
Scaling Multidimensional Gaussian Processes using Projected
Additive Approximations

Elad Gilboa gilboae@ese.wustl.edu

Washington University, St. Louis, USA

Yunus Saatçi yunus.saatci@gmail.com

University of Cambridge, Cambridge, UK

John P. Cunningham cunningham@wustl.edu

Washington University, St. Louis, USA

Abstract

Exact Gaussian Process (GP) regression has
O(N3) runtime for data size N , making
it intractable for large N . Advances in
GP scaling have not been extended to the
multidimensional input setting, despite the
preponderance of multidimensional applica-
tions. This paper introduces and tests a novel
method of projected additive approximation
to multidimensional GPs. We illustrate the
power of this method on several datasets,
achieving performance close to the naive Full
GP at orders of magnitude less cost.

1. Introduction

Gaussian Processes (GP) have become a popular tool
for nonparametric Bayesian regression. Naive GP re-
gression has O(N3) runtime (due to matrix inversions
and determinants) and O(N2) memory complexity,
where N is the number of observations. At ten thou-
sand or more, this problem is for all practical purposes
intractable, given current hardware.

A significant amount of research has gone into
sparse approximations, reducing run-time complex-
ity to O(M2N) for some M ! N . For an ex-
cellent review of sparse GP approximations, see
(Quiñonero-Candela & Rasmussen, 2005). All sparse
approximation methods are based on the assumption
of conditional independence of the training and test
sets, given an active set of inducing inputs. As empha-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

sized in (Quiñonero-Candela & Rasmussen, 2005), the
results of these algorithms can depend strongly on the
properties of the data. Since different assumptions fit
different datasets, and since sparsity has by no means
solved all efficiency issues for GPs, it is imperative to
explore alternative avenues for attaining scalability.

The central aim of this paper is to introduce a new
algorithm, based on the classical projection pursuit
method, for structured GPs of multidimensional in-
puts. We say a GP is structured if its marginals
p(f |X, θ) contain exploitable structure that enables
reduction in computational complexity (where X =
{xn}Nn=1,xn ∈ Rd are the training inputs, θ is the vec-
tor of the hyperparameters, and f is the unknown func-
tion). While these structured GP methods are known
in the case of scalar inputs, here we explore the non-
trivial extensions required for multidimensional input
spaces.

1.1. Gaussian Process Regression

In brief, GP regression is a Bayesian method for non-
parametric regression, where a prior distribution over
continuous functions is specified via a Gaussian pro-
cess. The use of GP in machine learning is well de-
scribed in (Rasmussen & Williams, 2006).

A GP is a distribution on f over an input spaceX such
that any finite selection of input locations x1, . . . ,xN ∈
X gives rise to a multivariate Gaussian density over
the associated targets, i.e.,

p(f(x1), . . . , f(xN)) = N (mN ,KN), (1)

where mN = m(x1, . . . ,xN) is the mean vector and
KN = {k(xi,xj)}i,j is the covariance matrix for mean
functionm and covariance function k. In this paper we
are specifically interested in the computational burden

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

of the basic equations for GP regression, which involve
two steps. First, for given data y ∈ RN (making the
standard assumption of zero-mean data, without loss
of generality), we calculate the predictive mean and
covariance at M unseen inputs as:

µ! = KMN

(
KN + σ2

nIN
)−1

y, (2)

Σ! = KM −KMN

(
KN + σ2

nIN
)−1

KNM , (3)

For model selection, since the covariance function
k(·, ·; θ) is parameterized by hyperparameters such as
amplitude and lengthscale (which we group into θ), we
must consider the log marginal likelihood Z(θ):

logZ(θ) = −1

2
[y"(KN + σ2

nIN)−1y +N log(2π)

(4)

+ log |KN + σ2
nIN |

]
.

Here we use this marginal likelihood to opti-
mize over the hyperparameters in the usual way
(Rasmussen & Williams, 2006). The runtime of GP
regression and hyperparameter learning is O(N3) due

to the term
(
KN + σ2

nIN
)−1

, which is present in all
equations.

1.2. Gauss-Markov Processes

We briefly review the use of Gauss-Markov Processes
for efficient GP regression on scalar inputs, as a start-
ing point for the multidimensional extensions in Sec-
tion 2. Although Gauss-Markov Processes are well
studied, their use for exact and efficient GP regression
is underappreciated. A GP with a kernel correspond-
ing to a state-space model can be viewed as a Gauss-
Markov Process, enabling linear runtime. Gauss-
Markov Processes can be viewed as the solution of an
order-m linear, stationary stochastic differential equa-
tion (SDE), given by:

dz(x)

dx
= Az(x) + Lw(x), (5)

where

z(x) =

[
f(x),

df(x)

dx
, . . . ,

dm−1f(x)

dxm−1

]"
, (6)

and where L = [0, 0, . . . , 1], A is the coefficient matrix,
and w(x) is a zero-mean white noise process. Eq. (??)
shows that, given knowledge of f(x) and its first m
derivatives, we have Markov structure in the graph un-
derlying GP inference, which will enable all efficiency
gains in this section.

Earlier work (Hartikainen & Särkkä, 2010; Saatci,
2011), derived the SDEs corresponding to several com-
monly used covariance functions including the Matérn

family and spline kernels, and good approximate
SDEs corresponding to the exponentiated-quadratic
kernel. Once the SDE is known, the Kalman filtering
and Rauch-Tung-Striebel (RTS) smoothing algorithms
(which correspond to belief propagation) can be used
to perform GP regression in O(N) time and memory,
a noteworthy leap in efficiency1.

