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Abstract

Kernel methods are one of the mainstays of ma-
chine learning, but the problem of kernel learn-
ing remains challenging, with only a few heuris-
tics and very little theory. This is of particu-
lar importance in methods based on estimation
of kernel mean embeddings of probability mea-
sures. For characteristic kernels, which include
most commonly used ones, the kernel mean em-
bedding uniquely determines its probability mea-
sure, so it can be used to design a powerful sta-
tistical testing framework, which includes non-
parametric two-sample and independence tests.
In practice, however, the performance of these
tests can be very sensitive to the choice of ker-
nel and its lengthscale parameters. To address
this central issue, we propose a new probabilistic
model for kernel mean embeddings, the Bayesian
Kernel Embedding model, combining a Gaus-
sian process prior over the Reproducing Kernel
Hilbert Space containing the mean embedding
with a conjugate likelihood function, thus yield-
ing a closed form posterior over the mean em-
bedding. The posterior mean of our model is
closely related to recently proposed shrinkage es-
timators for kernel mean embeddings, while the
posterior uncertainty is a new, interesting feature
with various possible applications. Critically for
the purposes of kernel learning, our model gives
a simple, closed form marginal pseudolikelihood
of the observed data given the kernel hyperpa-
rameters. This marginal pseudolikelihood can ei-
ther be optimized to inform the hyperparameter
choice or fully Bayesian inference can be used.

1 INTRODUCTION

A large class of popular and successful machine learning
methods rely on kernels (positive semidefinite functions),
including support vector machines, kernel ridge regression,
kernel PCA (Schölkopf and Smola, 2002), Gaussian pro-
cesses (Rasmussen and Williams, 2006), and kernel-based

hypothesis testing (Gretton et al., 2005, 2008, 2012a). A
key component for many of these methods is that of esti-
mating kernel mean embeddings and covariance operators
of probability measures based on data. The use of simple
empirical estimators has been challenged recently (Muan-
det et al., 2016) and alternative, better-behaved frequentist
shrinkage strategies have been proposed. In this article,
we develop a Bayesian framework for estimation of kernel
mean embeddings, recovering desirable shrinkage proper-
ties as well as allowing quantification of full posterior un-
certainty. Moreover, the developed framework has an addi-
tional extremely useful feature. Namely, a persistent prob-
lem in kernel methods is that of kernel choice and hyper-
parameter selection, for which no general-purpose strategy
exists. When a large dataset is available in a supervised set-
ting, the standard approach is to use cross-validation. How-
ever, in unsupervised learning and kernel-based hypothesis
testing, cross-validation is not straightforward to apply and
yet the choice of kernel is critically important. Our frame-
work gives a tractable closed-form marginal pseudolikeli-
hood of the data allowing direct hyperparameter optimiza-
tion as well as fully Bayesian posterior inference through
integrating over the kernel hyperparameters. We empha-
sise that this approach is fully unsupervised: it is based
solely on the modelling of kernel mean embeddings – go-
ing beyond marginal likelihood based approaches in, e.g.,
Gaussian process regression – and is thus broadly applica-
ble in situations, such as kernel-based hypothesis testing,
where the hyperparameter choice has thus far been mainly
driven by heuristics.

In Section 2 we provide the necessary background on Re-
producing Kernel Hilbert Spaces (RKHS) as well as de-
scribe some related works. In Section 3 we develop our
Bayesian Kernel Embedding model, showing a rigorous
Gaussian process prior formulation for an RKHS. In Sec-
tion 4 we show how to perform kernel learning and pos-
terior inference with our model. In Section 5 we empiri-
cally evaluate our model, arguing that our Bayesian Ker-
nel Learning (BKL) objective should be considered as a
“drop-in” replacement for heuristic methods of choosing
kernel hyperparameters currently in use, especially in un-
supervised settings such as kernel-based testing. We close
in Section 6 with a discussion of various applications of our



approach and future work.

