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Abstract: Image interpolation and denoising are important techrédque
image processing. These methods are inherent to digit@draaquisition
as most digital cameras are composed of a 2D grid of heteemgsimag-
ing sensors. Current polarization imaging employ fouredéht pixelated
polarization filters, commonly referred to as division of&bplane polariza-
tion sensors. The sensors capture only partial informatfdhe true scene,
leading to a loss of spatial resolution as well as inaccucdidiie captured
polarization information. Interpolation is a standardieique to recover the
missing information and increase the accuracy of the cagtpolarization
information.

Here we focus specifically on Gaussian process regressi@a veay to
perform a statistical image interpolation, where estimatesensor noise
are used to improve the accuracy of the estimated pixel imddion. We
further exploit the inherent grid structure of this data teate a fast exact
algorithm that operates ief (N*2)(vs. the naives’ (N3)), thus making the
Gaussian process method computationally tractable fogéndata. This
modeling advance and the enabling computational advano®ioce to
produce significant improvements over previously publisheterpolation
methods for polarimeters, which is most pronounced in cadekw
signal-to-noise ratio (SNR). We provide the comprehensiathematical
model as well as experimental results of the GP interpoigiierformance
for division of focal plane polarimeter.
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1. Introduction

Solid state imaging sensors, namely CMOS and CCD camernpireawo of the three fun-
damental properties of light: intensity and color. Thedhiroperty of light, polarization, has
been ignored by CMOS and CCD sensor used for daily photogrdp®,[3,/4]. However, In
nature, many species are capable of sensing polarizatapepfes of light in addition to in-
tensity and color. The visual system in these species caslihotoreceptors and specialized
optics capable of filtering the polarization propertiestdf tight field. Recent development in
nanofabrication and nano-photonics has enabled the a@ializof compact and high resolu-
tion polarization sensors. These sensors, known as dividitocal plane polarimeters (DoFP),
monolithically integrate pixelated metallic nanowiredii$, acting as polarization filters, with
an array of imaging elemenis [5]. One of the main advantafygisision-of-focal-plane sensors
compared to division-of-time sensors is the capabilityagtaring polarization information at
every frame. The polarization information captured by théss of sensors can be used to ex-
tract various parameters from an imaged scene, such assoapyfor tumor margin detection
[6], 3-D shape reconstruction from a single imagde [7], um@aer imaging([8], material classi-
fication [9], and cancer diagnosis [10].

The idea of monolithically integrating optical elementshwéan array of photo sensitive ele-
ments is similar to today’s color sensors, where a Bayerdittier is integrated with an array of
CMOS/CCD pixels. The monolithic integration of optics anthiging elements have allowed
for realization of compact color imaging sensors. Sincelaited color filters are placed on the
imaging plane, spatial resolution is lost up to 4 times fertbd and blue channel and 2 times
for the green channel. Interpolation algorithms for colnage sensors have been constantly
improving over the last three and half decades, allowingrfggrovements in color replication
accuracy and recovery of the lost spatial resolution[[1]., A@ important reason for the wide
acceptance of color imaging technologies is the utilizatib interpolation algorithms. Since
pixelated color filters are placed on the imaging plane, sadsor only observes partial infor-
mation (one color), and thus it is standard practice to ptkate missing components across
the sensors. Cameras using division of focal plane poliizaensors utilize four pixelated
polarization filters, whose transmission axis is offset Bydégree from each other (see IEh. 1).
Hence, each pixel represents on}{4lof the linear polarization information, severely lowerin
the resolution of the image and the accuracy of the recoetetiypolarization informatiolf} In-
terpolation techniques allow to estimate the missing pixigntations across the imaging array,
thereby improving both the accuracy of polarization infation and mitigate the loss of spatial
resolution.

1Although the four pixels are spatially next to each othegirtimstantaneous field of view is different, resulting in
different intensities. The pixels intensities are usedetmnstruct the polarization information, such as Stokesove
angle and degree of linear polarization.
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Fig. 1. Division of focal plane polarization sensors on tmaging plane. Each pixel cap-
tures only ¥4 of the polarization information. Interpolation is neededrecovering the
full camera resolution.