2. GP Regression for Multidimensional
State-Space Models

For the purposes of extending one-dimensional Gauss-
Markov Processes (Sec. 1.2) to multiple dimensions,
we will initially consider the simplifying assumption
of additivity, for which we will present two efficient al-
gorithms. However, since the assumption of additivity
is usually too strong for real problems, in Section 2.2
we will extend the modeling power by considering an
additive model in a feature space.

2.1. Additive GP regression

Additive GP regression can be described using the fol-
lowing generative model:

yi =
D∑

d=1

fd(Xi,d) + ε i = 1, . . . , N, (7)

fd(·) ∼ GP (0, kd(xd,x
′
d; θd)) d = 1, . . . , D,

ε ∼ N (0,σ2
n),

where Xi,d is the d-th component of input i, kd(·, ·) is
the kernel of the scalar GP along dimension d, θd rep-
resent the dimension-specific hyperparameters, and σ2

n

is the (global) noise hyperparameter (Duvenaud et al.,
2011). The resulting model regresses a sum of D
Gauss-Markov Processes (which are independent a pri-
ori), where D > 1 is the dimensionality of the input
space.

As described in (Hastie et al., 2009), a nonparamet-
ric regression technique (such as the spline smoother)
which allows a scalable fit over a scalar input space can
be used to fit an additive model over a D-dimensional
space with the same overall asymptotic complexity, by
means of the backfitting algorithm. Surprisingly, the
application of backfitting (Algorithm 1) can be proved
to converge to the exact posterior mean. The easiest
way to see this is by viewing (Algorithm 1) as a Gauss-
Seidel iteration. As a reminder, Gauss-Seidel is an it-
erative technique to solve linear systems, in this case

1Note that the Gauss-Markov Process framework re-
quires sorted input points. Else, a preprocessing step of
O(N logN) is needed.

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

Algorithm 1 Efficient Computation of Additive GP
Posterior Mean via Backfitting

Input: Training data {X,y}. Suitable covariance

function. Hypers θ =
⋃D

d=1{θd} ∪ σ2
n.

outputs: Posterior training means:
∑D

d=1 µd,
where µd ≡ E(fd|y,X, θd,σ2

n).

Zero-mean the targets y
Initialise the µd (e.g. to 0)
while The change in µd is above a threshold do

for d = 1, . . . , D do
µd ← E(fd|y −

∑
j $=d µj ,X:,d, θd,σ2

n)
end for

end while

solving for the exact posterior mean. It is precisely the
additive Gauss-Markov Process structure that makes
the backfitting update equivalent to a Gauss-Seidel
step, the details of which can be found in our pre-
liminary work (Saatci, 2011).

To calculate posterior variances and learn hyperpa-
rameters, we must investigate further. The observed
variables are the targets y, and the latent variables Z
consist of the D Markov chains:

Z ≡

z11, . . . , z
N
1︸ ︷︷ ︸

≡Z1

, z12, . . . , z
N
2︸ ︷︷ ︸

≡Z2

, . . . , z1D, . . . , zND︸ ︷︷ ︸
≡ZD

 . (8)

The true posterior p(Z1, . . . ,ZD|y,X, θ) is hard to
handle computationally because all variables Zi are
coupled in the posterior. Although everything is still
Gaussian, we are no longer able to use the efficient
state-space methods of Section 1.2, returning us to
the original computational intractability at large N .
Thus, we require an approximate inference technique
such as variational Bayesian expectation maximiza-
tion (VBEM) or Markov Chain Monte Carlo (MCMC)
(e.g., (Bishop, 2007)).

We now briefly introduce our use of these well-known
technologies, as the details will demonstrate the im-
portant connection to the backfitting algorithm. Note,
that the main benefits of using these algorithms comes
from their scalability as they are able to inherit the lin-
ear time complexity of the state-space model.

Variational-Bayesian Expectation
Maximization

E-Step: We use a variational-Bayesian (VB) approxi-
mation to the E-step by making the standard assump-
tion of an approximate posterior that factorizes across

the Zi, i.e.,

q(Z) =
D∏

i=1

q(Zi). (9)

Given such a factorized approximation, it can be
shown that KL(q(Z)||p(Z|y, θ)) can be minimized in
an iterative fashion, using the following central update
rule (Bishop, 2007):

log q(Zj) = Ei $=j(log p(y,Z|θ)) + const. (10)

where Ei $=j(·) is an expectation with respect to∏
i $=j q(Zi). Using Eqs. (7) and (8), we derive the iter-

ative updates required for VBEM. We first write down
the log joint over all variables, given by:

log(p(y,Z|θ)) =
N∑

n=1

log p

(
yn|hT

D∑

d=1

ztd(n)d ,σ2
n

)

+
D∑

d=1

N∑

t=1

log p(ztd|zt−1
d , θd), (11)

where we have defined p(ztd|z
t−1
d , θd) ≡ p(z1d|θd), for

t = 1, and hT z gives the first element of z. Note that
it is also necessary to define the mapping td(·) which
gives, for each dimension d, the state-space model in-
dex associated with yn. The index t iterates over the
sorted input locations along axis d. Because the ex-
pectation of the right hand side of Eq. (8) does not
depend on zj , it will only have an effect on the first
term of Eq. (??), allowing us to write:

log q(Zj)

