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Abstract

Latent factor models have been widely used to analyze simultaneous recordings of
spike trains from large, heterogeneous neural populations. These models assume
the signal of interest in the population is a low-dimensional latent intensity that
evolves over time, which is observed in high dimension via noisy point-process
observations. These techniques have been well used to capture neural correlations
across a population and to provide a smooth, denoised, and concise representa-
tion of high-dimensional spiking data. One limitation of many current models
is that the observation model is assumed to be Poisson, which lacks the flexibil-
ity to capture under- and over-dispersion that is common in recorded neural data,
thereby introducing bias into estimates of covariance. Here we develop the gen-
eralized count linear dynamical system, which relaxes the Poisson assumption by
using a more general exponential family for count data. In addition to contain-
ing Poisson, Bernoulli, negative binomial, and other common count distributions
as special cases, we show that this model can be tractably learned by extend-
ing recent advances in variational inference techniques. We apply our model to
data from primate motor cortex and demonstrate performance improvements over
state-of-the-art methods, both in capturing the variance structure of the data and
in held-out prediction.

1 Introduction

Many studies and theories in neuroscience posit that high-dimensional populations of neural spike
trains are a noisy observation of some underlying, low-dimensional, and time-varying signal of
interest. As such, over the last decade researchers have developed and used a number of methods
for jointly analyzing populations of simultaneously recorded spike trains, and these techniques have
become a critical part of the neural data analysis toolkit [1]. In the supervised setting, generalized
linear models (GLM) have used stimuli and spiking history as covariates driving the spiking of the
neural population [2, 3, 4, 5]. In the unsupervised setting, latent variable models have been used
to extract low-dimensional hidden structure that captures the variability of the recorded data, both
temporally and across the population of neurons [6, 7, 8, 9, 10, 11].
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In both these settings, however, a limitation is that spike trains are typically assumed to be condition-
ally Poisson, given the shared signal [8, 10, 11]. The Poisson assumption, while offering algorithmic
conveniences in many cases, implies the property of equal dispersion: the conditional mean and vari-
ance are equal. This well-known property is particularly troublesome in the analysis of neural spike
trains, which are commonly observed to be either over- or under-dispersed [12] (variance greater
than or less than the mean). No doubly stochastic process with a Poisson observation can capture
under-dispersion, and while such a model can capture over-dispersion, it must do so at the cost of
erroneously attributing variance to the latent signal, rather than the observation process.

To allow for deviation from the Poisson assumption, some previous work has instead modeled the
data as Gaussian [7] or using more general renewal process models [13, 14, 15]; the former of
which does not match the count nature of the data and has been found inferior [8], and the latter of
which requires costly inference that has not been extended to the population setting. More general
distributions like the negative binomial have been proposed [16, 17, 18], but again these families do
not generalize to cases of under-dispersion. Furthermore, these more general distributions have not
yet been applied to the important setting of latent variable models.

Here we employ a count-valued exponential family distribution that addresses these needs and in-
cludes much previous work as special cases. We call this distribution the generalized count (GC)
distribution [19], and we offer here four main contributions: (i) we introduce the GC distribution and
derive a variety of commonly used distributions that are special cases, using the GLM as a motivat-
ing example (§2); (ii) we combine this observation likelihood with a latent linear dynamical systems
prior to form a GC linear dynamical system (GCLDS; §3); (iii) we develop a variational learning al-
gorithm by extending the current state-of-the-art methods [20] to the GCLDS setting (§3.1); and (iv)
we show in data from the primate motor cortex that the GCLDS model provides superior predictive
performance and in particular captures data covariance better than Poisson models (§4).

