underperforms
substantially compared to our Additive-LA method. Fur-
thermore, while the SVM is often efficient, it carries signifi-
cant runtime burden which may not justify the minor
improvement in accuracy. These results show that the Addi-
tive method should be considered as a competitive balance
of speed and accuracy. Though the results are not as compel-
ling as in the regression case, the Additive-LA is perhaps the
most viable choice when a Bayesian solution is needed.

32.3 GP-Grid

Application to image data. In this section we present the per-
formance of GP-grid for real image data interpolation, and
the improvement compared to commonly used image inter-
polation methods. As a reminder, GP-grid is an exact GP
algorithm so the previous runtime-accuracy tradeoff com-
parison is not needed (since our method is always superior
to Full-GP). Hence here we briefly present the application to
images to show that it is a competitive method against other
image processing methods. We use three novelties from Sec-
tion 2.2.2 to test this method: the use of GP itself (enabled by
GP-grid), the ability of GP to accept segmented data (see
Egs. (26-27), and the ability of GP to accept a known noise
model (Eq. (42)).

For comparison, we used real images acquired by a CCD
imaging array,” where over a thousand pictures of the same
four scenes were taken. We manually segmented the images

7. Kodak KAI-4022 4-Mega pixel.
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Fig. 8. An example of the face image separated to an object segment
(Fig. 8a) and a background segment (Fig. 8b), which are used for inter-
polation comparison along with their empirical noise versus intensity

model (Fig. 8c). The red line corresponds to the camera specific linear
noise model in Eq. (42).

into two exclusive segments, one of the object and one of the
background, an example of which is shown in Fig. 8. In all
pictures the empirical noise model fit reasonably well to the
camera-specific noise model used in Eq. (42) (line shown in
red). To estimate the true image, we averaged over the major-
ity of the pictures, leaving a small subset for testing. In order
to test interpolation performance, we interpolated the entire
image using only a subset of the image (down-sampled by
1/4, a factor of two in both the vertical and horizontal direc-
tions). All images are 200 x 200 pixels, hence, even their
down-sampled version will be impractical for Full-GP. The
interpolated images were then compared to their corre-
sponding averaged images for accuracy analysis. For an
accuracy criterion, we compared the standardized mean
square error (SMSE) between the interpolated images and
the average images, as defined in [12]. Note that in all the
comparisons we intentionally changed the test conditions so
they would be most favorable to non-GP methods: we dis-
carded the pixels by the border pixels (five pixels width),
and allowed non-GP methods access to the entire image.
These choices are conservative as the non-GP methods fail
particularly badly at the edges, and so we discarded those
results to clarify that these improvements have nothing to do
with the failure modes of other methods. We chose to com-
pare GP-grid with the common interpolation algorithms:
bilinear, bicubic, bicubic-spline (Bic-sp) and NEDI [51].
Although this is by no means an exhaustive comparison,
it allows for a benchmark for comparison with GP
performance.

We ran GP-grid using both the Matérn(1/2) and Matérn
(5/2) covariance functions, and learned the hyperpara-
meters: lengthscales (I1,12), signal variance ((7?), and noise
variance (02) [12]. For brevity, we will use GP-grid(-) for
GP-grid Matérn(), and we will add “sph” when we used
GP-grid to learn the spherical noise variance hyperpara-
meter o2 (Section 2.2.1, as opposed to Section 2.2.2). We
tested the algorithms on images such as the one from Fig. 8
when taken as a whole (W), object segment (O), and back-
ground segment (B). As a reference, we also added GP-grid
(1/2) spherical and GP-grid(5/2) spherical. As Table 2
shows, the GP-grid algorithm with the camera specific noise
model improved performance in all images compared with
GP-grid spherical and best overall interpolation results of
all the algorithms tested. The improvement over GP-grid
spherical is perhaps most evident in the moose object image,
where both the GP-grid spherical algorithms severely
underfit the results. These improvements may be in part

due to the fact that the GP-grid is the only algorithm with
knowledge of a noise model (Eq. (42)). The GP framework is
a natural choice for enabling this noise model, and its use is
critically enabled by our GP-grid method (which is the point
of this section).

Application to temperature data. Finally, to show the
extension of our GP-grid algorithm to higher dimensional
data, we show a spatio-temporal example (D =3) of
monthly land surface temperatures in North America.®
Fig. 9 (left column) shows monthly temperature readings
from 1950. We used temperature readings from nine
months (excluding April, August, and December) as our
training set, corresponding to n = 24,939 data points on an
irregular grid. This data comprises 44 percent of the full
66 x 71 x 12 grid. and is irregular both in time (held-out
test data) and space (incomplete land coverage). Note that
this data size is already well beyond the range of a Full-GP
(c.f., Fig. 4), and the incomplete grid structure precludes
the use of GP-grid spherical (Section 2.2.1). Hence, our GP-
grid method (Section 2.2.2) is a critical enabler of this
application. We chose the Matérn(5/2) kernel and learned
the hyperparameters (including global noise o,,). The GP-
grid inference results are shown the second column for the
held-out test set of April, August and December, with their
corresponding 95 percent confidence intervals (two stan-
dard deviations of the posterior are plotted) in the third
column. Note the higher posterior variance in December
(which had only past data, not past and future as in April
and August), indicating that this data has significant tem-
poral structure in addition to its spatial structure. Our GP-
grid required only 4.6 seconds for inference and 5 minutes
for learning, in a data set of roughly 25 thousand points
where other GP methods are intractable. The critical point
of these results is that our computational advances enable
GP to be applied in a new application domain where large
data sets are the norm.