=
N∑

n=1

logN

yn − hT
∑

i $=j

E
[
ztd(n)i

]
|hT z

tj(n)
j ,σ2

n

+
N∑

t=1

log p(ztj |zt−1
j , θj) + const, (12)

where E
[
zki
]

=
∫
zki q(Zi)dZi. A key and

somewhat surprising outcome of Eq. (9) is that
in order to update the factor q(Zj) in the
E step, it is sufficient to run the standard
state-space model inference procedure using only

the pseudo-observations:
(
yn − hT ∑

i $=j E
[
ztd(n)i

])

(Barber et al., 2011). There are a number of conclu-
sions that can be drawn from this connection. First,
since VB iterations are guaranteed to converge, any
moment computed using the factors q(Zi) is also
guaranteed to converge. Convergence of these mo-
ments is important because they are used to learn
the hyperparameters. Second, since the true poste-
rior p(Z1, . . . ,ZD|y, θ) is a large joint Gaussian over

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

all the latent variables, Eq(Z) will be equal to the true
posterior mean. We will further detail these impor-
tant conclusions in the Supplementary material (Sec-
tion A). It is also interesting that the central VBEM
update is precisely a backfitting update, thus illustrat-
ing a novel connection between approximate Bayesian
inference for additive models and classical estimation
techniques. Furthermore, this provides an alterna-
tive proof of why backfitting computes exact posterior
means over latent function values.

M-Step: We must optimize Eq (log p(y,Z|θ)) over
θ. Using Eq. (??) it is easy to show that the ex-
pected sufficient statistics required to compute deriva-
tives with respect to θ are the set of expected suf-
ficient statistics for the state-space model associated
with each individual dimension. This separability is
another major advantage of using the factorized ap-
proximation to the posterior. Thus, for every dimen-
sion d, we use the Kalman filter and RTS smoother

to compute
{
Eq(Zd)(z

n
d)
}N
n=1

,
{
Vq(Zd)(z

n
d)
}N
n=1

and
{
Eq(Zd)(z

n
dz

n+1
d)

}N−1

n=1
. We then use these expected

statistics to compute derivatives of the expected com-
plete data log-likelihood with respect to θ and use
a standard minimizer (we use a conjugate gradient
method) to complete the M step.

Markov Chain Monte Carlo (MCMC)

An important and customary comparison to VB is
MCMC, which carries the usual benefits of approxi-
mate hyperparameter integration, but at a reduced ef-
ficiency. Here we briefly discuss our fairly standard
MCMC implementation, noting only the important
differences.

As in standard MCMC, we extend the model to in-
clude a prior over the hyperparameters. The hyper-
parameters for each univariate function fd are given a
prior parameterized by {µl, vl,ατ ,βτ}, where {µl, vl}
correspond to the covariance function hyperparame-
ter ' and {ατ ,βτ} to τd. We also place a Γ(αn,βn)
prior over the noise precision hyperparameter τn. We
run Gibbs sampling where we block-sample the latent
chains. The algorithm used to sample from the latent
Markov chain in a state-space model has been called
the forward-filtering, backward sampling algorithm,
where forward filtering is followed by a backward sam-
pling from the conditionals p(zk|zsample

k+1 ;y;X:,d; θd)
(Douc et al., 2011). The sampling is initialized by
sampling from p(zK |y;X:,d; θd), which is computed in
the final step of the forward filtering run, to produce
zsample
K . The forward-filtering, backward sampling al-
gorithm generates a sample of the entire state vector
jointly (over training and test input locations).

2.2. Efficient Projected Additive GP
Regression

In this section, we will present the main contribution
of this paper – projection pursuit Gaussian Process
regression (PPGPR).

So far, we have shown how the assumption of additiv-
ity can be exploited to derive non-sparse GP regres-
sion algorithms which scale as O(N). These consid-
erable efficiency gains can however decrease accuracy
and predictive power versus a full unstructured GP,
due to the limited expressivity of the simple additive
model. To address this, we now demonstrate a relax-
ation of the additivity assumption without sacrificing
the O(N) scaling, by considering an additive GP re-
gression model in a feature space linearly related to
original space of covariates (Snelson & Ghahramani,
2006).

We show that learning and inference for such a model
can be performed by using projection pursuit GP re-
gression, a novel fusion of the classical projection pur-
suit regression algorithm with GP regression, with no
change to computational complexity. We refer to the
following projected additive GP prior:

yi =
M∑

m=1

fm(φm(i)) + ε, (13)

φm = Xwm, (14)

fm(·) ∼ GP
(
0, km(φm,φ′

m; θm)
)
, (15)

ε ∼ N (0,σ2
n).

for i = 1, . . . , N , and m = 1, . . . ,M . Each of the linear
projections {w1,w2, . . . ,wM} projects the D dimen-
sional input space to a different scalar input space.
Notice that the number of projections, M , can be less
or greater than D. Forming linear combinations of
the inputs before feeding them into an additive GP
model significantly enriches the flexibility of the func-
tions supported by the prior above, including many
terms which are formed by taking products of covari-
ates, and thus can capture relationships where the co-
variates jointly affect the target variable. In fact, Eqs.
(10) through to (12) are identical to the standard neu-
ral network model where the nonlinear activation func-
tions are modeled using GPs.