2 BACKGROUND AND RELATED
WORK

2.1 KERNEL EMBEDDINGS OF PROBABILITY
MEASURES

For any positive definite kernel function k : X × X →
R, there exists a unique reproducing kernel Hilbert space
(RKHS) Hk. RKHS is an (often infinite-dimensional)
space of functions h : X → R where evaluation can
be written as an inner product, and in particular h(x) =
〈h, k(·, x)〉Hk for all h ∈ Hk, x ∈ X . Given a probability
measure P on X , its kernel embedding into Hk is defined
as:

µP =

∫
k (·, x)P(dx). (1)

Embedding µP is an element of Hk and serves as a rep-
resentation of P akin to a characteristic function. It rep-
resents expectations of RKHS functions in the form of an
inner product

∫
h(x)P(dx) = 〈h, µP〉Hk . For a broad fam-

ily of kernels termed characteristic (Sriperumbudur et al.,
2011), every probability measure has a unique embedding
– thus, such embeddings completely determine their prob-
ability measures and capture all of the moment informa-
tion. This yields a framework for constructing nonpara-
metric hypothesis tests for the two-sample problem and for
independence, which are consistent against all alternatives
(Gretton et al., 2008, 2012a) – we review this framework in
the next section.

2.2 KERNEL MEAN EMBEDDING AND
HYPOTHESIS TESTING

Given a kernel k and probability measures P and Q, the
maximum mean discrepancy (MMD) between P and Q
(Gretton et al., 2012a) is defined as the squared RKHS
distance ‖µP − µQ‖2Hk between their embeddings. A re-
lated quantity is the Hilbert Schmidt Independence Crite-
rion (HSIC) (Gretton et al., 2005, 2008), a nonparametric
dependence measure between random variables X and Y
on domains X and Y respectively, defined as the squared
RKHS distance ‖µPXY − µPXPY ‖2Hκ between the embed-
dings of the joint distribution PXY and of the product of the
marginals PXPY with respect to a kernel κ : (X × Y) ×
(X×Y)→ R on the product space. Typically, κ factorises,
i.e. κ ((x, y), (x′, y′)) = k(x, x′)l(y, y′). The empirical
versions of MMD and HSIC are used as test statistics for
the two-sample (H0 : P = Q vs. H1 : P 6= Q) and inde-
pendence (H0 : X ⊥⊥ Y vs. H1 : X 6 ⊥⊥ Y ) tests, respec-
tively. With the help of the approximations to the asymp-
totic distribution under the null hypothesis, corresponding
p-values can be computed (Gretton et al., 2012a). In addi-
tion, the so-called “witness function” which is proportional

to µP − µQ can be used to assess where the difference be-
tween the distributions arises.

2.3 KERNEL MEAN EMBEDDING
ESTIMATORS

For a set of i.i.d. samples x1, . . . , xn, the kernel mean
embedding is typically estimated by its empirical version

µ̂P = µP̂ =
1

n

n∑
i=1

k(·, xi), (2)

from which various associated quantities, including the
estimators of the squared RKHS distances between em-
beddings needed for kernel-based hypothesis tests, follow.
As an empirical mean in an infinite-dimensional space,
(2) is affected by Stein’s phenomenon, as overviewed by
Muandet et al. (2013) who also propose alternative shrink-
age estimators similar to the well known James-Stein es-
timator. Improvements of test power using such shrink-
age estimators are reported by Ramdas and Wehbe (2015).
Connections between the James-Stein estimator and em-
pirical Bayes procedures are classical (Efron and Morris,
1973), and thus a natural question to consider is whether
a Bayesian formulation of the problem of kernel embed-
ding estimation would yield similar shrinkage properties.
In this paper, we will give a Bayesian perspective of the
problem of kernel embedding estimation. In particular, we
will construct a flexible model for underlying probability
measures based on Gaussian measures in RKHSs which al-
lows derivation of a full posterior distribution of µP, recov-
ering similar shrinkage properties to Muandet et al. (2013),
as discussed in Section 4.2. The model will give us a fur-
ther advantage, however – as the marginal likelihood of the
data given the kernel parameter can be derived leading to
an informed choice of kernel parameters.

