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Abstract: Image interpolation and denoising are important techniques in
image processing. These methods are inherent to digital image acquisition
as most digital cameras are composed of a 2D grid of heterogeneous imag-
ing sensors. Current polarization imaging employ four different pixelated
polarization filters, commonly referred to as division of focal plane polariza-
tion sensors. The sensors capture only partial informationof the true scene,
leading to a loss of spatial resolution as well as inaccuracyof the captured
polarization information. Interpolation is a standard technique to recover the
missing information and increase the accuracy of the captured polarization
information.
Here we focus specifically on Gaussian process regression asa way to
perform a statistical image interpolation, where estimates of sensor noise
are used to improve the accuracy of the estimated pixel information. We
further exploit the inherent grid structure of this data to create a fast exact
algorithm that operates inO

(

N3/2
)

(vs. the naiveO
(

N3
)

), thus making the
Gaussian process method computationally tractable for image data. This
modeling advance and the enabling computational advance combine to
produce significant improvements over previously published interpolation
methods for polarimeters, which is most pronounced in casesof low
signal-to-noise ratio (SNR). We provide the comprehensivemathematical
model as well as experimental results of the GP interpolation performance
for division of focal plane polarimeter.
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1. Introduction

Solid state imaging sensors, namely CMOS and CCD cameras, capture two of the three fun-
damental properties of light: intensity and color. The third property of light, polarization, has
been ignored by CMOS and CCD sensor used for daily photography [1, 2, 3, 4]. However, In
nature, many species are capable of sensing polarization properties of light in addition to in-
tensity and color. The visual system in these species combines photoreceptors and specialized
optics capable of filtering the polarization properties of the light field. Recent development in
nanofabrication and nano-photonics has enabled the realization of compact and high resolu-
tion polarization sensors. These sensors, known as division of focal plane polarimeters (DoFP),
monolithically integrate pixelated metallic nanowire filters, acting as polarization filters, with
an array of imaging elements [5]. One of the main advantages of division-of-focal-planesensors
compared to division-of-time sensors is the capability of capturing polarization information at
every frame. The polarization information captured by thisclass of sensors can be used to ex-
tract various parameters from an imaged scene, such as microscopy for tumor margin detection
[6], 3-D shape reconstruction from a single image [7], underwater imaging [8], material classi-
fication [9], and cancer diagnosis [10].

The idea of monolithically integrating optical elements with an array of photo sensitive ele-
ments is similar to today’s color sensors, where a Bayer color filter is integrated with an array of
CMOS/CCD pixels. The monolithic integration of optics and imaging elements have allowed
for realization of compact color imaging sensors. Since pixelated color filters are placed on the
imaging plane, spatial resolution is lost up to 4 times for the red and blue channel and 2 times
for the green channel. Interpolation algorithms for color image sensors have been constantly
improving over the last three and half decades, allowing forimprovements in color replication
accuracy and recovery of the lost spatial resolution [11, 12]. An important reason for the wide
acceptance of color imaging technologies is the utilization of interpolation algorithms. Since
pixelated color filters are placed on the imaging plane, eachsensor only observes partial infor-
mation (one color), and thus it is standard practice to interpolate missing components across
the sensors. Cameras using division of focal plane polarization sensors utilize four pixelated
polarization filters, whose transmission axis is offset by 45 degree from each other (see Fig. 1).
Hence, each pixel represents only 1/4 of the linear polarization information, severely lowering
the resolution of the image and the accuracy of the reconstructed polarization information.1 In-
terpolation techniques allow to estimate the missing pixelorientations across the imaging array,
thereby improving both the accuracy of polarization information and mitigate the loss of spatial
resolution.

1Although the four pixels are spatially next to each other, their instantaneous field of view is different, resulting in
different intensities. The pixels intensities are used to reconstruct the polarization information, such as Stokes vector,
angle and degree of linear polarization.



Fig. 1. Division of focal plane polarization sensors on the imaging plane. Each pixel cap-
tures only 1/4 of the polarization information. Interpolation is neededfor recovering the
full camera resolution.