4 DIScuSSION AND CONCLUSION

Gaussian processes are perhaps the most popular nonpara-
metric Bayesian method in machine learning, but their
adoption across other fields—and notably in application
domains—has been limited by their burdensome scaling
properties. While important sparsification work has some-
what addressed this scalability issue, the problem is by no
means closed. Here we focused on structured GP models,
making nontrivial advances to existing state-space and lat-
tice-input GP methods in order to extend structured GP
techniques into the multidimensional input domain. Our
results (Section 3) illustrate across a range of data and differ-
ent algorithms that structured models are most often supe-
rior to the state of the art sparse methods (SPGP).

Our PPGPR-greedy algorithm (Section 2.1.1) combines
the computational efficiency of additive GP models (Sec-
tion 2.1) with the expressivity of a multidimensional cou-
pled model. The result (Section 3.2.1) is an algorithm that
has a superior runtime-accuracy tradeoff than competing
algorithms. While its accuracy was often slightly lower than

8. Data from the Joint Institute for the study of Atmosphere and
Ocean. (http:/ /jisao.washington.edu/data/satmergedarctic).
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TABLE 2
Comparison of Standardized MSE Interpolation Results for Images with Additive Variable Gaussian Noise
Sphere Moose Cone Face

Alg O | B | W O | B | W O | B | W O | B | W

GP-grid(1/2) 039 [ 040 [ 069 | 1.08 [ 0.35 | 0.86 | 056 | 0.39 | 1.74 | 1.28 | 0.88 | 2.67
GP-grid(5/2) 0.33 | 0.15 | 0.73 | 1.10 | 0.08 | 091 | 0.52 | 0.17 | 1.24 | 1.10 | 0.70 | 1.98
GP-grid(1/2) sph 040 | 030 | 0.71 | 298 | 0.11 | 1.54 | 0.84 | 0.19 | 3.81 | 1.30 | 0.69 | 3.02
GP-grid(5/2) sph 038 | 0.23 | 0.92 | 437 | 0.08 | 3.05 | 333 | 0.19 | 499 | 1.73 | 0.64 | 2.97
Blinear 056 | 056 | 0.68 | 1.12 | 056 | 097 | 0.64 | 0.61 | 1.63 | 1.27 | 1.06 | 2.60
Bicubic 059 | 061 | 0.83 | 1.01 | 0.57 | 091 | 0.69 | 0.67 | 2.05 | 1.32 | 1.03 | 2.69
Bic-sp 0.74 | 0.76 | 0.80 | 1.16 | 0.76 | 1.06 | 0.80 | 0.82 | 1.24 | 1.23 | 1.12 | 2.04
NEDI 056 | 053 | 0.74 | 1.11 | 052 | 097 | 0.72 | 0.59 | 1.97 | 1.61 | 1.21 | 3.86

We tested each image when taken as a whole (W), object segment (O), and background segment (B).

a naive Full-GP, the linear scaling properties of PPGPR
mean that it can be efficiently used across a much broader
range of data sizes and applications.

Of course, in some cases the researcher will prefer the
SPGP method over PPGPR-Greedy. We see this as an inher-
ent fact in approximation techniques: various methods will
be more appropriate in different settings. Our results (Sec-
tion 3) investigated this runtime-accuracy tradeoff, using
both metrics on real data sets and meta-analyses of Pareto
efficiency. These results thus enable the researcher to make
an informed choice about a GP method for a given data size,
data complexity, and available computational resource.

To the point of runtime-accuracy tradeoff, there are
sometimes opportunities for great scaling advantages with
no accuracy tradeoff whatsoever, as we demonstrated with
the case of multiplicative kernel structure (Section 2.2.2).
Notably, this GP-grid method opens up an entirely new set
of applications for GP, such as image and video processing,
or financial engineering applications such as implied vola-
tility surfaces. Our future work is pursuing these applica-
tion domains.

As alast computational point, as growth in computational
speed is increasingly driven by parallelism, it will become
increasingly important to use GP schemes that naturally
incorporate parallel processing, to efficiently deal with the

Real Predicted Confidence (95%)
Jan-Mar|EF B W
=S T
Apr
.. g 3 N
May-Jul - w w
Aug | ™ | S -
o, . — =
Sep-Nov| Qg @
pec | T | W
T — T
°C -40 -30 -20 -10 10 20 30

Fig. 9. Average monthly land surface temperatures in North America in
1950. The left column presents the real measurements. Small images
(nine months) were used as a training set, and April, August, and
December were used as a held-out test set. The middle and right col-
umns show the corresponding GP-grid posterior mean and 95 percent
confidence intervals for April, August, and December.

rapid growth of future data sets. Our PPGPR-Greedy
method stands out in this regard versus both the naive full
GP and SPGP, and the results of Section 3 reiterate this fact.
Understanding how our existing nonparametric models
can scale and be used in real data, and how these models
connect to other areas of statistics, will increase the utility of
machine learning algorithms in general. This is perhaps
most important with Gaussian processes, which promise a
wide range of useful applications. The code is available
at https://mloss.org/software/view/501/ and https://
mloss.org/software/view/503/.
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