2.4 SELECTION OF KERNEL
PARAMETERS

In supervised kernel methods like support vector machines,
leave-one-out or k-fold crossvalidation is an effective and
widely used method for kernel selection, and the myriad
papers on multiple kernel learning (e.g. Bach et al. (2004);
Sonnenburg et al. (2006); Gönen and Alpaydın (2011)) as-
sume that some loss function is available and thus focus
on effective ways of learning combinations of kernels. In
the related but distinct world of smoothing kernels and ker-
nel density estimation, there are a variety of long-standing
approaches to bandwidth selection, again based on a loss
function (in this case, mean integrated squared error is a
popular choice (Bowman, 1985), and there is even a for-
mula giving the optimal smoothing parameter asymptoti-
cally, see Rosenblatt (1956); Parzen (1962)) but we are not
aware of work linking this literature to methods based on
positive definite/RKHS kernels we study here. Separately,



Gaussian process learning can be undertaken by maximiz-
ing the marginal likelihood, which has a convenient closed
form. This is noteworthy for its success and general appli-
cability even for learning complicated combinations of ker-
nels (Duvenaud et al., 2013) or rich kernel families (Wilson
and Adams, 2013). Our approach has the same basic design
as that of Gaussian process learning, yet it is applicable to
learning kernel embeddings, which falls outside the realm
of supervised learning.

As noted in Gretton et al. (2012b), the choice of the ker-
nel k is critically important for the power of the tests pre-
sented in Section 2.2. However, no general, theoretically-
grounded approaches for kernel selection in this context
exist. The difficulty is that, unlike in supervised kernel
methods, a simple cross-validation approach for the ker-
nel parameter selection is not possible. What would be an
ideal objective function – asymptotic test power – cannot
be computed due to a complicated asymptotic null distribu-
tion. Moreover, even if we were able to estimate the power
by performing tests on “training data” for each of the in-
dividual candidate kernels, in order to account for multiple
comparisons, this training data would have to be disjoint
from the one on which the hypothesis test is performed,
which is clearly wasteful of power and appropriate only in
the type of large-scale settings discussed in Gretton et al.
(2012b). For these reasons, most users of kernel hypothe-
sis tests in practice resort to using a parameterized kernel
family such as squared exponential, and setting the length-
scale parameter based on the “median heuristic.”

The exact origins of the median heuristic are unclear (in-
terestingly, it does not appear in the book that is most com-
monly cited as its source, Schölkopf and Smola (2002))
but it may have been derived from Takeuchi et al. (2006)
and has precursors in classical work on bandwidth selec-
tion for kernel density estimation (Bowman, 1985). Note
that there are two versions of the median heuristic in
the literature: in both versions, given a set of observa-
tions x1, . . . , xn we calculate ` = median(‖xi − xj‖2)
and then one version (e.g. Mooij et al. (2015)) uses the
Gaussian RBF / squared exponential kernel parameter-
ized as k(x, x′) = exp(−‖x−x

′‖2
`2 ) and the second ver-

sion (e.g. Muandet et al. (2014)) uses the parameterization
k(x, x′) = exp(−‖x−x

′‖2
2`2 ). Some recent work has high-

lighted the situations in which the median heuristic can
lead to poor performance (Gretton et al., 2012b). Cases
in which the median heuristic performs quite well and also
cases in which it performs quite poorly are discussed in
(Reddi et al., 2015; Ramdas et al., 2015). We note that the
median heuristic has also been used as a default value for
supervised learning tasks (e.g. for the SVM implementa-
tion in R package kernlab) or when cross-validation is
simply too expensive.

Outside of kernel methods, the same basic conundrum

arises in spectral clustering in the choice of the parame-
ters for the similarity graph (Von Luxburg, 2007, Section
8.1) and it is implicitly an issue in any unsupervised statis-
tical method based on distances or dissimilarities, like the
distance covariance (which is in fact equivalent to HSIC
with a certain family of kernel functions (Sejdinovic et al.,
2013)), or even the choice of the number of neighbors k in
k-nearest neighbors algorithms.

3 OUR MODEL: BAYESIAN KERNEL
EMBEDDING

Below, we will work with a parametric family of ker-
nels {kθ(·, ·)}θ∈Θ. Given a dataset {xi}ni=1 ∼ P of ob-
servations in RD for an unknown probability distribu-
tion P, we wish to infer the kernel embedding µP,θ =∫
kθ (·, x)P(dx) for a given kernel kθ in the parametric

family. Moreover, we wish to construct a model that will al-
low inference of the kernel hyperparameter θ as well. Note
that the two goals are related, since θ determines the space
in which the embedding µP,θ lies. When it is obvious from
context, we suppress the dependence of the embeddings on
the underlying measure P, writing µθ to emphasize the de-
pendence on θ. Similarly, we will use µ̂θ to denote the
simple empirical estimator from Eq. (2), which depends on
a fixed sample {xi}ni=1.