Similar problems were encountered in color imaging sensors, when the Bayer pattern for
pixelated color filters was introduced in the 1970s [13]. In order to recover the loss of spa-
tial resolution in color sensors and improve the accuracy ofthe captured color information,
various image interpolation algorithms have been developed in the last 30 years. For DoFP,
the common use is of conventional image interpolation algorithms such as bilinear, bicubic,
and bicubic-spline, which are based on space-invariant non-adaptive linear filters [14, 15, 16].
Frequency domain filtering was introduced for band limited images and total elimination of
the reconstruction error was achieved [17]. More advanced algorithms use adaptive algorithms,
such as the new edge-directed interpolation (NEDI) [18], utilize the multi-frame information,
such as [19]. Recently, there has been a growing interest in the use of GP regression for interpo-
lation and denoising of image data for color sensors [20, 21]. GP is a Bayesian nonparametric
statistical method that is a reasonable model for natural image sources [18], and fits well the
DoFP interpolation setting by accounting for heteroscedastic noise and missing data, as we will
discuss next.

Whereas conceptually attractive, exact GP regression suffers fromO(N3) runtime for data
sizeN, making it intractable for image data (N is the number of pixels which is often on the
order of millions for standard cameras). Many authors have studied reductions in complexity
via approximation methods, such as simpler models like kernel convolution [22, 23], moving
averages [24], or fixed numbers of basis functions [25]. A significant amount of research has
also gone into sparse approximations, including covariance tapering [26, 27], conditional in-
dependence to inducing inputs [28, 29], sparse spectrum [30], or a Gaussian Markov random
field approximation [31]. While promising, these methods can have significant approximation
penalties [28, 32]. A smaller number of works investigate reduction in complexity by exploiting
special structure in the data, which avoids the accuracy/efficiency tradeoff at the cost of gener-
ality. Examples of such problems are: equidistant univariate input data where the fast Fourier
transform can be used (e.g., [33]); additive models with efficient message passing routines (e.g.,
[34, 35, 36]); and multiplicative kernels with multidimensional grid input [36], as we discuss
here.

Image data is composed of multiple pixels that lie on a two dimensional grid. The mul-
tidimensional grid input data induces exploitable algorithmic structures for GP models with
multiplicative kernels [36].2 We show in Sec. 2 that these conditions, along with the assump-
tion of homogenous noise, admit an efficient algorithm, we named GP-grid, that can be used to
significantly lower the computational cost while still achieving high accuracy.

2GP models with multiplicative kernels and multidimensional grid inputs are constrained to have (i) covariance
structure that separates multiplicatively across itsD inputs (see Section 2); and (ii) a restricted input space: input points
x ∈ X can only lie on a multidimensional gridX = X 1 ×X 2 × . . .×X D ⊂ R

D, whereX d = {xd
1,x

d
2, . . . ,x

d
|Xd |

} is
the input space of dimensiond, 1≤ d ≤ D.



However, there are two important cases where two key assumptions break down. First, the in-
put might not lie on a complete grid. This can often occur due to missing values (e.g., malfunc-
tioning sensors), or when analyzing irregular shaped segment of the image. Second, captured
image data often contain heteroscedastic signal-dependent noise [37]. In fact, the heteroscedas-
tic nature of the data is often overlooked by most of the imageinterpolation techniques in the
literature and can significantly reduce the interpolation accuracy (see Sec. 3). Thus, the second
contribution of this work is to utilize the actual noise statistics of the data acquisition system,
which fits naturally into the GP framework. With these advances, it is possible to significantly
improve both the interpolation and denoising performance over current methods.

In Sec. 2.1 we extend the GP-grid algorithm to handle two limitations of the basic algorithm
by allowing for (i) incomplete data, and (ii) heteroscedastic noise. Certainly these extensions
to standard GP have been used to good purpose in previous GP settings, but their success
can not be replicated in the largeN case without additional advances related to this specific
multidimensional grid structure.

The main contribution of this paper is to present an efficientGP inference for improved
interpolation for DoFP polarimeters. The GP statistical inference is able learn the properties of
the data and incorporates an estimation of the sensor noise in order to increase the accuracy of
the polarization information and improve spatial resolution.