Similar problems were encountered in color imaging sensenen the Bayer pattern for
pixelated color filters was introduced in the 1970s [13]. fdey to recover the loss of spa-
tial resolution in color sensors and improve the accuracthefcaptured color information,
various image interpolation algorithms have been develapehe last 30 years. For DoFP,
the common use is of conventional image interpolation éigams such as bilinear, bicubic,
and bicubic-spline, which are based on space-invariantaataptive linear filters [14, 15, 16].
Frequency domain filtering was introduced for band limitethges and total elimination of
the reconstruction error was achieved [17]. More advankgatithms use adaptive algorithms,
such as the new edge-directed interpolation (NEDI) [18lizetthe multi-frame information,
such as[[19]. Recently, there has been a growing interelseinge of GP regression for interpo-
lation and denoising of image data for color sensors[[20, @ is a Bayesian nonparametric
statistical method that is a reasonable model for naturagarsources [18], and fits well the
DoFP interpolation setting by accounting for heterosceclasise and missing data, as we will
discuss next.

Whereas conceptually attractive, exact GP regressioersufifom ¢’ (N3) runtime for data
sizeN, making it intractable for image datal (s the number of pixels which is often on the
order of millions for standard cameras). Many authors haveied reductions in complexity
via approximation methods, such as simpler models like&deranvolution [22[" 23], moving
averages [24], or fixed numbers of basis functions [25]. Aisicant amount of research has
also gone into sparse approximations, including covaedapering[[26,_27], conditional in-
dependence to inducing inputs [28] 29], sparse speciruipn¢8@ Gaussian Markov random
field approximation[[31]. While promising, these methods bave significant approximation
penalties[[2H, 32]. A smaller number of works investigathuction in complexity by exploiting
special structure in the data, which avoids the accurdasi&ricy tradeoff at the cost of gener-
ality. Examples of such problems are: equidistant unitaiigput data where the fast Fourier
transform can be used (e.d.,[33]); additive models witltieffit message passing routines (e.g.,
[34],135,[36]); and multiplicative kernels with multidimeasal grid input [36], as we discuss
here.

Image data is composed of multiple pixels that lie on a twoetisional grid. The mul-
tidimensional grid input data induces exploitable aldoriic structures for GP models with
multiplicative kernelleBﬂ We show in Sed.]2 that these conditions, along with the assump
tion of homogenous noise, admit an efficient algorithm, waeeé GP-grid, that can be used to
significantly lower the computational cost while still aghing high accuracy.

2GP models with multiplicative kernels and multidimensioged inputs are constrained to have (i) covariance
structure that separates multiplicatively acros®itaputs (see Sectidd 2); and (ii) a restricted input spagritipoints
x € X can only lie on a multidimensional grid = 21 x 22 x ... x 2P c RP, where 2% = {x‘i,xg,...,xﬁ%‘} is
the input space of dimensiah 1 < d <D.



However, there are two important cases where two key assonsgireak down. First, the in-
put might not lie on a complete grid. This can often occur dumissing values (e.g., malfunc-
tioning sensors), or when analyzing irregular shaped sagofahe image. Second, captured
image data often contain heteroscedastic signal-depéendise [37]. In fact, the heteroscedas-
tic nature of the data is often overlooked by most of the imatgrpolation techniques in the
literature and can significantly reduce the interpolaticcuaacy (see Sekl 3). Thus, the second
contribution of this work is to utilize the actual noise &tts of the data acquisition system,
which fits naturally into the GP framework. With these adwes)dt is possible to significantly
improve both the interpolation and denoising performanes ourrent methods.

In Sec[Z.1L we extend the GP-grid algorithm to handle twotéitiins of the basic algorithm
by allowing for (i) incomplete data, and (ii) heteroscedasbise. Certainly these extensions
to standard GP have been used to good purpose in previous t@Rysebut their success
can not be replicated in the larde case without additional advances related to this specific
multidimensional grid structure.