2 Generalized count distributions

We define the generalized count distribution as the family of count-valued probability distributions:

pGC(k; θ, g(·)) =
exp(θk + g(k))

k!M(θ, g(·))
, k ∈ N (1)

where θ ∈ R and the function g : N → R parameterizes the distribution, and M(θ, g(·)) =∑∞
k=0

exp(θk+g(k))
k! is the normalizing constant. The primary virtue of the GC family is that it recov-

ers all common count-valued distributions as special cases and naturally parameterizes many com-
mon supervised and unsupervised models (as will be shown); for example, the function g(k) = 0
implies a Poisson distribution with rate parameter λ = exp{θ}. Generalizations of the Poisson
distribution have been of interest since at least [21], and the paper [19] introduced the GC family
and proved two additional properties: first, that the expectation of any GC distribution is mono-
tonically increasing in θ, for a fixed g(k); and second – and perhaps most relevant to this study –
concave (convex) functions g(·) imply under-dispersed (over-dispersed) GC distributions. Further-
more, often desired features like zero truncation or zero inflation can also be naturally incorporated
by modifying the g(0) value [22, 23]. Thus, with θ controlling the (log) rate of the distribution
and g(·) controlling the “shape” of the distribution, the GC family provides a rich model class for
capturing the spiking statistics of neural data. Other discrete distribution families do exist, such as
the Conway-Maxwell-Poisson distribution [24] and ordered logistic/probit regression [25], but the
GC family offers a rich exponential family, which makes computation somewhat easier and allows
the g(·) functions to be interpreted.

Figure 1 demonstrates the relevance of modeling dispersion in neural data analysis. The left panel
shows a scatterplot where each point is an individual neuron in a recorded population of neurons
from primate motor cortex (experimental details will be described in §4). Plotted are the mean and
variance of spiking activity of each neuron; activity is considered in 20ms bins. For reference, the
equi-dispersion line implied by a homogeneous Poisson process is plotted in red, and note further
that all doubly stochastic Poisson models would have an implied dispersion above this Poisson line.
These data clearly demonstrate meaningful under-dispersion, underscoring the need for the present
advance. The right panel demonstrates the appropriateness of the GC model class, showing that a
convex/linear/concave function g(k) will produce the expected over/equal/under-dispersion. Given
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the left panel, we expect under-dispersed GC distributions to be most relevant, but indeed many
neural datasets also demonstrate over and equi-dispersion [12], highlighting the need for a flexible
observation family.
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Figure 1: Left panel: mean firing rate and variance of neurons in primate motor cortex during
the peri-movement period of a reaching experiment (see §4). The data exhibit under-dispersion,
especially for high firing-rate neurons. The two marked neurons will be analyzed in detail in Figure
2. Right panel: the expectation and variance of the GC distribution with different choices of the
function g

To illustrate the generality of the GC family and to lay the foundation for our unsupervised learning
approach, we consider briefly the case of supervised learning of neural spike train data, where gener-
alized linear models (GLM) have been used extensively [4, 26, 17]. We define GCGLM as that which
models a single neuron with count data yi ∈ N, and associated covariates xi ∈ Rp(i = 1, ..., n) as

yi ∼ GC(θ(xi), g(·)), where θ(xi) = xiβ. (2)

Here GC(θ, g(·)) denotes a random variable distributed according to (1), β ∈ Rp are the regression
coefficients. This GCGLM model is highly general. Table 1 shows that many of the commonly
used count-data models are special cases of GCGLM, by restricting the g(·) function to have certain
parametric form. In addition to this convenient generality, one benefit of our parametrization of the
GC model is that the curvature of g(·) directly measures the extent to which the data deviate from
the Poisson assumption, allowing us to meaningfully interrogate the form of g(·). Note that (2) has
no intercept term because it can be absorbed in the g(·) function as a linear term αk (see Table 1).

Unlike previous GC work [19], our parameterization implies that maximum likelihood parameter
estimation (MLE) is a tractable convex program, which can be seen by considering:

(β̂, ĝ(·)) = arg max
(β,g(·))

n∑
i=1

log p(yi) = arg max
(β,g(·))

n∑
i=1

[(xiβ)yi + g(yi)− logM(xiβ, g(·))] . (3)

First note that, although we have to optimize over a function g(·) that is defined on all non-negative
integers, we can exploit the empirical support of the distribution to produce a finite optimization
problem. Namely, for any k∗ that is not achieved by any data point yi (i.e., the count #{i|yi =
k∗} = 0), the MLE for g(k∗) must be −∞, and thus we only need to optimize g(k) for k that
have empirical support in the data. Thus g(k) is a finite dimensional vector. To avoid the potential
overfitting caused by truncation of gi(·) beyond the empirical support of the data, we can enforce a
large (finite) support and impose a quadratic penalty on the second difference of g(.), to encourage
linearity in g(·) (which corresponds to a Poisson distribution). Second, note that we can fix g(0) = 0
without loss of generality, which ensures model identifiability. With these constraints, the remaining
g(k) values can be fit as free parameters or as convex-constrained (a set of linear inequalities on g(k);
similarly for concave case). Finally, problem convexity is ensured as all terms are either linear or
linear within the log-sum-exp function M(·), leading to fast optimization algorithms [27].