Consider the case where M = 1. In this case, the
resulting projected additive GP regression model re-
duces to a scalar GP with inputs given by Xw1. Re-
call from Section 1.2 that, for a kernel that can be
represented as a state-space model, we can use the EM
algorithm to optimize θ with respect to the marginal
likelihood efficiently, for some fixed w1. It is possible
to extend this idea and jointly optimize w1 and θ with

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

respect to the marginal likelihood, although we opt to
optimize the marginal likelihood directly. Notice that
every step of this optimization scales as O(N), since at
every step we need to compute the marginal likelihood
of a scalar GP (and its derivatives). These quantities
are computed using the Kalman filter by differentiat-
ing the Kalman filtering process with respect to w1

and θ. This process is described in detail in Supple-
mentary material (Section B).

We now handle the case where M > 1 using a greedy
approach. At each iteration we find the optimal pro-
jection weightwm. The greedy nature of the algorithm
allows the learning of the dimensionality of the feature
space, M , rather naturally – one keeps on adding new
feature dimensions until there is no significant change
in performance (e.g., normalized mean-squared error).
One important issue which arises involves the initial-
ization of the projection vector wm at step m. In
our implementation, as an educated guess, we chose
to initialize the weights as those obtained from a lin-
ear regression of X onto the target/residual vector ym.
We call this algorithm, which learns {w1,w2, . . . ,wM}
and {θ1,θ2, . . . ,θM}, projection pursuit GP regres-
sion (PPGPR). For more examples and information
please see the Supplementary material (Section B).

3. Results

In this section we will compare methods for multidi-
mensional regression on both simulated and real ex-
perimental data. For each experiment presented, we
will compare both runtime and accuracy. If a partic-
ular algorithm has a stochastic component to it (e.g.,
if it involves MCMC) its performance will be aver-
aged over 10 runs. Every experiment was composed of
training (i.e., smoothing and hyperparameter learning
given {X,y}) and testing phases. In each experiment,
we used 1000 points for test sets.

In terms of accuracy, we use two standard performance
measures: normalized mean square error (NMSE) and
test-set Mean Negative Log Probability (MNLP).

NMSE =

∑N!

i=1(y!(i)− µ!(i))
2

∑N!

i=1(y!(i)− ȳ)2
,

MNLP =
1

2N!

N!∑

i=1

[
(y!(i)− µ!(i))

2

v!(i)
+ log 2πv!(i)

]
,

where µ! ≡ E(f!|X,y, X!, θ), v! ≡ V(f!|X,y, X!, θ),
and ȳ is the training-set average target value. These
measures have been chosen to be consistent with those
commonly used in the sparse GP regression literature.
We compare runtime performance in seconds, taking
into account both the learning and prediction phases.

We test the following algorithms (with the following
names): the full naive GP implementation (Full GP),
additive models (Section 2.1) using VBEM inference
(Additive-VB) and the MCMC inference (Additive-
MCMC), projected additive models using greedy pro-
jection pursuit of Section 2.2 (PPGPR-Greedy) and a
variation of MCMC (PPGPR-MCMC). Finally, for the
sparse GP method we used the sparse pseudo-input
Gaussian process (SPGP) (Snelson & Ghahramani,
2006). For SPGP, to be conservative, we did
not learn the pseudo inputs (which can potentially
greatly increase the algorithm complexity and run-
time) but rather used a random subset of the in-
puts as the active set. For both the SPGP and the
Full GP, we used the GPML Matlab Code version
3.1 (Rasmussen & Nickisch, 2010). Also note that, for
Additive-VB and PPGPR-greedy we have set the num-
ber of outer loop iterations (the number of VBEM it-
erations for the former, and the number of projections
for the latter) to be at maximum 10 for all N . Increas-
ing this number increased the cost with no meaningful
change to accuracy, so this is a reasonable choice. All
algorithms were run both as a single thread and using a
parallel multicore, but since SPGP and Full GP do not
offer efficient implementation of the parallel schemes,
their results were the same for both cases2.

3.1. Synthetic Data Experiments

First we used synthetic data generated by the following
model:

yi =
D∑

d=1

fd(x:,d) + ε i = 1, . . . , N, (16)

fd(·) ∼ GP (0, kd((xd,x
′
d); [1, 1])) d = 1, . . . , D,

ε ∼ N (0, 0.01),

where kd(xD,x′
d; [1, 1]) is given by the Matérn(7/2)

kernel with unit lengthscale and amplitude. We used
D = 8 dimensions, and collected 15 runtimes for N
ranging from 1000 to 50000.

Figure 1 illustrates the significant computational sav-
ings attained by exploiting the structure of the addi-
tive kernel. To find the relationship between the num-
ber of inputs to the runtime, we calculated a linear
slope of the data in log-log scale. As expected, the
slope of the Full GP is close to three (2.52) due to
its cubic complexity, and all the approximation algo-

2When discussing parallel schemes we refer to only the
learning stage. As in all GP frameworks, parallelism can
always be used for prediction, since we are only interested
in the predictive marginals per test point. However, this
does not have any noticeable effect on the runtime and is
thus unimportant to the comparison.

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

rithms have runtimes that scale linearly (0.97, 0.62,
1.01, 0.98, 0.97) with the input size. We can also
see that parallel processing of the state-space model
matrices offers further improvement in scaling. These
results serve only as a rough estimate, because the
performance can depend on the chosen algorithm pa-
rameters, such as: number of outer loop iterations in
the Additive-VB, number of projections in PPGPR-
greedy, or number of samples in the MCMC methods.
This runtime/accuracy consideration should be used
when comparing the efficiency of the algorithms.