The main contribution of this paper is to present an effici®ft inference for improved
interpolation for DoFP polarimeters. The GP statistic&iiance is able learn the properties of
the data and incorporates an estimation of the sensor mogeler to increase the accuracy of
the polarization information and improve spatial resanti

1.1. Gaussian Process Regression

Interpolation and denoising are essentially problems gfagsion where we are interested in
learning the underline true image from the noisy and padimerved data of the captured
image. Gaussian processes offer a powerful statisticetldveork for regression that is very
flexible to the data. Here we will briefly introduce the GP feamork and the main equations
which carry the computational burden of the method.

In brief, GP regression is a Bayesian method for nonparéenetgression, where a prior
distribution over continuous functions is specified via au€adan process (the use of GP in
machine learning is well described [n]29]). A GP is a disttibn on functiond over an input
spaceX (For 2 dimensional image data caXe= R?) such that any finite selection of input
locationsxy, ..., xn € X gives rise to a multivariate Gaussian density over the ést®attargets,
ie.,

p(f(x1),..., f(xn)) = A (MmN, Kn), 1)

wheremy = m(Xy,...,Xn) is the mean vector andn = {k(xi,X;; 8)}i j is the covariance ma-
trix, for mean functiorm(-) and covariance functiok(-,- ; 8). Throughout this work, we use
the subscripiN to denote thaKy has sizeN x N. We are specifically interested in the basic
equations for GP regression, which involve two steps. Fissigiven datay € RN (making the
standard assumption of zero-mean data, without loss ofrgktyg, we calculate the predictive
mean and covariance atunseen inputs as

-1
o = Kun(Kn+0ZIn) Ty, ()
-1
5L = Ki—Kuwn (Kn+02IN) K, 3)
where g? is the variance of the observation noise (tmnogeneous noise case, wherg?
is constant across all observations), which is assumed Bawussian. Because the function

k(-,- ;0) is parameterized by hyperparametérsuch as amplitude and lengthscale, we must
also consider the log marginal likeliho@d6) for model selection:

1
10gZ(8) = —5 (¥ (Kn+0fIn) "y +log|Kn + oZin| +Nlog(2m) ). @)



Here we use this marginal likelihood to optimize over thednparameters in the usual way
[29]. The runtime of exact GP regression (henceforth “@R*) regression and hyperparam-
eter learning is”(N®) due to the(Kn + U§|N)71 and logKy + 1| terms. The significant
computational and memory costs make GP impractical for naqpfications such as image
analysis where the number of data points can easily reachithens. Next, we will show how
we can exploit the inherent structure of our problem setiirgjlow for very fast computations,
making GP an attractive method for image interpolation asrbising.

2. Fast GP for Image Data

In this Section we present algorithms which exploit the taxgsstructure of the image data
for significant savings in computation and memory, but with $ame exact inference achieved
with standard GP inference (using Cholesky decomposition)

Gaussian process inference and learning requires evajukti- o2l )~y and logK + o2l |,
for anN x N covariance matriX, a vector ofN datapointsy, and noise variance?, as in
Equations[(R) and{4), respectively. For this purpose stamdard practice to take the Cholesky
decomposition of K + g?1) which requires’ (N®) computations and” (N?) storage, for a
dataset of siz&l. However, in the context of image data, there is significamtsure orkK that
is ignored by taking the Cholesky decomposition.

In [36], it was shown that exact GP inference with multiplice kerndfl can be done in
ﬁ(N%) operations (compared to the standa@r(N®) operations) for input data that lie on a
grid. The computation stemmed from the fact that:

1. K is a Kronecker product of 2 matrices Kaonecker matrix) which can undergo eigen-
decomposition with only’(N) storage anaﬁ(N%) computations

2. The product of Kronecker matrices or their inverses, witrectoru, can be performed
in ﬁ(N%) operations.

Given the eigendecomposition KfasQVQ ', we can re-writgK + ¢?1)~1y and logK +
o?l]in Egs. [2) and{4) as

(K+0%)ly=(QVQ' +a%)ty (5)
=Q(V+0a?)'Qly, (6)
and
N
log|K + 02| =log|QVQ" + d?l| = _Zlog()\ﬁaz), 7)

where); are the eigenvalues &f, which can be computed iﬁ(N%).