1.1. Gaussian Process Regression

Interpolation and denoising are essentially problems of regression where we are interested in
learning the underline true image from the noisy and partialobserved data of the captured
image. Gaussian processes offer a powerful statistical framework for regression that is very
flexible to the data. Here we will briefly introduce the GP framework and the main equations
which carry the computational burden of the method.

In brief, GP regression is a Bayesian method for nonparametric regression, where a prior
distribution over continuous functions is specified via a Gaussian process (the use of GP in
machine learning is well described in [29]). A GP is a distribution on functionsf over an input
spaceX (For 2 dimensional image data caseX = R

2) such that any finite selection of input
locationsx1, . . . ,xN ∈X gives rise to a multivariate Gaussian density over the associated targets,
i.e.,

p( f (x1), . . . , f (xN)) = N (mN ,KN), (1)

wheremN = m(x1, . . . ,xN) is the mean vector andKN = {k(xi,x j;θ )}i, j is the covariance ma-
trix, for mean functionm(·) and covariance functionk(·, · ;θ ). Throughout this work, we use
the subscriptN to denote thatKN has sizeN ×N. We are specifically interested in the basic
equations for GP regression, which involve two steps. First, for given datay ∈ R

N (making the
standard assumption of zero-mean data, without loss of generality), we calculate the predictive
mean and covariance atL unseen inputs as

µL = KLN
(

KN +σ2
n IN

)−1
y, (2)

ΣL = KL −KLN
(

KN +σ2
n IN

)−1
KNL, (3)

whereσ2
n is the variance of the observation noise (thehomogeneous noise case, whereσ2

n
is constant across all observations), which is assumed to beGaussian. Because the function
k(·, · ;θ ) is parameterized by hyperparametersθ such as amplitude and lengthscale, we must
also consider the log marginal likelihoodZ(θ ) for model selection:

logZ(θ ) =−
1
2

(

y⊤(KN +σ2
n IN)

−1y+ log|KN +σ2
n IN |+N log(2π)

)

. (4)



Here we use this marginal likelihood to optimize over the hyperparameters in the usual way
[29]. The runtime of exact GP regression (henceforth “full-GP”) regression and hyperparam-
eter learning isO(N3) due to the

(

KN +σ2
n IN

)−1
and log|KN +σ2

n IN | terms. The significant
computational and memory costs make GP impractical for manyapplications such as image
analysis where the number of data points can easily reach themillions. Next, we will show how
we can exploit the inherent structure of our problem settingto allow for very fast computations,
making GP an attractive method for image interpolation and denoising.

2. Fast GP for Image Data

In this Section we present algorithms which exploit the existing structure of the image data
for significant savings in computation and memory, but with the same exact inference achieved
with standard GP inference (using Cholesky decomposition).

Gaussian process inference and learning requires evaluating(K+σ2I)−1y and log|K+σ2I|,
for an N ×N covariance matrixK, a vector ofN datapointsy, and noise varianceσ2, as in
Equations (2) and (4), respectively. For this purpose, it isstandard practice to take the Cholesky
decomposition of(K+σ2I) which requiresO

(

N3
)

computations andO
(

N2
)

storage, for a
dataset of sizeN. However, in the context of image data, there is significant structure onK that
is ignored by taking the Cholesky decomposition.

In [36], it was shown that exact GP inference with multiplicative kernel3 can be done in
O(N

3
2 ) operations (compared to the standardO(N3) operations) for input data that lie on a

grid. The computation stemmed from the fact that:

1. K is a Kronecker product of 2 matrices (aKronecker matrix) which can undergo eigen-
decomposition with onlyO(N) storage andO(N

3
2 ) computations

2. The product of Kronecker matrices or their inverses, witha vectoru, can be performed
in O(N

3
2 ) operations.

Given the eigendecomposition ofK asQVQ⊤, we can re-write(K+σ2I)−1y and log|K+
σ2I| in Eqs. (2) and (4) as

(K+σ2I)−1y = (QVQ⊤+σ2I)−1y (5)

= Q(V+σ2I)−1Q⊤y , (6)

and

log|K+σ2I|= log|QVQ⊤+σ2I|=
N

∑
i=1

log(λi +σ2) , (7)

whereλi are the eigenvalues ofK, which can be computed inO(N
3
2 ).

