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Abstract

Bayesian optimization is a powerful frame-
work for minimizing expensive objective
functions while using very few function eval-
uations. It has been successfully applied to a
variety of problems, including hyperparam-
eter tuning and experimental design. How-
ever, this framework has not been extended
to the inequality-constrained optimization
setting, particularly the setting in which eval-
uating feasibility is just as expensive as eval-
uating the objective. Here we present con-
strained Bayesian optimization, which places
a prior distribution on both the objective and
the constraint functions. We evaluate our
method on simulated and real data, demon-
strating that constrained Bayesian optimiza-
tion can quickly find optimal and feasible
points, even when small feasible regions cause
standard methods to fail.

1. Introduction

Bayesian optimization has become a popular tool
to solve a variety of optimization problems where
traditional numerical methods are insufficient. For
many optimization problems, traditional global opti-
mizers will effectively find minima (Liberti & Maculan,
2006; Zhigliavskii, 2008). However, these methods re-
quire evaluating the objective function many times.
Bayesian optimization is designed to deal specifically
with objective functions that are prohibitively expen-
sive to compute repeatedly, and therefore must be eval-
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uated as few times as possible. A popular application
is hyperparameter tuning, where the task is to min-
imize the validation error of a machine learning al-
gorithm as a function of its hyperparameters (Snoek
et al., 2012; Bardenet et al., 2013; Swersky et al., 2013).
In this setting, evaluating the objective function (vali-
dation error) requires training the machine learning al-
gorithm and evaluating it on validation data. Another
application is in experimental design, where the goal
is to optimize the outcome of some laboratory experi-
ment as a function of tunable parameters (Azimi et al.,
2010b). In this setting, evaluating a specific parame-
ter setting incurs the cost of the resources—materials,
money, time, etc.—required to run the experiment.

In addition to expensive evaluations of the objective
function, many optimization programs have similarly
expensive evaluations of constraint functions. For ex-
ample, to speed up k-Nearest Neighbor classification
(Cover & Hart, 1967), one may deploy data structures
for approximate nearest neighbor search. The parame-
ters of such data structures,e.g. locality sensitive hash-
ing (LSH) (Gionis et al., 1999; Andoni & Indyk, 2006),
represent a trade-off between test time and test accu-
racy. The goal of optimizing these hyperparameters
is to minimize test time, while constraining test accu-
racy: a parameter setting is only feasible if it achieves
the same accuracy as the exact model. Similarly, in the
experimental design setting, one may wish to maximize
the yield of a chemical process, subject to the con-
straint that the amount of some unwanted byproduct
produced is below a specific threshold. In computer
micro-architecture, fine-tuning the particular specifi-
cations of a CPU (e.g. L1-Cache size, branch predic-
tor range, cycle time) needs to be carefully balanced
to optimize CPU speed, while keeping the power usage
strictly within a pre-specified budget. The speed and
power usage of a particular configuration can only be



evaluated with expensive simulation of typical work-
loads (Azizi et al., 2010). In all of these examples, the
feasibility of an experiment is not known until after
the experiment had been completed, and thus feasibil-
ity can not always be determined in advance. In the
context of Bayesian optimization, we say that eval-
uating feasibility in these cases is also prohibitively
expensive, often on the same order of expense as eval-
uating the objective function. These problems are par-
ticularly difficult when the feasible region is relatively
small, and it may be prohibitive to even find a feasible
experiment, much less an optimal one.

In this paper, we extend the Bayesian optimiza-
tion framework naturally to scenarios of optimiz-
ing an expensive-to-evaluate function under equally
expensive-to-evaluate constraints. We evaluate our
proposed framework on two simulation studies and
two real world learning tasks, based on LSH hyperpa-
rameter tuning (Gionis et al., 1999) and SVM model
compression (Bucilu et al., 2006; Burges & Schélkopf,
1997).

Across all experiments, we outperform uniform sam-
pling (Bergstra & Bengio, 2012) on 13 out of 14
datasets—including cases where uniform sampling fails
to find even a single feasible experiment.

2. Background

To motivate constrained Bayesian optimization, we be-
gin by presenting Bayesian optimization and the key
object on which it relies, the Gaussian process.