Thus we can evaluate the predictive distribution and maldikelihood in Egs.[(R) and
(@) to performexact inference and hyperparameter learning, wittiN) storage ancﬁ(N%)
operations.

Unfortunately, for images of focal plane sensors, the alasgemptions - (1) a grid-complete
dataset with (2) homogeneous nois#l y - are too simplistic, and will cause GP-grid to sub-
stantially underfit, resulting in degraded estimation poafethe method (this claim will be
substantiated later in Sdd. 3). First, incomplete grideroficcur due to missing values (e.g.,
malfunctioning sensors), or non-grid input space (e.gegment of an image). Second, the

®multiplicative kernel is defined agx;, ;) = M5_1 k? (x,x).



homogeneous noise assumption is not valid a sensor noisgutdependent and often can be
represented by a linear model which is camera dependént [37]

In the next section we will extend GP-grid to efficiently henthe case oK + D, whereK
is not a Kronecker matrix, and is a positive diagonal matrix of known heteroscedasticenois

2.1. Inference

Incomplete grids often occur due to missing values (e.glfumetioning sensors), or non-grid
input space (e.g., a segment of an image). Previous workeirature tried to handel missing
observation for grid input using either sampling|[38], oregias of rank-1 updates [39]; how-
ever, both of these methods incur high runtime cost withicesiase of the number of missing
observations.

We will use the notatiokM to represent a covariance matrix that was computed usintrmul
plicative kernel over an input sgt', | xM| = M, which do need to lie on a complete grid. Hence,
KM is not necessarily a non Kronecker matrix, and can be represak ™ = EKNET, where
theKN is a Kronecker matrix computed from the st (xM C xN) of N inputs that lie on a
complete grid. Thé& matrix is a selector matrix of sizZé x N, choosing the inputs from the
complete-grid space that are also in the incomplete-gadepTheE matrix is a sparse matrix
having onlyM non-zero elements.

This representation is helpful for matrix vector multiglimn because it allows us to project
the incomplete observation vector to the complete grid sgble= E"yM, perform all opera-
tions using the properties of the Kronecker matrices, aed firoject the results back to the
incomplete space.

We use preconditioned conjugate gradients (PCG) [40] topme(KM + D)fly. Each it-
eration of PCG calculates the matrix vector multiplication

(KM 4+D)v=EKNETv+Dv. (8)

The complexity of matrix vector multiplication of the diagml and selector matrices é8(N),
hence the complexity of the multiplication above will dedeam the matrix vector multipli-

cation of KN. Exploiting the fast multiplication of Kronecker matrice8CG takesﬁ(JN%)

total operations (where the number of PCG iteratidrs N) to compute(K'\’I + D)fly, which
allows for exact inference.

2.2. Learning

For learning (hyperparameter training) we must evaluagentlarginal likelihood of Eq.[{4).
We cannot efficiently compute the complexity penalty in therginal likelihood logk™ + D|
becaus& = KM+ D is not a Kronecker matrix. We can alleviate this problem Iplaeing the
exact logdet complexity with an efficient upperbound. Usangupperbound allows to keep the
computational and memory complexities low while maintagna low model complexity. We
emphasize that only the log determinant (complexity pgh&drm in the marginal likelihood
undergoes a small approximation, and inference remaing.exa

In [41]], the author showed that fomax n hermitian positive semidefinite matricAs B with
eiganvaluesr; < apx <...<apandf; < B <... < By, respectively,

A+BI< [ @i+ i) (9)

These estimates are best possible in terms of the eigesvaideandB. Using Eq.[(®), we can



write an upperbound on the complexity penalty as:
M
log[KM +D| < Z'Og (AM+duiai) (10)
i=

whered; = sordiag(D));. However, findingAM, the eigenvalues dkM, is still & (N3). We
instead approximate the eigenvalug$ using the eigenvalues &, such thadM = ¥ AN for
i=1,...,M [42], which is a particularly good approximation for lariye(e.g.,M > 1000).