3 Generalized count linear dynamical system model

With the GC distribution in hand, we now turn to the unsupervised setting, namely coupling the GC
observation model with a latent, low-dimensional dynamical system. Our model is a generalization
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Table 1: Special cases of GCGLM. For all models, the GCGLM parametrization for θ is only as-
sociated with the slope θ(x) = βx, and the intercept α is absorbed into the g(·) function. In all
cases we have g(k) = −∞ outside the stated support of the distribution. Whenever unspecified, the
support of the distribution and the domain of the g(·) function are non-negative integers N.

Model Name Typical Parameterization GCGLM Parametrization
Logistic regression
(e.g. [25]) P (y = k) =

exp (k(α+ xβ))

1 + exp(α+ xβ)
g(k) = αk; k = 0, 1

Poisson regression
(e.g., [4, 26] )

P (y = k) =
λk

k!
exp(−λ);

λ =exp(α+ xβ)

g(k) = αk

Adjacent category regression
(e.g., [25] )

P (y = k + 1)

P (y = k)
= exp(αk + xβ)

g(k) =

k∑
i=1

(αi−1 + log i);

k =0, 1, ...,K

Negative binomial regression
(e.g., [17, 18])

P (y = k) =
(k + r − 1)!

k!(r − 1)!
(1− p)rpk

p =exp(α+ xβ)

g(k) =αk + log (k + r − 1)!

COM-Poisson regression
(e.g., [24])

P (y = k) =
λk

(k!)ν
/

+∞∑
j=1

λj

(j!)ν

λ =exp(α+ xβ)

g(k) = αk + (1− ν) log k!

of linear dynamical systems with Poisson likelihoods (PLDS), which have been extensively used
for analysis of populations of neural spike trains [8, 11, 28, 29]. Denoting yrti as the observed
spike-count of neuron i ∈ {1, ..., N} at time t ∈ {1, ..., T} on experimental trial r ∈ {1, ..., R},
the PLDS assumes that the spike activity of neurons is a noisy Poisson observation of an underlying
low-dimensional latent state xrt ∈ Rp,(where p� N ), such that:

yrti|xrt ∼ Poisson
(
exp

{
c>i xrt + di

})
. (4)

Here C = [c1 ... cN ]
> ∈ RN×p is the factor loading matrix mapping the latent state xrt to a

log rate, with time and trial invariant baseline log rate d ∈ RN . Thus the vector Cxrt + d denotes
the vector of log rates for trial r and time t. Critically, the latent state xrt can be interpreted as the
underlying signal of interest that acts as the “common input signal” to all neurons, which is modeled
a priori as a linear Gaussian dynamical system (to capture temporal correlations):

xr1 ∼ N (µ1, Q1)

xr(t+1)|xrt ∼ N (Axrt + bt, Q),
(5)

where µ1 ∈ Rp and Q1 ∈ Rp×p parameterize the initial state. The transition matrix A ∈ Rp×p
and innovations covariance Q ∈ Rp×p parameterize the dynamical state update. The optional term
bt ∈ Rp allows the model to capture a time-varying firing rate that is fixed across experimental
trials. The PLDS has been widely used and has been shown to outperform other models in terms of
predictive performance, including in particular the simpler Gaussian linear dynamical system [8].

The PLDS model is naturally extended to what we term the generalized count linear dynamical
system (GCLDS) by modifying equation (4) using a GC likelihood:

yrti|xrt ∼ GC
(
c>i xrt, gi(·)

)
. (6)

Where gi(·) is the g(·) function in (1) that models the dispersion for neuron i. Similar to the GLM,
for identifiability, the baseline rate parameter d is dropped in (6) and we can fix g(0) = 0. As with
the GCGLM, one can recover preexisting models, such as an LDS with a Bernoulli observation, as
special cases of GCLDS (see Table 1).