2.1. Gaussian Processes

A Gaussian process is an uncountable collection of
random variables, any finite subset of which have
a joint Gaussian distribution. A Gaussian process
thus provides a distribution over functions £(-) ~
GP (u(-),k(-,-)), parameterized by mean function pu(-)
and covariance kernel k(-,-), which are defined such
that, for any pairs of input points x,x’ € R, we have:

n(x) = E[l(x)]
k(x,x') = E[(l(x) — p(x)(Ux) — n(x))]-
Given a set of input points X = {x1,...,Xp},

the corresponding function evaluations ¢(X) =
{4(x1),...,4(xp)}, and some query point X, the joint
Gaussianity of all finite subsets implies:
k(X,X)
k(x,%) ’
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where we have (in the standard way) overloaded the

(%) p(x) k(%, X)
functions £(-), u(-), and k(-,-) to include elementwise-

operation across their inputs. We then can calculate
the posterior distribution of £(-) at the query point
%, which we denote £(%) := p (£(%X)|%,X, £(X)). Using
the standard conditioning rules for Gaussian random
variables, we see /(X) ~ N (ﬂg(f{), 5]5(&)), where:
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(X)) = px) +EE X)X, X)"
k(% X) = k(% X)k(X,

A full treatment of the use of Gaussian processes for
machine learning is Rasmussen (2006). In the con-
text of this work, the critical takeaway is that, given
observed function values ¢(X) = {{(x1), ..., {(xp) }, we
are able to update our posterior belief /(X) of the func-
tion £(-) at any query point, with simple linear algebra.

HUX) = (X))
X) (X, %).

2.2. Bayesian optimization

Bayesian optimization is a framework to solve pro-
grams:

min £(x),
X

where the objective function ¢(x) is considered pro-
hibitively expensive to evaluate over a large set of val-
ues. Given this prohibitive expense, in the Bayesian
formalism, the uncertainty of the objective £(-) across
not-yet-evaluated input points is modeled as a proba-
bility distribution. Bayesian optimization models #(-)
as a Gaussian process, which can be evaluated rela-
tively cheaply and often (Brochu et al., 2010). At each
iteration the Gaussian process model is used to select
the most promising candidate x* for evaluation. The
costly function £ is then only evaluated at £(x*) in this
iteration. Subsequently, the Gaussian process natu-
rally updates its posterior belief £(-) with the new data
pair (x*,¢(x*)), and that pair is added to the known
data set Ty = {(x1,4(x1)), .- (Xn, £(Xx5))}. This itera-
tion can be repeated to iterate to an optimum.

The critical step is the selection of the candidate point
x*, which is done via an acquisition function that
enables active learning of the objective £(-) (Settles,
2010). The performance of Bayesian optimization de-
pends critically on the choice of acquisition function.
A popular pick is the Ezpected improvement of a can-
didate point (Jones et al., 1998; Mockus et al., 1978).
Let x be some candidate point, and let ¢(X) be the
Gaussian process posterior distribution for £(X). Let
xT be the best point in Ty (evaluated thus far), namely:

xt = min /(x).
xETe

Following Mockus et al. (1978), we then define the im-
provement of the candidate point X as the decrease of



{(x) against £(xT), which due to our Gaussian process
model is itself a random quantity:

[(%) = max {o, o(x*) — Z(fc))} , (1)

and thus the expected improvement (EI) acquisition
function is the expectation over this truncated Gaus-
sian variable:

EI(%) =E [f(fc)bi} . 2)

Mockus et al. (1978); Jones et al. (1998) derive an easy-
to-compute closed form for the EI acquisition function:

EI%) = 35(%)(Z22(2)+6(2))

with: Z = M
3o (x)

where @ is the standard normal cumulative distribu-
tion function, and ¢ is the standard normal probabil-
ity density function. In summary, the Gaussian pro-
cess model within Bayesian optimization leads to the
simple acquisition function EI(X) that can be used to
actively select candidate points.

3. Method

In this paper we extend Bayesian Optimization to in-
corporate inequality constraints, allowing problems of
the form

min £(x). 3

nin, £(x) (3)
where both ¢(x) and c¢(x) are the results of some ex-
pensive experiment. These values may often be the
result of the same experiment, and so when we con-
duct the experiment, we compute both the value of
¢(x) and that of ¢(x).