3. Results

Here we show that GP-grid allows for improved accuracy tsdolr division of focal plane
polarimeter compared to other commonly-used interpatatiethods.

3.1. Runtime Complexity

First, we compare the runtime complexity of GP-grid from t®ed2.1 to both full-GP (naive
implementation of Se¢. 1.1 using Cholesky decompositiol) @P-grid with grid-complete
and homogeneous noise. We conduct the comparison usingreesegf real image data of a
cone (Fig[2). We consider only the input locations withie gegment (siz®), except for GP-
grid homogeneous where we used the entire grid-completeesgysizeN). At each iteration
the size of the windowN is increased, thereby increasing the number of input lonat
(pixels we did not mask out). Fif] 2 illustrates the time cterjty of the three algorithms
as a function of input size (pixels). For every comparisonalg® note the ratio of unmasked
input to the total window size for each point. The time comjtiepresented for all algorithms
is for a single calculation of the negative log marginal litkeod (NLML) and its derivatives
(dNLML), which are the needed calculations in GP learningd(ahich carry the complexity
of the entire GP algorithm). In GP-grid, the noise model islearned but assumed to be known
from the apparatus used to capture the imagk [37], which is:

0?7 = 0.471; +56.22, (11)

where at location, o? is the noise variance arigis the image intensity. For simplicity, we
assume a general model for all the sensors in the imaging p&ince we do not havgwe use
the measureg instead as an approximation, which is a common heuristiti@h it technically
violates the generative model of the GP) of known cameragot@s that we discuss later in this
work. As can be seen in Figl 2, GP-grid does inference exacityscales only superlinearly
with the input size, while full-GP is cubic. While the morengeal GP-grid (Sed._2.1) does
slightly increase computational effort, it does so scalalile preserving exact inference, and
we will show that it has significant performance implicagdhat easily warrant this increase.
All other commonly used interpolation methods (e.g., leifin bicubic, and bicubic-spline)
scale at least linearly with the data.

3.2. Application to Division of Focal Plane Images

In this section we test GP-grid on real division of focal @amage data, and we demon-
strate improvement in accuracy of polarization (Stokespipeeters compared to commonly-
used methods. For better comparison we used four diffeanes, each captured multiple
times using i) a short shutter speed resulting in low signal-to-noisie 8NR) images, and
(ii) a long shutter speed resulting in high SNR images. Weugied hundreds of images for
each scene using a CCD imaging array (Kodak KAI-4022 4MP)apdlarization filter. We
used four polarization filters corresponding to angles5) 90, and 135 (see Figl. 3).
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Fig. 2. Runtime complexity of full-GP, GP-grid, and GP-ghidmogeneous, for a single
calculation of the negative log marginal likelihood (NLM&ahd its derivatives. For input,
we used segmented data from the cone image of the right. Af esenparison the size of
the segmenN (red dotted line) was increased, thereby increasing thet isipeM (pixels
not masked out). The ratio of input size to the complete gad §V/N) is shown next
to the GP-grid plot. The slope for the full-GP is 2.6, for Gidgs 1.0, and for GP-grid
homogeneous is 1.1 (based on the last 8 points). This eralbyricerifies the improvement
in scaling. Other interpolation methods also scale at leaesarly, so the cost of running
GP-grid is constant (the runtime gap is not widening withaglat

To extract the noiseless ground-truth (the basis of our @ispns), we averaged over the
majority of the pictures, holding out a small subset foritestin order to test the interpolation
performance, we interpolated the entire image using onlybaet of the image (downsampled
by four). All images are around 40000 pixels, hence, eveir ttevn-sampled version will
be impractical for the standard naive GP implementatiore ifterpolated images were then
compared to their corresponding averaged images for ancaralysis. The accuracy criterion
we used was the normalized mean square error (NMSE) betwednterpolated images and
the average images, defined as:

LNy —yi)?