Our Bayesian Kernel Embedding (BKE) approach consists
in specifying a prior on the kernel mean embedding µθ and
a likelihood function linking it to the observations through
the empirical estimator µ̂θ. This will then allow us to infer
the posterior distribution of the kernel mean embedding.
The hyperparameter θ can itself have a prior, with the goal
of learning a posterior distribution over the hyperparameter
space.

3.1 PRIOR

A given hyperparameter θ (which can itself have a prior dis-
tribution), parameterizes a kernel kθ and a corresponding
RKHSHkθ . While it is tempting to define a GP(0, kθ(·, ·))
prior on µθ, this is problematic since draws from such prior
would almost surely fall outsideHk (Wahba, 1990). There-
fore, we define a GP prior over µθ as follows:

µθ | θ ∼ GP(0, rθ(·, ·)) , (3)

rθ(x, y) :=

∫
kθ(x, u)kθ(u, y)ν(du) . (4)

where ν is any finite measure on X . This choice of rθ
ensures that µθ ∈ Hkθ with probability 1 by the nuclear
dominance (Lukić and Beder, 2001; Pillai et al., 2007) of
kθ over rθ for any stationary kernel kθ and more broadly
whenever

∫
kθ(x, x)ν(dx) < ∞. For completeness, we

provide details of this construction in the Appendix in Sec-
tion A.2. Since Eq. (4) is the convolution of a kernel with



itself with respect to ν, for typical kernels kθ, the resulting
kernel rθ can be thought of as a smoother version of kθ. A
particularly convenient choice for X = RD is to take ν to
be proportional to a Gaussian measure in which case rθ can
be computed analytically for a squared exponential kernel
kθ. The derivation is given in the Appendix in Section A.3,
where we further show that if we set ν to be proportional
to an isotropic Gaussian measure with a large variance pa-
rameter, rθ becomes very similar to a squared exponential
kernel with lengthscale θ

√
2.

3.2 LIKELIHOOD

We need a likelihood linking the kernel mean embedding
µθ to the observations {xi}ni=1. We define the likelihood
via the empirical mean embedding estimator of Eq. (2), µ̂θ
which depends on {xi}ni=1 and θ. Consider evaluating µ̂θ at
some x ∈ RD (which need not be one of our observations).
The result is a real number giving an empirical estimate of
µθ(x) based on {xi}ni=1 and θ. We link the empirical esti-
mate, µ̂θ(x), to the corresponding modeled estimate, µθ(x)
using a Gaussian distribution with variance τ2/n:

p(µ̂θ(x)|µθ(x)) = N (µ̂θ(x);µθ(x), τ2/n), x ∈ X .
(5)

Our motivation for choosing this likelihood comes from the
Central Limit Theorem. For a fixed location x, µ̂θ(x) =
1
n

∑n
i=1 kθ(xi, x) is an average of i.i.d. random variables

so it satisfies:
√
n(µ̂θ(x)− µθ(x))

D→ N (0,VarX∼P[kθ(X,x)]). (6)

We note that considering a heteroscedastic variance depen-
dent on x in (5) would be a straightforward extension to
our model, but we do not pursue this idea further here, i.e.
while τ2 can depend both on θ and x, we treat it as a single
hyperparameter in the model.

3.3 JUSTIFICATION FOR THE MODEL

There are various ways to understand the construction of
our hierarchical model. {xi}ni=1 are drawn iid from P,
which we do not have access to. We could estimate P
directly (e.g. with a Gaussian mixture model) obtaining
P̂, and then estimate µθ,P̂. But since density estimation
is challenging in high dimensions, we posit a generative
model for µθ directly.

Beginning at the top of the hierarchy, we have a fixed or
random hyperparameter θ, which immediately defines kθ
and the corresponding RKHS Hkθ . Then, we introduce a
GP prior over µθ to ensure that µθ ∈ Hkθ . A few real-
izations of µθ drawn from our prior are shown in Figure 1
(A), for an illustrative one-dimensional example where the
prior is a Gaussian process with squared exponential kernel
with lengthscale θ = 0.25. Small values of θ yield rough
functions and large values of θ yield smooth functions.
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Figure 1: An illustration of the Bayesian Kernel Embed-
ding model, where kθ is a squared exponential kernel with
lengthscale 0.1. Three draws of µθ from the prior are
shown in (A). The empirical mean estimator µ̂θ, which is
the link function for the likelihood, is shown in (B) with
the observations shown as a rug plot. In (C), the poste-
rior mean embedding (black line) with uncertainty intervals
(gray lines) is shown, as is the true mean embedding (blue
line) based on the true data generating process (a mixture
of Gaussians) and the same kθ.