3.1. Constrained Acquisition Function

Adding inequality constraints to Bayesian optimiza-
tion is most directly done via the EI acquisition func-
tion, which needs to be modified in two ways. First,
we augment our definition of xT to be the feasible
point with the lowest function value observed in 7.
Second, we assign zero improvement to all infeasible
point. This leads to the following constrained improve-
ment function for a candidate x:

Io(%) = A(%) max {0, 6(xT) — (%)} = AR)I(X)

where A(%) € {0, 1} is a feasibility indicator function
that is 1 if ¢(%) < A, and 0 otherwise.

Because ¢(x) and ¢(x) are both expensive to com-
pute, we again use the Bayesian formalism to model

each with a conditionally independent Gaussian pro-
cess, given x. During Bayesian optimization, after we
have picked a candidate x to run, we evaluate ¢(x) and
place (%,4(%X)) in Ty as previously, and we also now
evaluate ¢(X) and add (%,c¢(x)) to the set T, which
is then used to update the Gaussian process posterior
é(x) ~ N(fic(x),Xc(x)) as above.

With this model, our Gaussian process models the con-
strained acquisition function as the random quantity:

Io(x) = A(x) max {0,€(x+) - g(x))} = Ax)I(x),
where the quantity A(x) is a Bernoulli random vari-
able with parameter:

A

PF(x):=Prie(x) <\ = / p(e(X)|%, To)de(X)
—00

Conveniently, due to the marginal Gaussianity of ¢(%),

the quantity PF(X) is a simple univariate Gaussian

cumulative distribution function.

These steps completed, we now result with the expected
constrained improvement acquisition function:

Elc(x) =

= P

where the third equality comes from the conditional
independence of ¢(x) and ¢(x), given x.

Thus the expected constrained improvement acqui-
sition function Elo(X) is precisely the standard ex-
pected improvement of X over the best feasible point
so far weighted by the probability that x is feasible.

It is worth noting that, while infeasible points are
never considered our best experiment, they are still
useful to add to Ty and 7. to improve the Gaussian pro-
cess posteriors. Practically speaking, infeasible sam-
ples help to determine the shape and descent directions
of ¢(x), allowing the Gaussian process to discern which
regions are more likely to be feasible without actually
sampling there. This property—that we do not need
to sample in feasible regions to find them—will prove
highly useful in cases where the feasible region is rel-
atively small, and otherwise uniform sampling would
have difficulty finding these regions.

3.2. Multiple Inequality Constraints

It is possible to extend the above derivation to per-
form Bayesian optimization with multiple inequality



constraints.
min X
oin f(x)

where ¢(x)= [c1(X), ..., cx(x)] and A = [\, ..., A\x]. We

simply redefine A(x) as the Bernoulli random variable
with E [A(x)] = p(E1(X) < A,y @n(x) < ), and
the remainder of the ET.(X) constrained acquisition
function is unchanged.

Note that p(é1(x) < A1,...,(x) < Ag) is a multi-
variate Gaussian probability. In the simplest case, we
assume the constraints are conditionally independent
given x, which conveniently factorizes the probability
as Hle p(¢;(x)), a product of univariate Gaussian cu-
mulative distribution functions. In the case of depen-
dent constraints, this multivariate Gaussian probabil-
ity can be calculated with available numerical methods
(Cunningham et al., 2011).

4. Results

We evaluate our cBO framework on two synthetic tasks
and two real world applications. In all cases we com-
pare ¢cBO with function minimization by uniform sam-
pling, an approach that is generally considered com-
petitive (Bergstra & Bengio, 2012) and typically more
efficient than grid-searching (Bishop, 2006). Our im-
plementation is written in MATLABTM. In order
to not introduce additional hyper-parameters through
the Bayesian optimization, we apply the standard ap-
proach to set all GP hyper-parameters on-the-fly with
maximum likelihood estimation (Rasmussen, 2006).
We will release our code and all scripts to reproduce
the results in this section at http://anonymized.