103 104101

102

103

104

N

R
un

tim
e

(s
)

↑ pumadyn8−nm7168

PPGPR−Greedy
PPGPR−MCMC
Additive−VB
Additive−MCMC
SPGP
Full−GP

Figure 1. A comparison of runtimes for efficient Bayesian
additive GP regression, with D = 8, N =
[2; 4; 6; 8; 10; 20; 30; 40; 50]×103, presented as a log-log plot.
The algorithms ran on a Linux server, once as a single
thread (dash lines) and once in a multicore parallel scheme
using 8 processors (solid lines). At N=7168, we added an
overlay of the runtime results for the pumadyn8-nm dataset
(Section 3.2) for both single ’x’ and multicore ’o’ runs.

Additionally, runtime on a modern computer is by no
means a perfect measure of algorithmic complexity.
Nonetheless, we will see that the results of Fig. 1 agree
with all the results from the real datasets. For exam-
ple, in Fig. 1 we overlay the results of one of the real
datasets, and one sees a close correspondence between
synthetic and real data. Thus, these and subsequent
results are highly representative and assert the pri-
mary point of this section: the runtime of our approx-
imation algorithms do indeed scale linearly with N ,
versus the cubic scaling of the naive GP.

Fig. 2 shows the effects of increased dimensionality on
the approximate algorithms. In this figure we show the
runtime speedup of the algorithms with respect to the
runtime of the Full GP on the synthetic data generated
with dimensionality of either D = 8 or D = 32. In all
the runs the number of inputs was set to N = 8000,

and the algorithms were run once with a single thread
(1 worker = 1W), and once using the parallel scheme (8
workers = 8W). In the multidimensional case, the pro-
jection pursuit algorithm exhibits the largest speedup,
as it allows for a reduction in the number of effec-
tive dimensions (via the greedy selection). Notably,
PPGPR-Greedy achieves consistently an order of mag-
nitude improvement over SPGP and VBEM.

0

100

200

300

400

500

syn
th−

8D
−1

W

syn
th−

32
D−

1W

syn
th−

8D
−8

W

syn
th−

32
D−

8W

Sp
ee

du
p

SPGP
VBEM
PPGPR

Figure 2. A comparison of the speed up offered by the ap-
proximation algorithms compared with exact GP. The run-
time was measured on the learning stage for three approx-
imation algorithms: sparse GP, Additive VB, and greedy
Projection-Pursuit. The comparison was done using syn-
thetic results with different dimensions (8D and 32D), and
running on both a single and multicore (8-core) computer.

3.2. Real Data Experiments

Next, we extend the comparison to real datasets, which
will allow thorough accuracy comparisons. We test
over seven well-known datasets. These data sets are:
synth-8D (N = 8000 synthetic data from Section 3.1).
Next, the pumadyn family is a robotic arm dataset, and
consists of three datasets: pumadyn8-fm1000 (N =
1000, fairly linear data with D = 8 dimensions),
pumadyn8-fm7168 (N = 7168, fairly linear data with
D = 8 dimensions), pumadyn32-nm (N = 7168, highly
nonlinear data with D = 32). Elevators dataset
consists of the current state of the f16 aircraft (N =
8752, 17-dimensional) (Alcalá-Fdez et al., 2011), and
kin40k is a highly nonlinear dataset (N = 10000, 8-
dimensional)3. Fig. 3 demonstrates the central anal-
ysis of this section. In each subplot, we calculate
speedup, MNLP, and NMSE across all seven datasets
and six algorithmic options. To reiterate, we compare
our PPGPR algorithm to the two additive methods of
Section 2, SPGP (Snelson & Ghahramani, 2006) and
a naive full GP implementation. The top subplot in
Fig. 3 indicates the substantial speedups offered by all

3Pumadyn and Kin40k datasets are from the DELVE
archive. Elevators from KEEL archive.

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

algorithms over the full GP, with the exception only
of the N = 1000 dataset (pumadyn8-fm1000; this is
not surprising given small N). Further, as indicated
in Figure 1, our PPGPR-Greedy achieves the largest
speedup across all datasets, and in most cases the error
(MNLP and NMSE) is the same as competing meth-
ods. The first four or five datasets tell a very similar
accuracy story across PPGPR-Greedy, SPGP, and the
full GP. We also see that the simple additive models
almost always underperform in accuracy, which is as
expected given their limited expressivity compared to
PPGPR-Greedy. The one exception where Additive-
VB outperforms PPGPR-Greedy is the synthetic data
set. However, this is expected as we used an addi-
tive model to generate data and the greedy nature of
PPGPR-Greedy causes it to underperform. In the fi-
nal two datasets, we see that SPGP and the full GP
have considerably better accuracy. This may be ex-
plained as both these datasets are highly nonlinear,
making the additive assumption inaccurate.