Thus we can evaluate the predictive distribution and marginal likelihood in Eqs. (2) and
(4) to performexact inference and hyperparameter learning, withO(N) storage andO(N

3
2 )

operations.
Unfortunately, for images of focal plane sensors, the aboveassumptions - (1) a grid-complete

dataset with (2) homogeneous noiseσ2
n IN - are too simplistic, and will cause GP-grid to sub-

stantially underfit, resulting in degraded estimation power of the method (this claim will be
substantiated later in Sec. 3). First, incomplete grids often occur due to missing values (e.g.,
malfunctioning sensors), or non-grid input space (e.g., a segment of an image). Second, the

3multiplicative kernel is defined ask(xi,x j) = ∏2
d=1 kd(xd

i ,x
d
j ).



homogeneous noise assumption is not valid a sensor noise is input-dependent and often can be
represented by a linear model which is camera dependent [37].

In the next section we will extend GP-grid to efficiently handle the case ofK+D, whereK
is not a Kronecker matrix, andD is a positive diagonal matrix of known heteroscedastic noise.

2.1. Inference

Incomplete grids often occur due to missing values (e.g., malfunctioning sensors), or non-grid
input space (e.g., a segment of an image). Previous work in literature tried to handel missing
observation for grid input using either sampling [38], or a series of rank-1 updates [39]; how-
ever, both of these methods incur high runtime cost with the increase of the number of missing
observations.

We will use the notationKM to represent a covariance matrix that was computed using multi-
plicative kernel over an input setχM, |χM|=M, which do need to lie on a complete grid. Hence,
KM is not necessarily a non Kronecker matrix, and can be represented asKM = EKNE⊤, where
theKN is a Kronecker matrix computed from the setχN (χM ⊆ χN) of N inputs that lie on a
complete grid. TheE matrix is a selector matrix of sizeM ×N, choosing the inputs from the
complete-grid space that are also in the incomplete-grid space. TheE matrix is a sparse matrix
having onlyM non-zero elements.

This representation is helpful for matrix vector multiplication because it allows us to project
the incomplete observation vector to the complete grid space yN = E⊤yM, perform all opera-
tions using the properties of the Kronecker matrices, and then project the results back to the
incomplete space.

We use preconditioned conjugate gradients (PCG) [40] to compute
(

KM +D
)−1

y. Each it-
eration of PCG calculates the matrix vector multiplication

(KM +D)v = EKNE⊤v+Dv. (8)

The complexity of matrix vector multiplication of the diagonal and selector matrices isO (N),
hence the complexity of the multiplication above will depend on the matrix vector multipli-
cation ofKN . Exploiting the fast multiplication of Kronecker matrices, PCG takesO(JN

3
2 )

total operations (where the number of PCG iterationsJ ≪ N) to compute
(

KM +D
)−1

y, which
allows for exact inference.

2.2. Learning

For learning (hyperparameter training) we must evaluate the marginal likelihood of Eq. (4).
We cannot efficiently compute the complexity penalty in the marginal likelihood log|KM +D|
becauseK = KM +D is not a Kronecker matrix. We can alleviate this problem by replacing the
exact logdet complexity with an efficient upperbound. Usingan upperbound allows to keep the
computational and memory complexities low while maintaining a low model complexity. We
emphasize that only the log determinant (complexity penalty) term in the marginal likelihood
undergoes a small approximation, and inference remains exact.

In [41], the author showed that for an×n hermitian positive semidefinite matricesA, B with
eiganvaluesα1 ≤ α2 ≤ . . .≤ αn andβ1 ≤ β2 ≤ . . .≤ βn, respectively,

|A+B| ≤
n

∏
i=1

(αi +βn+1−i) . (9)

These estimates are best possible in terms of the eigenvalues ofA andB. Using Eq. (9), we can



write an upperbound on the complexity penalty as:

log|KM +D| ≤
M

∑
i=1

log
(

λ M
i + dM+1−i

)

, (10)

wheredi = sort(diag(D))i. However, findingλ M
i , the eigenvalues ofKM, is still O

(

N3
)

. We
instead approximate the eigenvaluesλ M

i using the eigenvalues ofKN , such that̃λ M
i = M

N λ N
i for

i = 1, . . . ,M [42], which is a particularly good approximation for largeM (e.g.,M > 1000).