4.1. Simulation Function

For the purpose of visualizing our method, we first
evaluate it on two simulations with 2d objective and
constraint functions. Both ¢cBO and uniform sampling
were allowed 30 evaluations of ¢(-) and ¢(-).

Simulation 1.
function is

For the first simulation, the objective

U(x,y) = cos(2x) cos(y) + sin(z),
which we want to minimize subject to the constraint
c(x,y) = cos(x) cos(y) — sin(x) sin(y) < 0.5.

The upper row of figure 1 depicts the contour plots
of these functions, as well as the function evaluations
initiated by the ¢BO optimization and uniform sam-
pling. The infeasible regions are made opaque in the

two right plots. Black X symbols indicate infeasible lo-
cations at which £(-) and ¢(-) were evaluated. Circles
(black with white filling) indicate feasible evaluations.
After a short amount of time, cBO narrows in on the
global minimum of the constrained objective (the dark
blue spot in the top right corner). In contrast, uniform
sampling misses the optimum and wastes a lot of eval-
uations (22/30) outside the feasible region (top right
plot). It is noteworthy that ¢cBO also initiates multiple
evaluations outside the feasible regions (14/30), how-
ever these are very close to the global minimum (top
right) or at the infeasible second minimum (dark blue
spot at the bottom right), thus exploring the edge of
feasibility where it matters the most.

Simulation 2. In the second simulation, we demon-
strate how ¢BO can quickly find the minimum feasible
value of a function even when this feasible region is
very small. Here, the objective function (to be mini-
mized) is

(z,y) = sin(z),
subject to the constraint
c(z,y) = sin(z) sin(y) < —0.95.

The results of this simulation are displayed in the lower
row of figure 1. The feasible regions are small enough
that uniform sampling might take some time to sam-
ple a feasible point, and none of the 30 samples are
feasible. By contrast, cBO is quickly able to use infea-
sible samples to sufficiently learn the constraint func-
tion c(z,y) to locate the feasible regions. In addition,
the infeasible samples are sufficient for cBO to learn
to avoid the left half of the objective function, and the
majority of samples are on the right half.

4.2. Locality Sensitive Hashing

As a first real world task, we evaluate cBO by selecting
parameters for locality-sensitive hashing (LSH) (Gio-
nis et al., 1999; Andoni & Indyk, 2006) for approximate
k-nearest neighbors (kNN) (Cover & Hart, 1967). We
begin with a short description of LSH and the con-
strained optimization problem. We then present the
performance of ¢cBO alongside the uniform baseline.

Locality-sensitive hashing (LSH) is an approximate
method for nearest neighbor search based on random
projections. The overall intuition is that nearest neigh-
bors always stay close after projections. LSH defines
j random projections, or hash functions, hq,...,h;.
This ‘hashing’ is performed multiple times, in sets of j
hash functions, and each set is called a hash table. For
further details we refer the interested reader to a re-
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Figure 1. Left and center left: Contour plots of objective £(z,y) and constraint function c(z,y) used for simulation.
center right: Bayesian optimization with the ECI acquisition function. right: uniform sampling. Areas shaded in white
are infeasible regions. White circle indicate feasible points, and black crosses indicate infeasible points.

view by Slaney & Casey (2008).! The key idea is that
these hyper-parameters of LSH (the number of hash
functions j and the number of hash tables L) create a
tradeoff between speed and accuracy.

Ideally, one wants to search for the fastest setting that
does not impact the classification error. Formally, the
constraint function ¢(j, L) is the leave-one-out (LOO)
classification error obtained with the LSH data struc-
ture with j hash functions and L hash tables. Let €
denote the LOO classification error without LSH. Then
our constraint is ¢(j, L) < e. Our objective, £(4, L), is
the time required to compute the LOO kNN classifi-
cation error on the training set, which we aim to min-
imize. We allow both ¢cBO and uniform sampling to
perform 100 function evaluations to find such feasible
settings of j and L.