3.1 Inference and learning in GCLDS

As is common in LDS models, we use expectation-maximization to learn parameters Θ =
{A, {bt}t, Q,Q1, µ1, {gi(·)}i, C} . Because the required expectations do not admit a closed form
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as in previous similar work [8, 30], we required an additional approximation step, which we im-
plemented via a variational lower bound. Here we briefly outline this algorithm and our novel
contributions, and we refer the reader to the full details in the supplementary materials.

First, each E-step requires calculating p(xr|yr,Θ) for each trial r ∈ {1, ..., R} (the conditional dis-
tribution of the latent trajectories xr = {xrt}1≤t≤T , given observations yr = {yrti}1≤t≤T,1≤i≤N
and parameter Θ). For ease of notation below we drop the trial index r. These posterior distribu-
tions are intractable, and in the usual way we make a normal approximation p(x|y,Θ) ≈ q(x) =
N (m, V ). We identify the optimal (m, V ) by maximizing a variational Bayesian lower bound (the
so-called evidence lower bound or “ELBO”) over the variational parameters m, V as:

L(m, V ) =Eq(x)

[
log

(
p(x|Θ)

q(x)

)]
+ Eq(x)[log p(y|x,Θ)] (7)

=
1

2

(
log |V | − tr[Σ−1V ]− (m− µ)TΣ−1(m− µ)

)
+
∑
t,i

Eq(xt)[log p(yti|xt)] + const,

which is the usual form to be maximized in a variational Bayesian EM (VBEM) algorithm [11]. Here
µ ∈ RpT and Σ ∈ RpT×pT are the expectation and variance of x given by the LDS prior in (5). The
first term of (7) is the negative Kullback-Leibler divergence between the variational distribution and
prior distribution, encouraging the variational distribution to be close to the prior. The second term
involving the GC likelihood encourages the variational distribution to explain the observations well.
The integrations in the second term are intractable (this is in contrast to the PLDS case, where all
integrals can be calculated analytically [11]). Below we use the ideas of [20] to derive a tractable,
further lower bound. Here the term Eq(xt)[log p(yti|xt)] can be reduced to:

Eq(xt)[log p(yti|xt)] =Eq(ηti) [log pGC(y|ηti, gi(·))]

=Eq(ηti)

[
ytiηti + gi(yti)− log yti!− log

K∑
k=0

1

k!
exp(kηti + gi(k))

]
,

(8)

where ηti = cTi xt. Denoting νtik = kηti + gi(k) − log(k!) = kcTi xt + gi(k) − log k!, (8) is
reduced to Eq(ν)[νtiyti − log(

∑
0≤k≤K exp(νtik))]. Since νtik is a linear transformation of xt,

under the variational distribution νtik is also normally distributed νtik ∼ N (htik, ρtik). We have
htik = kcTi mt+gi(k)−log k!, ρtik = k2cTi Vtci, where (mt, Vt) are the expectation and covariance
matrix of xt under variational distribution. Now we can derive a lower bound for the expectation by
Jensen’s inequality:

Eq(νti)

[
νtiyti − log

∑
k

exp(νtik)

]
≥htiyti − log

K∑
k=1

exp(htik + ρtik/2) =: fti(hti, ρti). (9)

Combining (7) and (9), we get a tractable variational lower bound:

L(m, V ) ≥ L∗(m, V ) = Eq(x)

[
log

(
p(x|Θ)

q(x)

)]
+
∑
t,i

fti(hti, ρti). (10)

For computational convenience, we complete the E-step by maximizing the new evidence lower
bound L∗ via its dual [20]. Full details are derived in the supplementary materials.

The M-step then requires maximization of L∗ over Θ. Similar to the PLDS case, the set of parame-
ters involving the latent Gaussian dynamics (A, {bt}t, Q,Q1, µ1) can be optimized analytically [8].
Then, the parameters involving the GC likelihood (C, {gi}i) can be optimized efficiently via convex
optimization techniques [27] (full details in supplementary material).