Understanding the runtime-accuracy tradeoff based on
problem requirements is essential. As we just de-
scribed, PPGPR-greedy achieves the best runtimes
but at times with an accuracy cost. Thus we want
to quantify the notion of a runtime-accuracy trade-
off. To do so we plot all data sets and algorithms in
a runtime vs. error plot (Fig. 4), and we use the eco-
nomics concept of Pareto efficiency: efficient points
in the runtime vs error plot represent algorithms with
minimum runtime for a given error rate. Pareto inef-
ficient algorithms are then those points that are un-
ambiguously inferior. The efficient frontier is the con-
vex hull of all {runtime,error} points (algorithms) for
a given dataset. This will give us a clear picture of
which algorithms are optimal choices across a range of
datasets. Fig. 4 details this, with one efficient frontier
for each dataset (a given color). Each algorithm has a
given marker type. This immediately shows what one
would expect: the full GP implementation is typically
most accurate, but only if one is willing to invest sub-
stantial runtime. This choice is often Pareto efficient.
Secondly, most often the PPGPR-greedy is the other
efficient choice for a substantially reduced runtime, al-
beit higher error. Surprising to note is the relative
weakness of SPGP over several datasets.

Three algorithms stand out in their overall efficiency:
PPGPR-Greedy (efficient in all 7 datasets), SPGP (ef-
ficient in 4), and full GP (efficient in 6 datasets). Un-
surprisingly, the additive model is typically inferior to
the more expressive PPGPR model. The PPGPR-
Greedy is the only consistent efficient algorithm for all
datasets as it achieves the fastest runtime. However,
more interestingly, it also achieves very good accuracy

results making most other algorithms inefficient. Of
course, any trivial algorithm could achieve efficiency
by having minimal runtime and arbitrary error, but
the data demonstrates that this is not the case with
our algorithms: the PPGPR-greedy error in almost all
datasets is competitive or better than all alternatives.
Thus the frequent efficiency of PPGPR-greedy is legit-
imate.

0

50

100

150

Sp
ee

du
p

−5

0

5

M
N

LP
0

0.5

1

1.5

N
M

SE

syn
th−

8D

pu
mad

yn
8−

fm
10

00

pu
mad

yn
8−

fm
71

68

pu
mad

yn
8−

nm

ele
va

tor
s

kin
40

k

pu
mad

yn
32
−n

m

PPGPR−Greedy
PPGPR−MCMC
Additive−VB
Additive−MCMC
SPGP
FULL GP

Figure 3. These figures offer a comparison between the dif-
ferent GP methods discussed in the text, taking into ac-
count both speedup and accuracy. For comparison we used
several known datasets from literature and ran the algo-
rithms on a multicore (8-core) computer. The top figure il-
lustrates the speedup of the approximation algorithms run-
times with respect to the full GP (exact inference) runtime.
The bottom two figures show two metrics for calculating
regression accuracy.

4. Discussion and Conclusion

Gaussian Processes are perhaps the most popular non-
parametric Bayesian method in machine learning, but
their adoption across other fields - and notably in ap-
plication domains - has been limited by their burden-
some scaling properties.

While important sparsification work has somewhat ad-
dressed this scalability issue, the problem is by no
means closed. Our aim here has been to explore the
use of projected additive approximations for multidi-
mensional GP models. While PPGPR accuracy was
often slightly lower than a full GP, the linear scaling
properties of PPGPR mean that it can be efficiently
used across a much broader range of data sizes and
applications. The primary takeaway of this work is
thus: while the naive GP implementation may often

Scaling Multidimensional Gaussian Processes using Projected Additive Approximations

102 104 106

10−1

100

Runtime

N
M

SE

synth−8D pumadyn8−fm1000
pumadyn8−fm7168

pumadyn8−nm

elevators

kin40k

pumadyn32−nm

PPGPR−Greedy
PPGPR−MCMC
Additive−VB
Additive−MCMC
SPGP
FULL GP

Figure 4. The two fundamental desiderata of our algo-
rithms are accuracy and speed. Here we plot error vs run-
time to quantify the tradeoff between these two objectives
using the notion of Pareto efficiency. Every algorithm is
represented using a unique marker and with a color scheme
chosen according to the datasets. For each dataset, the
Pareto efficient frontier is shown as a color line passing
through the efficient algorithms for that dataset.

produce the highest accuracy, the PPGPR-greedy al-
gorithm that we introduced offers the best runtime-
accuracy tradeoff across many datasets and is able to
scale well beyond the realm of a naive GP.

Having fast, scalable methods for Gaussian Processes
may mean the difference between a theoretically inter-
esting approach and a method that is widely used in
practice.

References

Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac,
J., Garćıa, S., Sánchez, L., and Herrera, F. Keel
data-mining software tool: Data set repository, in-
tegration of algorithms and experimental analysis
framework. Journal of Multiple-Valued Logic and
Soft Computing, 17(2-3), 2011.

Barber, D., Cemgil, A. T., and Chiappa, S. Bayesian
Time Series Models. Cambridge University Press,
2011.

Bishop, C. M. Pattern Recognition and Machine
Learning. Springer, 2007.

Douc, R., Garivier, A., Moulines, E., and Olsson, J.
On the Forward Filtering Backward Smoothing Par-
ticle Approximations of the Smoothing Distribution
in General State Space Models. Annals of Applied
Probability, 2011.

Duvenaud, D.K., Nickisch, H., and Rasmussen, C.E.

Additive Gaussian processes. In NIPS, pp. 226–234,
2011.

Hartikainen, J. and Särkkä, S. Kalman filtering and
smoothing solutions to temporal Gaussian process
regression models. In Machine Learning for Signal
Processing (MLSP), pp. 379–384, Kittilä, Finland,
August 2010. IEEE.

Hastie, T., Tibshirani, R., and Friedman, J. H. The
elements of statistical learning: data mining, infer-
ence, and prediction. New York: Springer-Verlag,
Second edition, 2009.