Evaluation. Table 2 shows results for learning these
LSH parameters under the LOO constraint on 8 pop-
ular datasets for face detection ( YaleFaces) (Georghi-
ades et al., 2001), insurance policy prediction (COIL),
letter recognition from audio and font-specific features
(Isolet and Letters), income and webpage classifica-
tion (Adult and W8a), and optical character recog-
nition (USPS, MNIST). We subsampled the training
data of three of the larger datasets to 10% (marked
in the table with an asterisk). We compare ¢cBO with

"'We use the LSH implementation from the Caltech Im-
age Search Toolbox, http://tinyurl.com/caltechLSH.

Table 1. LSH results for selecting the number of hash ta-
bles and functions for approximate kNN search. We show
the KNN evaluation time and the percentage of sampled
points that were infeasible on 8 real-world datasets for BO-
ECI, as well as uniform sampling.

LSH
SPEEDUP % INFEASIBLE

DATASET cBO | UnirorM | ¢cBO | UNIFORM
YALEFACES | 6.08 X% 3.97x 25% 67%
COIL 32.0x 8.17x 61% 80%
ISOLET 4.70% 5.18x 50% 80%
USPS 4.10x 3.03x 27% 67%
LETTERS 1.28 % 0.56 % 68% 96%
ADULT* 8.63x 1.34x 70% 69%
W8A* 3.27x 2.85x 60% 55%
MNIST* 1.87x 1.42x 52% 62%

uniform sampling of the LSH parameters (both op-
timized over the same range). The table shows the
speedup obtained with the final LSH model over stan-
dard Euclidean kNN search. In all but one case is the
cBO-selected model faster than the one obtained with
uniform sampling.

Figure 2 shows the traceplots of the fastest feasible
LSH ENN time as a function of sample iterations on
the Coil and Adult data sets. The red and blue dots
depict iterations in which feasible points are selected.
On the Coil dataset, after only 13 iterations, cBO finds
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Figure 2. Plot of the best LSH nearest neighbor search
evaluation time (¢) found so far versus iteration for cBO
and uniform sampling on the Coil and Adult datasets.

a feasible setting of j and L that has a lower evaluation
time than any setting discovered by uniform sampling.
On Adult, it is able to further decrease the evaluation
time from one that is similar to a setting eventually
found by uniform sampling.

Figure 3 shows a contour plot of the 2d objective sur-
face on the USPS handwritten digits data set. The
infeasible region is masked out in light blue. Fea-
sible evaluation points are marked as white circles,
whereas infeasible evaluations are denoted as black
crosses. ¢cBO queries only a few infeasible parameter
settings and narrows in on the fastest model settings
(dark blue feasible region). The majority of infeasible
points sampled are near the feasibility border (bottom
left). These points are nearly feasible and likely have
low objective. Because of this and the thin regions of
feasibility, cBO explores this region with the hopes of
further minimizing #(-). Although uniform sampling
does evaluate parameters near the optimum, the final
model only obtains a speedup of 3.03x whereas cBO

returns a model with speedup 4.1x (see Table 2).

4.3. SVM Compression

Our second real-world application is speeding up sup-
port vector machines (SVM) (Cortes & Vapnik, 1995)
through hyper-parameter search and support-vector
“compression” (Burges & Scholkopf, 1997). In this
work, Burges & Schélkopf (1997) describe a method
for reducing the number of SVM support vectors used
for the kernel support vector machine. Their approach
is to first train a kernel SVM and record the learned
model and its predictions on the training set. Then,
one selects an initial small subset of m support vectors
and re-optimizes them so that an SVM with only m
support vectors matches the predictions of the origi-
nal model. This re-optimization can be done efficiently
with conjugate gradient descent? and can be very effec-
tive at speeding up SVMs during test-time—however
it is highly dependent on several hyper-parameters and
has the potential to degrade a classifier’s performance
if done wrong.

We restrict our setting to the popular radial basis func-
tion (RBF) kernel (Schélkopf & Smola, 2001),

k(x,2) = exp (]| x — z|3) , (4)

which is sensitive to a width parameter v2. To speed
up SVM evaluation we need to select values for ~2,
the SVM cost parameter C, and the number of sup-
port vectors m that minimize the validation evaluation
time. However, to avoid degrading the performance of
our classifier by using fewer support vectors, we need
to constrain the validation error to increase by no more
than s% over the original SVM model.