NMSE(y,y) = G

; (12)

wherey is the data of averaged ima]ﬂeNormalization is used in order to compare between
the results of the low and high SNR images since they haveferdift intensity range. We
compare GP-grid with the common interpolation algorithtyinear, bicubic, bicubic-spline
(Bic-sp), NEDI [18], and frequency domain (FD) fiItlE]AIthough this is by no means an
exhaustive comparison, it does allow for a benchmark forgammson with GP performance.
Note that in all the comparisons we intentionally discarttedborder pixels (five pixels width)
so they would be most favorable to non-GP methods as the mom&hods fail particularly
badly at the edges. Had we included the border pixels, oug@Palgorithm would perform
even better in comparison to conventional methods.

4If we consideryto be our signal, the NMSE can be seen as an empirical invéitse SNR.
5The FD filter parameters were chosen such that 95% of the Simemeters spectrum of the averaged images
was captured.
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Fig. 3. The original image on the left is passed through falafization filters with dif-
ferent phases. Over a hundred filtered images are capturschall subset of the filtered
images is used for the interpolation testing and the resaaeeaged to approximate the
noiseless filtered images. The filtered images used fontestie downsampled by four
(using different downsampling patterns) and then intexteal back to original size.

We explore real data using our improved GP-grid model. Perdmce of course depends
critically on the noise properties of the system, which iptaaed images is primarily sensor
noise. Other works in the literature consider additionak@® infer a heteroscedastic noise
model [43]44], which brings additional computational céexity that is not warranted here.
Instead, the simple model of E€. {11) works robustly and $jrfgr this purpose. We ran GP-
grid using a multiplicative Matérr%o covariance function, and learned the hyperparameters:
lengthscalegly, |,), signal variancéo?) [29].

In this section, reconstruction errors are presented fraet @f three different images. The
images are segmented into a background image and foreghmaige, where the foreground
image is the object of interest such as the horse [Fig. 6)yo(Riy.[4. Reconstruction is per-
formed on both the foreground and background images separas well as the entire image.
Segmenting the object of interest from the image and apglthie six different interpolation
methods avoids reconstruction errors on the edge bounéamgekn the object and background.
Different illumination conditions were considered for f@me scene, effectively emulating dif-
ferent SNR conditions. In total, six different images aralgped and the normalized squared
mean error is reported. The images chosen for this analgsis hoth high and low frequency
component in th&, S andS, image and allow for analysis of images that would be simdar t
real-life images.

The first set of results presented is for the “Mug” scene @#JgThe scene is composed of
a bright mug in front of a bright background. The brightnekthe images is important as a
brighter image will produce higher luminance and a highgnai in the camera. The top row
of the figure shows a summary of the results for short shypeed images and the bottom row
shows the results for long shutter speed images. As can lee®d) the intensity range of the
low SNR testimage on the top is much lower than the high SNRrtegye on the bottom. Also,
we can see that the normalized error distribution in the IlWRSmMage is significantly higher
than the high SNR image. Following the scheme presentedjifidriwe used the interpolated
and averaged images to compute the Stokes parameters

S = lo+lao, S; = lp—loo, S = lss— 1135 (13)

In the right side of Figi ¥ we show a comparison of the norneglierror between the Stokes



parameters calculated using the interpolated imagesy dgfflerent interpolation methods) and
the Stokes parameters calculated from the averaged imBlgesar plots allow for easy com-
parisons between the six interpolation methods for eadheoBtokes parameters. Note that the
low SNR and high SNR cases must be considered separategythieyg use different scaling. It
is clear that GP outperformed all the other methods in tleesdor each of the Stokes param-
eters. The results of the computed Stokes parameters fanifjescene of Fid.]4 are illustrated
in Fig.[3. Fig.[® shows the dominance of noise in the reconstm of common interpolation
algorithms for low SNR images. We averaged 10000 imagesdadyme a ground truth image
where the effective noise is decreased by a factor of aroQAdrbm a single captured image.
The GP interpolation achieves significantly better poktian accuracy in the low SNR case
compared to the other five interpolation methods. The imgmment is most evident for tHg
and$S; parameters since they are differentiation operators wéiehmore susceptible to noise.
The frequency domain filtering methods proposed in [17],thasvorst reconstruction perfor-
mance due to the fact that the images used for this exampieaband limited. Hence, th®
andS, images cannot be easily filtered out using a non-adaptiveeBurth filter.