In practice we initialize our VBEM algorithm with a Laplace-EM algorithm, and we initialize each
E-step in VBEM with a Laplace approximation, which empirically gives substantial runtime advan-
tages, and always produces a sensible optimum. With the above steps, we have a fully specified
learning and inference algorithm, which we now use to analyze real neural data. Code can be found
at https://bitbucket.org/mackelab/pop_spike_dyn.
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4 Experimental results

We analyze recordings of populations of neurons in the primate motor cortex during a reaching
experiment (G20040123), details of which have been described previously [7, 8]. In brief, a rhesus
macaque monkey executed 56 cued reaches from a central target to 14 peripheral targets. Before the
subject was cued to move (the go cue), it was given a preparatory period to plan the upcoming reach.
Each trial was thus separated into two temporal epochs, each of which has been suggested to have
their own meaningful dynamical structure [9, 31]. We separately analyze these two periods: the
preparatory period (1200ms period preceding the go cue), and the reaching period (50ms before to
370ms after the movement onset). We analyzed data across all 14 reach targets, and results were
highly similar; in the following for simplicity we show results for a single reaching target (one 56
trial dataset). Spike trains were simultaneously recorded from 96 electrodes (using a Blackrock
multi-electrode array). We bin neural activity at 20ms. To include only units with robust activity, we
remove all units with mean rates less than 1 spike per second on average, resulting in 81 units for the
preparatory period, and 85 units for the reaching period. As we have already shown in Figure 1, the
reaching period data are strongly under-dispersed, even absent conditioning on the latent dynamics
(implying further under-dispersion in the observation noise). Data during the preparatory period are
particularly interesting due to its clear cross-correlation structure.

To fully assess the GCLDS model, we analyze four LDS models – (i) GCLDS-full: a separate func-
tion gi(·) is fitted for each neuron i ∈ {1, ..., N}; (ii) GCLDS-simple: a single function g(·) is shared
across all neurons (up to a linear term modulating the baseline firing rate); (iii) GCLDS-linear: a
truncated linear function gi(·) is fitted, which corresponds to truncated-Poisson observations; and
(iv) PLDS: the Poisson case is recovered when gi(·) is a linear function on all nonnegative integers.
In all cases we use the learning and inference of §3.1. We initialize the PLDS using nuclear norm
minimization [10], and initialize the GCLDS models with the fitted PLDS. For all models we vary
the latent dimension p from 2 to 8.

To demonstrate the generality of the GCLDS and verify our algorithmic implementation, we first
considered extensive simulated data with different GCLDS parameters (not shown). In all cases
GCLDS model outperformed PLDS in terms of negative log-likelihood (NLL) on test data, with
high statistical significance. We also compared the algorithms on PLDS data and found very simi-
lar performance between GCLDS and PLDS, implying that GCLDS does not significantly overfit,
despite the additional free parameters and computation due to the g(·) functions.

Analysis of the reaching period. Figure 2 compares the fits of the two neural units highlighted
in Figure 1. These two neurons are particularly high-firing (during the reaching period), and thus
should be most indicative of the differences between the PLDS and GCLDS models. The left column
of Figure 2 shows the fitted g(·) functions the for four LDS models being compared. It is apparent in
both the GCLDS-full and GCLDS-simple cases that the fitted g function is concave (though it was
not constrained to be so), agreeing with the under-dispersion observed in Figure 1.

The middle column of Figure 2 shows that all four cases produce models that fit the mean activity of
these two neurons very well. The black trace shows the empirical mean of the observed data, and all
four lines (highly overlapping and thus not entirely visible) follow that empirical mean closely. This
result is confirmatory that the GCLDS matches the mean and the current state-of-the-art PLDS.

More importantly, we have noted the key feature of the GCLDS is matching the dispersion of the
data, and thus we expect it should outperform the PLDS in fitting variance. The right column of
Figure 2 shows this to be the case: the PLDS significantly overestimates the variance of the data.
The GCLDS-full model tracks the empirical variance quite closely in both neurons. The GCLDS-
linear result shows that only adding truncation does not materially improve the estimate of variance
and dispersion: the dotted blue trace is quite far from the true data in black, and indeed it is quite
close to the Poisson case. The GCLDS-simple still outperforms the PLDS case, but it does not
model the dispersion as effectively as the GPLDS-full case where each neuron has its own dispersion
parameter (as Figure 1 suggests). The natural next question is whether this outperformance is simply
in these two illustrative neurons, or if it is a population effect. Figure 3 shows that indeed the
population is much better modeled by the GCLDS model than by competing alternatives. The left
and middle panels of Figure 3 show leave-one-neuron-out prediction error of the LDS models. For
each reaching target we use 4-fold cross-validation and the results are averaged across all 14 reaching
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Figure 2: Examples of fitting result for selected high-firing neurons. Each row corresponds to one
neuron as marked in left panel of Figure 1 – left column: fitted g(·) using GCLDS and PLDS; middle
and right column: fitted mean and variance of PLDS and GCLDS. See text for details.