To be precise, we first train an SVM on a particular
data set (all hyper-parameters are tuned with stan-
dard Bayesian optimization). We then compress this
model to minimize validation evaluation time, while
only minimally affecting its validation error (up to a
relative increase of s%). For a particular parameter
setting 42, C,m, an evaluation of £() and c¢() involves
first compressing an SVM with parameters 72, C' down
to m support vectors following Burges & Scholkopf
(1997), and then evaluating the resulting classifier on
the validation set. The value of £(y2, C,m) is the time
required for the evaluation (not the compression), and
the value of c¢(y2,C,m) is the validation error. This
error is constrained to be no more than a factor 1 + s
larger than the validation error of the original SVM.
As in the LSH task, we allow both ¢cBO and uniform

sampling to perform 100 evaluations.

*http://tinyurl.com/minimize-m
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Figure 3. Contour plots of the kNN evaluation time on the USPS dataset using LSH with different number of hash
tables L and hash functions j. The blue shaded region represents infeasible settings (based on the kNN error). Black
crosses indicate infeasible points, white circles indicate feasible points. Left: Parameter settings evaluated by ¢cBO. Right:

Parameter settings evaluated by uniformly sampling.

Table 2. SVM compression results for selecting RBF hyperparameter v2, SVM cost hyperparameter C, and the number of
support vectors m. We show validation time and percent of points sampled that were infeasible by constrained Bayesian

optimization (Prob.) and uniform sampling.

1% relative error increase 10% relative error increase
NUMBER OF SPEEDUP ¢ % INFEASIBLE SVs SPEEDUP / % INFEASIBLE SVs

DATASET SAMPLES cBO UnirorM | ¢cBO UNiFORM | ¢cBO  UNIFORM | ¢cBO  UNIFORM | ¢cBO UNIFORM | ¢cBO  UNIFORM

SPAM 3681 41x 21 x 97% 99% 243 792 322x 69x 61% 74% 5 183
MAGIC* 1522 75x%x 14x 94% 95% 24 217 82x 14 % 92% 95% 20 217
ADULT* 3256 551 % 346 x 57% 25% 3 26 600x 345x 23% 1% 3 26

w8A* 4975 156 x 98 x 31% 13% 3 64 155x% 98 x 27% 7% 3 64
IJONN1¥ 4999 9.8x — 99% 100% 836 - 9.8x - 98% 100% 460 —
FOREST* 5229 107x — 98% 100% 294 - 208x 26 % 93% 98% 101 1585

Comparison. Table 1 shows results for learning 2,
C and m on six medium scale UCI datasets® including
spam classification (Spam), gamma particle and en-
gine output detection (Magic and IJCNN1), and tree
type identification (Forest). Similar to LSH, we sub-
sampled the training data of four of the larger datasets
to 10% (marked in the table with an asterisk, the table
shows the data set size after subsampling). We con-
sider the two cases of s = 1.01 and s = 1.1 relative
validation error increase. The table presents the best
speedups found by ¢cBO and uniform sampling, the cor-
responding number of support vectors (SVs), as well
as the percent of parameter settings that turned out
to be infeasible. ¢BO outperforms uniform sampling
on all datasets in speedup. In the most extreme case
(Adult), the compressed SVM model was 551 x faster
than the original with only 1% relative increase in val-
idation error. On two data sets (IJCNN1 and Forest),
uniform subsampling does not find a single compressed
model that guarantees a validation error increase be-

3http://tinyurl.com/ucidatasets

low 1% (as well as 10% for IJICNN1). The table also
shows the number of support vectors m, to which the
SVM is compressed. In all cases is the cBO model sub-
stantially smaller than the one obtained with uniform
sampling.

One interesting observation is that uniform sampling
finds more feasible points for Adult and W8a datasets.
A possible explanation for this is that a very fast pa-
rameter setting is right near the feasibility border, sim-
ilar to the case for LSH on the USPS dataset in Fig-
ure 3 (Left). Indeed, it is likely for only m = 3 support
vectors many settings of v2 and C will be infeasible.
However, conBO was able to intelligently explore the
feasibility function until such a setting was found.