A similar comparison was done for the three additional sseh®rse (Fig[h), and Toy
(Fig.[7). Differently than the Mug scene analysis, here wauadly separated the comparison
for the object and the background. The reason for the sepalatbecause the two segments
have very different properties (spatial frequencies) aadring on the entire image will result
in a kernel that will be suboptimal on each region separa@bse analysis of the results show
two important facts. First, the improvement was higher v ISNR images than high SNR
images. This is not surprising as all the interpolation rodthare excepted to perform well
when the noise level is low compared to the signal level.

Second S, andS, show higher improvement comparedSgpimage. This is because tisg
image by construction is less sensitive to noise due to theaging of several pixels in a given
neighborhood, whil&, andS; are significantly more sensitive to noise due to taking tffedi
ence between neighboring pixels. In other words Shienage has higher SNR compared3o
andS; images and in-depth mathematical modeling of the SNR caaufin [37]. Improving
the accuracy 0§, andS, are especially important because of their nonlinear depetrtd the
other polarization parameters: angle of polarizatioa (1/2)tan*(S;/S;) and the degree of

linear polarizatiorp = |/ + $/S.
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Fig. 4. Left column shows the noisy test image before dedonasubsampling) and in-

terpolation. Middle column shows the histogram of the alitgohormalized error and the
average NMSE for the captured noisy image compared to thegeémage. The Stokes
parameters comparison is shown on the right for the sixpotation methods tested. Com-
parison between the six interpolation methods should beidered for each of the Stokes
parameters separately.
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Fig. 5. Results of the Stokes parameters for the differéetjpiolation methods of the mug
scene for low and high SNR. The total NMSE of the methods issarized in Figlh. The
left (right) panel shows the results for a high (low) SNR imaghe white box indicates the
zoom-in region for each of Stokes parameters results. Téieréiw shows the Stokes pa-
rameters computed on temporally averaged images, whictseasithe underline ground
truth. The following rows show the results for the rest of ititerpolation methods.

4. Conclusion

GP allows for statistical interpolation that can naturatigorporate the camera noise model.
Overall, the results of our experiments show that the GPérmonk allows for improved recon-
structions of the Stokes parameters over conventionapalation methods. Improvement was
most evident in low SNR images where the recoverin§@dndS; is most difficult, and where
having a good prior can help reduce the effect of the noise.

Another interesting realization that came out of the consparpresented in this paper is
that the Bicubic-spline algorithm performance greatlyrdelgs in the presence of noise. This
result is different than other papers in the literature whiéie comparison was done on the
averaged images onl{ [115,]16]. The spectral method of [14 alao suboptimal, which is
likely because our tested scenes where not band limitedheraffect of input dependent noise
on the spectrum.

GP becomes tractable for image data by using the GP-griditdgowe introduce here, and
it is a convenient technology to naturally incorporate auwn performance-critical advances:
segmentation (incomplete grids) and a known noise modethAgesults show, all of these
advances are important in order for GP to be considered aadrmmework for image data.

It is common practice in image processing to mix differenthmes in order to improve the
overall results, e.g., alternate methods close to an edtggrating GP-grid together with other
state-of-the-art interpolation methods to achieve furim@rovement is an interesting topic for
future work.
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Fig. 6. This figure illustrates the results for the segmeiitese scene i.e. the toy horse
is segmented from the background and interpolation is oalyopmed on the toy horse
portion of the image. The first two rows show results for theshmbject when discarding
the information of the background. The white pixels indiclatcations that where not used
in the analysis. The bottom two rows show results when periftg interpolation on the
background part of the image, i.e. excluding the horse froenscene. The left column
shows the noisy test images, middle column shows the hetogf the absolute normal-
ized error, and the right column shows a comparison betweesix different interpolation
methods tested.
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