Quiñonero-Candela, J. and Rasmussen, C.E. A uni-
fying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research,
6:1939–1959, December 2005.

Rasmussen, C.E. and Nickisch, H. Gaussian processes
for machine learning (gpml) toolbox. Journal of Ma-
chine Learning Research, 11:3011–3015, December
2010.

Rasmussen, C.E. and Williams, C.K.I. Gaussian Pro-
cesses for Machine Learning. The MIT Press, 2006.

Saatci, Y. Scalable Inference for Structured Gaussian
Process Models. PhD thesis, University of Cam-
bridge, 2011.

Snelson, E. and Ghahramani, Z. Sparse Gaussian pro-
cesses using pseudo-inputs. In Advances in Neural
Information Processing Systems 18, pp. 1257–1264,
Cambridge, MA, USA, December 2006. The MIT
Press.

Supplementary Material: Scaling Multidimensional Gaussian
Processes using Projected Additive Approximations

A. Conclusions of VBEM

A number of conclusions can be drawn from the fact that it is sufficient to run the standard state-space model
inference procedure using the pseudo observations to update the factors in the E step. First, since VBEM
iterations are guaranteed to converge, any moment computed using the factors q(Zi) is also guaranteed to
converge. Convergence of these moments is important because they are used to learn the hyperparameters.
Second, since the true posterior p(Z1, . . . ,ZD|y, θ) is a large joint Gaussian over all the latent variables, Eq(Z)
(the mean of the approximate posterior) will be equal to the true posterior mean. This is true because the true
posterior is Gaussian (unimodal with the mean as its mode) and the VB approximation is mode-seeking. This is
easily shown, since the mode of a multivariate Gaussian will have the same mode as the product of its marginals.
Specifically, since the VB approximation is a product of its exclusive marginals, its mode will be reached when
the marginals are at their mode, specifically

max
Z

q(Z) =
D∏

i=1

max
Zi

q(Zi).

Thus, since the marginals are Gaussian, the VB approximation is Gaussian, and its mode equals the true posterior
mean (conditioned on θ).

Although the VB approximation of the posterior mean is unbiased, as is typical for variational methods, the
posterior covariance will be underestimated because KL(q(Z)||p(Z|y, θ)) is an exclusive divergence measure
(Minka, 2005). As a result, this can cause a sense of false confidence in the estimate, and could discard important
off diagonal covariance information (Barber et al., 2011).

B. PPGPR Algorithm and Derivations

Here we expand the PPGPR algorithm and show examples of the derivations. For brevity, we will expand θ to
also include the projection weights {w1,w2, . . . ,wM}.

To begin, Figure 1 illustrates a simple example to help clarify the Projected GP structure. It can be seen from
the figure that the Additive GP is a special case of the Projected GP with unitary projections. Also, notice that
when transforming the multidimensional Full GP to a GMP model, the input space was separated and sorted
for each dimension.

The core PPGPR algorithm is detailed in Algorithm 1. As an instructive example, we give here the typical
structure of these matrices and show how to construct them in the PPGPR algorithm. We use the Mateŕn(3/2)
kernel (e.g., (Rasmussen & Williams, 2006), and we show how to derive the key algorithmic steps in Algorithm
1.

In order to construct the GMP model, we must connect the SDE of Equation (5) (main text) to a GMP model.
This involves calculating transition and observation matrices Φ and Q.

Initial state : p(z(x1)) = N (z(x1);µ,V). (S-1)

State update : p(z(xt)|z(xt−1)) = N (z(xt);Φt−1z(xt−1),Qt−1). (S-2)

Emission : p(y(xt)|z(xt)) = N (y(xt);h
"z(xt),σ

2
n). (S-3)

where the z vector is the state vector defined in Eq. (6). The vector h simply picks out the first element of
the vector z(xt) which corresponds to the latent function value inferred at location xt. Deriving the Φ, and Q

Scaling Multidimensional Gaussian Processes

matrices involves finding the A (main text Eq. (5)) matrix using the Fourier transform of the covariance function,
and solving the SDE of Eq. (1). Earlier works (Hartikainen & Särkkä, 2010; Saatci, 2011) derived these terms
for different kernels families. Extending these matrices for projected inputs, as in PPGPR, is straight forward
since each projection will result in a new GMP as in Eqs. (S-1)-(S-3). As an example, the Φ and Q matrices for
the m-th projection will result in a GMP with matrices:

Φmt−1 =
1

exp (λmδmt)

[
(λmδmt + 1) δmt

−(λ2
mδmt) (1− λmδmt)

]
, (S-4)

Qmt−1
=

1

4λ3
m
− 4δ2mt

λ2
m+4δmtλm+2

8λ3
m exp(2δmtλm)

δ2mt
2 exp(2δmtλm)

δ2mt
2 exp(2δmtλm)

1
4λm
− 2δ2mt

λ2
m−2δmtλm+1

4λm exp(2δmtλm)

 , (S-5)

where δmt = wm (xt − xt−1) is the m-th linear projection of the input space, and λm is the m-th covariance
lengthscale hyperparameter. Notice, that in PPGPR, the projections are chosen sequentially in a greedy form,
and it is never necessary to consider all the projections simultaneously. For brevity, we will omit the m subscript
notation from now on, understanding that the Φ, and Q matrices correspond to the current projection.