3. Results

Here we show that GP-grid allows for improved accuracy results for division of focal plane
polarimeter compared to other commonly-used interpolation methods.

3.1. Runtime Complexity

First, we compare the runtime complexity of GP-grid from Section 2.1 to both full-GP (naive
implementation of Sec. 1.1 using Cholesky decomposition) and GP-grid with grid-complete
and homogeneous noise. We conduct the comparison using a segment of real image data of a
cone (Fig. 2). We consider only the input locations within the segment (sizeM), except for GP-
grid homogeneous where we used the entire grid-complete segment (sizeN). At each iteration
the size of the windowN is increased, thereby increasing the number of input locations M
(pixels we did not mask out). Fig. 2 illustrates the time complexity of the three algorithms
as a function of input size (pixels). For every comparison wealso note the ratio of unmasked
input to the total window size for each point. The time complexity presented for all algorithms
is for a single calculation of the negative log marginal likelihood (NLML) and its derivatives
(dNLML), which are the needed calculations in GP learning (and which carry the complexity
of the entire GP algorithm). In GP-grid, the noise model is not learned but assumed to be known
from the apparatus used to capture the image [37], which is:

σ2
i = 0.47Ii+56.22, (11)

where at locationi, σ2
i is the noise variance andIi is the image intensity. For simplicity, we

assume a general model for all the sensors in the imaging plane. Since we do not haveIi we use
the measuredyi instead as an approximation, which is a common heuristic (though it technically
violates the generative model of the GP) of known camera properties that we discuss later in this
work. As can be seen in Fig. 2, GP-grid does inference exactlyand scales only superlinearly
with the input size, while full-GP is cubic. While the more general GP-grid (Sec. 2.1) does
slightly increase computational effort, it does so scalably while preserving exact inference, and
we will show that it has significant performance implications that easily warrant this increase.
All other commonly used interpolation methods (e.g., bilinear, bicubic, and bicubic-spline)
scale at least linearly with the data.

3.2. Application to Division of Focal Plane Images

In this section we test GP-grid on real division of focal plane image data, and we demon-
strate improvement in accuracy of polarization (Stokes) parameters compared to commonly-
used methods. For better comparison we used four different scenes, each captured multiple
times using (i) a short shutter speed resulting in low signal-to-noise ratio (SNR) images, and
(ii) a long shutter speed resulting in high SNR images. We acquired hundreds of images for
each scene using a CCD imaging array (Kodak KAI-4022 4MP) anda polarization filter. We
used four polarization filters corresponding to angles: 0, 45, 90, and 135 (see Fig. 3).
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Fig. 2. Runtime complexity of full-GP, GP-grid, and GP-gridhomogeneous, for a single
calculation of the negative log marginal likelihood (NLML)and its derivatives. For input,
we used segmented data from the cone image of the right. At every comparison the size of
the segmentN (red dotted line) was increased, thereby increasing the input sizeM (pixels
not masked out). The ratio of input size to the complete grid size (M/N) is shown next
to the GP-grid plot. The slope for the full-GP is 2.6, for GP-grid is 1.0, and for GP-grid
homogeneous is 1.1 (based on the last 8 points). This empirically verifies the improvement
in scaling. Other interpolation methods also scale at leastlinearly, so the cost of running
GP-grid is constant (the runtime gap is not widening with data).