2 4 6 8
10.5

11

11.5

12

Latent dimension

%
 M

S
E

 r
ed

uc
tio

n

 

 

PLDS
GCLDS−full
GCLDS−simple
GCLDS−linear

2 4 6 8
5

6

7

8

9

Latent dimension

%
 N

LL
 r

ed
uc

tio
n

0 1 2
0

0.5

1

1.5

2

Observed variance

F
itt

ed
 v

ar
ia

nc
e

 

 

PLDS
GCLDS−full

Figure 3: Goodness-of-fit for monkey data during the reaching period – left panel: percentage
reduction of mean-squared-error (MSE) compared to the baseline (homogeneous Poisson process);
middle panel: percentage reduction of predictive negative log likelihood (NLL) compared to the
baseline; right panel: fitted variance of PLDS and GCLDS for all neurons compared to the observed
data. Each point gives the observed and fitted variance of a single neuron, averaged across time.

targets. Critically, these predictions are made for all neurons in the population. To give informative
performance metrics, we defined baseline performance as a straightforward, homogeneous Poisson
process for each neuron, and compare the LDS models with the baseline using percentage reduction
of mean-squared-error and negative log likelihood (thus higher error reduction numbers imply better
performance). The mean-squared-error (MSE; left panel) shows that the GCLDS offers a minor
improvement (reduction in MSE) beyond what is achieved by the PLDS. Though these standard
error bars suggest an insignificant result, a paired t-test is indeed significant (p < 10−8). Nonetheless
this minor result agrees with the middle column of Figure 2, since predictive MSE is essentially a
measurement of the mean.

In the middle panel of Figure 3, we see that the GCLDS-full significantly outperforms alternatives
in predictive log likelihood across the population (p < 10−10, paired t-test). Again this largely
agrees with the implication of Figure 2, as negative log likelihood measures both the accuracy of
mean and variance. The right panel of Figure 3 shows that the GCLDS fits the variance of the data
exceptionally well across the population, unlike the PLDS.

Analysis of the preparatory period. To augment the data analysis, we also considered the
preparatory period of neural activity. When we repeated the analyses of Figure 3 on this dataset,
the same results occurred: the GCLDS model produced concave (or close to concave) g functions
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and outperformed the PLDS model both in predictive MSE (minority) and negative log likelihood
(significantly). For brevity we do not show this analysis here. Instead, we here compare the temporal
cross-covariance, which is also a common analysis of interest in neural data analysis [8, 16, 32] and,
as noted, is particularly salient in preparatory activity. Figure 4 shows that GCLDS model fits both
the temporal cross-covariance (left panel) and variance (right panel) considerably better than PLDS,
which overestimates both quantities.
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Figure 4: Goodness-of-fit for monkey data during the preparatory period – Left panel: Temporal
cross-covariance averaged over all 81 units during the preparatory period, compared to the fitted
cross-covariance by PLDS and GCLDS-full. Right panel: fitted variance of PLDS and GCLDS-full
for all neurons compared to the observed data (averaged across time).

5 Discussion

In this paper we showed that the GC family better captures the conditional variability of neural
spiking data, and further improves inference of key features of interest in the data. We note that
it is straightforward to incorporate external stimuli and spike history in the model as covariates, as
has been done previously in the Poisson case [8]. Beyond the GCGLM and GCLDS, the GC family
is also extensible to other models that have been used in this setting, such as exponential family
PCA [10] and subspace clustering [11]. The cost of this performance, compared to the PLDS, is an
extra parameterization (the gi(·) functions) and the corresponding algorithmic complexity. While
we showed that there seems to be no empirical sacrifice to doing so, it is likely that data with few
examples and reasonably Poisson dispersion may cause GCLDS to overfit.
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