In order to learn the optimal hyperparameters of the covariance function we calculate the negative log marginal
likelihood (NLML) and its derivatives with respect to the hyperparameters. Finding the NLML of a GMP is
simple as the Markov property induce conditional independence between the links of the chain. Hence, the
NLML can be written as

− log (p(z(x1), z(x2), . . . , z(xN)|θ)) = − log
N∏

i=1

p(z(xi)|z(xi−1), θ) = −
N∑

i=1

log p(z(xi)|z(xi−1), θ). (S-6)

For GMP, the terms in the sum can be efficiently calculated by running a Kalman filter on the chain.

The log marginal likelihood (logZ(θ)) can be written in closed form as

L(y(i(t)), θ) =− 1

2

log 2π + log
(
h"Pt−1(θ)h+ σ2

n

)
+

(
y(i(t))− h"Φt−1(θ)µ

(f)
t−1

)2

h"Pt−1(θ)h+ σ2
n

 (S-7)

where the matrix Pt is the estimated covariance, and µ(f)
t is the estimated state, of the forward pass Kalman

filter. The i(t) function sorts the observations y according to the new projected scalar input. The derivatives

(d logZ(θ)
dθi

) are calculated in the same manner and are also summed following the Kalman forward pass.

The introduction of the projection weights in PPGPR will require the to calculate NLML derivatives with respect
to a weight components of the projection vector (d logZ(θ)

dwi
, i = 1, . . . , D). Since the projections weights are only

in the δmt term, and since these δm terms only appear in Φ and Q (Eqs. (S-4) and (S-5)), the log marginal
likelihood derivative can be written as

dL(y(i(t)), θ)

dwi
=

(
dL(y(i(t)), θ)

dPt−1

dPt−1

dδmt

+
dL(y(i(t)), θ)

dΦt−1

dΦt−1

dδmt

)
(xti − xt−1i) (S-8)

where,

dPt−1

dδmt

=
dPt−1

dΦt−1

dΦt−1

dδmt

+
dPt−1

dQt−1

dQt−1

dδmt

. (S-9)

Full details of the development, including important proofs, can be found in our preliminary work (Saatci, 2011).

Scaling Multidimensional Gaussian Processes

Figure 1. A simple example to illustrate the different models: Full GP, Additive GP, and Projected GP. The Full GP is
shown on the left for a two dimensional input space. The bold line represents a fully connected graph. The Additive
GP, and projected GP are shown on the middle, and right, respectively. Notice that in the projected GP a sort step is
performed after the projections to make it a Gauss-Markov process. The sorted outputs are written with a tilde.

References

Barber, D., Cemgil, A. T., and Chiappa, S. Bayesian Time Series Models. Cambridge University Press, 2011.

Hartikainen, J. and Särkkä, S. Kalman filtering and smoothing solutions to temporal Gaussian process regression
models. InMachine Learning for Signal Processing (MLSP), pp. 379–384, Kittilä, Finland, August 2010. IEEE.

Minka, T. Divergence measures and message passing. Technical report, Microsoft Research, 2005.

Rasmussen, C.E. and Williams, C.K.I. Gaussian Processes for Machine Learning. The MIT Press, 2006.

Saatci, Y. Scalable Inference for Structured Gaussian Process Models. PhD thesis, University of Cambridge,
2011.

Scaling Multidimensional Gaussian Processes

Algorithm 1 Gaussian Process Regression using SSMs
Input: Jointly sorted training and test input locations x. Targets y associated with training inputs. State
transition function stfunc that returns Φ and Q matrices. Hyperparameters θ.
outputs: Log-marginal likelihood logZ(θ) and its derivatives. Predictive means µ! and variances v!. E-step
moments: E(ztz!t), E(ztz!t−1)

µ(f)
0 ← µ; V(f)

0 ← V; Z(θ) = 0
for t← 1 . . .K do

if t > 1 then
[Φt−1,Qt−1]← stfunc(θ, x(t)− x(t− 1))

else
[Φt−1,Qt−1]← stfunc(θ, ∞)

end if
Pt−1 ← Φt−1V

(f)
t−1Φ

!
t−1 +Qt−1

Gt = Pt−1h
(
h!Pt−1h+ σ2

n

)−1

L(y(i(t)), θ) = log
(
P
(
y(i(t))|h!Φt−1µ

(f)
t−1,h

!Pt−1h+ σ2
n

))

logZ(θ)← logZ(θ) + L(y(i(t)), θ)
d logZ(θ)

dθi
← d logZ(θ)

dθi
+ dL(y(i(t)),θ)

dθi

µ(f)
t = Φt−1µ

(f)
t−1 +Gt[y(i(t))− h!Φt−1µ

(f)
t−1]

V(f)
t = Pt−1 −Gth

!Pt−1

end for
µK ← µ(f)

K ; VK ← V(f)
K ; µ!(K)← h!µK ; v!(K)← h!VKh

E(zKz!K)← VK + µKµ!
K

E(zKz!K−1)← (ID −GKh)ΦK−1VK−1

for t← K − 1 . . . 1 do
Lt ← VtΦ

!
t P

−1
t

µt ← µ(f)
t + Lt

(
µt+1 −Φtµ

(f)
t

)
; µ!(t)← h!µt

Vt ← V(f)
t + Lt (Vt+1 −Pt)L

!
t ; v!(t)← h!Vth

E(ztz!t)← Vt + µtµ
!
t

if t < K − 1 then
E(ztz!t−1)← V(f)

t+1L
!
t + Lt+1

(
E(zt+1z!t)−Φt+1Vt+1

)
L!
t

end if
end for