To extract the noiseless ground-truth (the basis of our comparisons), we averaged over the
majority of the pictures, holding out a small subset for testing. In order to test the interpolation
performance, we interpolated the entire image using only a subset of the image (downsampled
by four). All images are around 40000 pixels, hence, even their down-sampled version will
be impractical for the standard naive GP implementation. The interpolated images were then
compared to their corresponding averaged images for accuracy analysis. The accuracy criterion
we used was the normalized mean square error (NMSE) between the interpolated images and
the average images, defined as:

NMSE(y, ȳ) =
1
N ∑N

i (yi − ȳi)
2

var(ȳ)
, (12)

where ¯y is the data of averaged image.4 Normalization is used in order to compare between
the results of the low and high SNR images since they have a different intensity range. We
compare GP-grid with the common interpolation algorithms:bilinear, bicubic, bicubic-spline
(Bic-sp), NEDI [18], and frequency domain (FD) filter [17].5 Although this is by no means an
exhaustive comparison, it does allow for a benchmark for comparison with GP performance.
Note that in all the comparisons we intentionally discardedthe border pixels (five pixels width)
so they would be most favorable to non-GP methods as the non-GP methods fail particularly
badly at the edges. Had we included the border pixels, our GP-grid algorithm would perform
even better in comparison to conventional methods.

4If we consider ¯y to be our signal, the NMSE can be seen as an empirical inverse of the SNR.
5The FD filter parameters were chosen such that 95% of the Stokes parameters spectrum of the averaged images

was captured.
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Averaged Images

Fig. 3. The original image on the left is passed through four polarization filters with dif-
ferent phases. Over a hundred filtered images are captured. Asmall subset of the filtered
images is used for the interpolation testing and the rest areaveraged to approximate the
noiseless filtered images. The filtered images used for testing are downsampled by four
(using different downsampling patterns) and then interpolated back to original size.

We explore real data using our improved GP-grid model. Performance of course depends
critically on the noise properties of the system, which in captured images is primarily sensor
noise. Other works in the literature consider additional GPs to infer a heteroscedastic noise
model [43, 44], which brings additional computational complexity that is not warranted here.
Instead, the simple model of Eq. (11) works robustly and simply for this purpose. We ran GP-
grid using a multiplicative Matérn(1

2) covariance function, and learned the hyperparameters:
lengthscales(l1, l2), signal variance(σ2

f ) [29].
In this section, reconstruction errors are presented from aset of three different images. The

images are segmented into a background image and foregroundimage, where the foreground
image is the object of interest such as the horse (Fig. 6) or toy (Fig. 7. Reconstruction is per-
formed on both the foreground and background images separately, as well as the entire image.
Segmenting the object of interest from the image and applying the six different interpolation
methods avoids reconstruction errors on the edge boundary between the object and background.
Different illumination conditions were considered for thesame scene, effectively emulating dif-
ferent SNR conditions. In total, six different images are analyzed and the normalized squared
mean error is reported. The images chosen for this analysis have both high and low frequency
component in theS0, S1 andS2 image and allow for analysis of images that would be similar to
real-life images.

The first set of results presented is for the “Mug” scene (Fig.4). The scene is composed of
a bright mug in front of a bright background. The brightness of the images is important as a
brighter image will produce higher luminance and a higher signal in the camera. The top row
of the figure shows a summary of the results for short shutter speed images and the bottom row
shows the results for long shutter speed images. As can be expected, the intensity range of the
low SNR test image on the top is much lower than the high SNR test image on the bottom. Also,
we can see that the normalized error distribution in the low SNR image is significantly higher
than the high SNR image. Following the scheme presented in Fig. 3, we used the interpolated
and averaged images to compute the Stokes parameters

S0 = I0+ I90, S1 = I0− I90, S2 = I45− I135. (13)

In the right side of Fig. 4 we show a comparison of the normalized error between the Stokes



parameters calculated using the interpolated images (using different interpolation methods) and
the Stokes parameters calculated from the averaged images.The bar plots allow for easy com-
parisons between the six interpolation methods for each of the Stokes parameters. Note that the
low SNR and high SNR cases must be considered separately since they use different scaling. It
is clear that GP outperformed all the other methods in this scene for each of the Stokes param-
eters. The results of the computed Stokes parameters for themug scene of Fig. 4 are illustrated
in Fig. 5. Fig. 5 shows the dominance of noise in the reconstruction of common interpolation
algorithms for low SNR images. We averaged 10000 images to produce a ground truth image
where the effective noise is decreased by a factor of around 100 from a single captured image.
The GP interpolation achieves significantly better polarization accuracy in the low SNR case
compared to the other five interpolation methods. The improvement is most evident for theS1

andS2 parameters since they are differentiation operators whichare more susceptible to noise.
The frequency domain filtering methods proposed in [17], hasthe worst reconstruction perfor-
mance due to the fact that the images used for this example arenot band limited. Hence, theS1

andS2 images cannot be easily filtered out using a non-adaptive Butterworth filter.
A similar comparison was done for the three additional scenes: Horse (Fig. 6), and Toy