5. Related Work

There has been a large amount of recent work on using
sampling methods for blackbox optimization in ma-
chine learning. A popular application of these methods
is hyperparameter tuning for machine learning algo-



rithms, or optimizing the validation performance of a
machine learning algorithm as a function of its hyper-
parameters. Bergstra & Bengio (2012) demonstrates
that uniform sampling performs significantly better
than the common grid search approach. They propose
that the use of Bayesian optimization for this task is
promising, and uniform sampling serves as a baseline
for Bayesian optimization papers (Snoek et al., 2012).

A large number of Bayesian optimization papers have
been published on the topic of hyperparameter tuning
as well. Snoek et al. (2012) introduces Spearmint, a
popular tool for this application. Spearmint marginal-
izes over the Gaussian process hyperparameters using
slice sampling rather than finding the maximum likeli-
hood hyperparameters. Spearmint also introduces the
EI per cost acquisition function, which—in addition
to its applications with costs other than time—often
allows for faster optimization when some parameters
affect the running time of an experiment.

Spearmint also introduces a method for running many
experiments in parallel by marginalizing over the pos-
sible function values of pending experiments when
computing the expected improvement of a new candi-
date experiment. Parallelizing Bayesian optimization
is an active research area (Azimi et al., 2010a; 2012).

A few papers have also been published dealing with
multi task validation Bardenet et al. (2013); Swer-
sky et al. (2013), where the goal is either to optimize
multiple datasets simultaneously, or use the knowl-
edge gained from tuning previous datasets to provide
a warm start to the optimization of new datasets.

A number of papers have also been published apply-
ing Bayesian optimization to other problems. Azimi
et al. (2010b) extends Bayesian optimization to the
case where one cannot control the precise value of
some parameters in an experiment. Mahendran et al.
(2012) applies Bayesian optimization to perform adap-
tive MCMC. Wang et al. (2013) adapts Bayesian opti-
mization to very high dimensional settings. Finally,
Hoffman et al. (2013) introduce constraints on the
number of function evaluations, rather than expensive-
to-compute constraints, which we model with cBO.

6. Discussion

In conclusion, in this paper we extended Bayesian
Optimization to incorporate expensive to evaluate in-
equality constraints. We believe this algorithm has
the potential to gain traction in the machine learning
community and become a practical and valuable tool.
Classical Bayesian optimization provides an excellent
means to get the most out of many machine learn-

ing algorithms. However, there are many algorithms—
particularly approximate algorithms with the goal of
speed—that the standard Bayesian optimization frame-
work is ill-suited to optimize. This is because it has no
way of dealing with the fundamental tradeoff between
speed and accuracy that these algorithms present.

We extend the Bayesian optimization framework to
deal with these tradeoffs via constrained optimization,
and present two applications of our method that yield
substantial speedups at little to no loss in accuracy for
two of the most popular machine learning algorithms,
kernel Support Vector Machines and k-Nearest Neigh-
bors. These specific applications are fundamentally
beyond the reach of the conventional Bayesian opti-
mization algorithm.

Although not the primary focus of this paper, the
strong results of our model compression applica-
tions (Burges & Scholkopf, 1997; Bucilu et al., 2006)
demonstrate the high impact potential of cBO. The
use of cBO eliminates all hyper-parameters from the
compression algorithm and guarantees that any output
model matches the validation accuracy of the original
classifier. In our experiments we obtain speedups of
several order of magnitudes with kernel SVM, mak-
ing the algorithm by Burges & Schélkopf (1997) (with
¢BO) suddenly a compelling option for many prac-
titioners who care about test-time performance (Xu
et al., 2012).

In addition, we believe that our method will find use
in areas beyond machine learning as well. In particu-
lar, many industrial applications may have adjustable
processes that produce unwanted byproducts—such
as carbon emissions in manufacturing, side reactions
in drug synthesis, or heat in computing infrastruc-
tures (Azizi et al., 2010)—that must be kept un-
der certain levels. Our algorithm provides a way to
quickly and cheaply tune these processes so that out-
put is maximized while maintaining acceptable levels
of byproduct.

We are excited about the natural Bayesian formulation
that leads to ¢cBO and its highly promising empirical
results. We hope that in the future ¢cBO will be of
practical impact for research and applications within
and beyond machine learning.
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