(Fig. 7). Differently than the Mug scene analysis, here we manually separated the comparison
for the object and the background. The reason for the separation is because the two segments
have very different properties (spatial frequencies) and learning on the entire image will result
in a kernel that will be suboptimal on each region separately. Close analysis of the results show
two important facts. First, the improvement was higher for low SNR images than high SNR
images. This is not surprising as all the interpolation methods are excepted to perform well
when the noise level is low compared to the signal level.

Second,S1 andS2 show higher improvement compared toS0 image. This is because theS0

image by construction is less sensitive to noise due to the averaging of several pixels in a given
neighborhood, whileS1 andS2 are significantly more sensitive to noise due to taking the differ-
ence between neighboring pixels. In other words, theS0 image has higher SNR compared toS1

andS2 images and in-depth mathematical modeling of the SNR can be found in [37]. Improving
the accuracy ofS1 andS2 are especially important because of their nonlinear dependent to the
other polarization parameters: angle of polarizationφ = (1/2) tan−1(S2/S1) and the degree of

linear polarizationρ =
√

S2
1+ S2

2/S0.
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Fig. 4. Left column shows the noisy test image before decimation (subsampling) and in-
terpolation. Middle column shows the histogram of the absolute normalized error and the
average NMSE for the captured noisy image compared to the average image. The Stokes
parameters comparison is shown on the right for the six interpolation methods tested. Com-
parison between the six interpolation methods should be considered for each of the Stokes
parameters separately.



Fig. 5. Results of the Stokes parameters for the different interpolation methods of the mug
scene for low and high SNR. The total NMSE of the methods is summarized in Fig. 4. The
left (right) panel shows the results for a high (low) SNR image. The white box indicates the
zoom-in region for each of Stokes parameters results. The first row shows the Stokes pa-
rameters computed on temporally averaged images, which we use as the underline ground
truth. The following rows show the results for the rest of theinterpolation methods.

4. Conclusion

GP allows for statistical interpolation that can naturallyincorporate the camera noise model.
Overall, the results of our experiments show that the GP framework allows for improved recon-
structions of the Stokes parameters over conventional interpolation methods. Improvement was
most evident in low SNR images where the recovering ofS1 andS2 is most difficult, and where
having a good prior can help reduce the effect of the noise.

Another interesting realization that came out of the comparison presented in this paper is
that the Bicubic-spline algorithm performance greatly degrades in the presence of noise. This
result is different than other papers in the literature where the comparison was done on the
averaged images only [15, 16]. The spectral method of [17] was also suboptimal, which is
likely because our tested scenes where not band limited, andthe effect of input dependent noise
on the spectrum.

GP becomes tractable for image data by using the GP-grid algorithm we introduce here, and
it is a convenient technology to naturally incorporate our two performance-critical advances:
segmentation (incomplete grids) and a known noise model. Asthe results show, all of these
advances are important in order for GP to be considered a general framework for image data.

It is common practice in image processing to mix different methods in order to improve the
overall results, e.g., alternate methods close to an edge. Integrating GP-grid together with other
state-of-the-art interpolation methods to achieve further improvement is an interesting topic for
future work.
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Fig. 6. This figure illustrates the results for the segmentedhorse scene i.e. the toy horse
is segmented from the background and interpolation is only performed on the toy horse
portion of the image. The first two rows show results for the horse object when discarding
the information of the background. The white pixels indicate locations that where not used
in the analysis. The bottom two rows show results when performing interpolation on the
background part of the image, i.e. excluding the horse from the scene. The left column
shows the noisy test images, middle column shows the histogram of the absolute normal-
ized error, and the right column shows a comparison between the six different interpolation
methods tested.
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Fig. 7. Toy Scene. See caption of Fig. 6.
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