Next, we need to define the likelihood, which links these
draws from the prior to the observations {xi}ni=1. Since µθ
is an infinite dimensional element in a Hilbert space and
{xi}ni=1 ∈ X we need to transform the observations so that
we can put a probability distribution over them. We use
the empirical estimate of the mean embedding µ̂θ as our
link function. Given a few observations, µ̂θ is shown in
Figure 1 (B). Our likelihood links µ̂θ to µθ at the observa-
tion locations {xi}ni=1 by assuming a squared loss function,
i.e. Gaussian errors. As mentioned above, the motivation is
the Central Limit Theorem, but also the convenient conju-
gate form that a Gaussian process with Gaussian likelihood
yields. A plot of the posterior over the mean embedding



is shown in Figure 1 (C). A few points are worth noting:
since the empirical estimator is already quite smooth (no-
tice its similarity to a kernel density estimate), the posterior
mean embedding is only slightly smoother than the empir-
ical mean embedding. Notice that unlike kernel density
estimation, there is no requirement that the kernel mean
embedding be non-negative, thus explaining the posterior
uncertainty intervals which are below zero.

Our original motivation for considering a Bayesian model
for kernel mean embeddings was to see whether there was
a coherent Bayesian formulation that corresponded to the
shrinkage estimators in Muandet et al. (2013), while also
enabling us to learn the hyperparameters. The first diffi-
culty we faced was how to define a valid prior over the
RKHS and a reasonable likelihood function. Our choices
are by no means definitive, and we hope to see further de-
velopment in this area in the future. The second difficulty
was that of developing a method for inferring hyperparam-
eters, to which we turn in the next section.

4 BAYESIAN KERNEL LEARNING

In this section we show how to perform learning and in-
ference in the Bayesian Kernel Embedding model intro-
duced in the previous section. Our model inherits various
attractive properties from the Gaussian process framework
(Rasmussen and Williams, 2006). First, we derive the pos-
terior and posterior predictive distributions for the kernel
mean embedding in closed form due to the conjugacy of
our model, and show the relationship with previously pro-
posed shrinkage estimators. We then derive the tractable
marginal likelihood of the observations given the hyperpa-
rameters allowing for efficient MAP estimation or posterior
inference for hyperparameters.

4.1 POSTERIOR AND POSTERIOR PREDICTIVE
DISTRIBUTIONS

Similarly to GP models, the posterior mean of µθ is avail-
able in closed form due to the conjugacy of Gaussians. Per-
haps given our data we wish to infer µθ at a new location
x∗ ∈ RD. Given a value of the hyperparameter θ we can
calculate the posterior distribution of µθ as well as the pos-
terior predictive distribution p(µθ(x∗)|µ̂θ, θ).

Standard GP results (Rasmussen and Williams, 2006) yield
the posterior distribution as:

[µθ(x1), . . . , µθ(xn)]> | [µ̂θ(x1), . . . , µ̂θ(xn)]>, θ

∼ N (Rθ(Rθ + (τ2/n)In)−1[µ̂θ(x1), . . . , µ̂θ(xn)]>,

Rθ −Rθ(Rθ + (τ2/n)In)−1Rθ),
(7)

where Rθ is the n× n matrix such that its (i, j)-th element
is rθ(xi, xj). The posterior predictive distribution at a new

location x∗ is:

µθ(x
∗)> | [µ̂θ(x1), . . . , µ̂θ(xn)]>, θ

∼ N (R∗>θ (Rθ + (τ2/n)In)−1[µ̂θ(x1), . . . , µ̂θ(xn)]>,

r∗∗θ −R∗>θ (Rθ + (τ2/n)In)−1R∗θ)
(8)

where R∗θ = [rθ(x
∗, x1), . . . rθ(x

∗, xn)]
> and r∗∗θ =

rθ(x
∗, x∗).

As in standard GP inference, the time complexity is O(n3)
due to the matrix inverses and the storage isO(n2) to store
the n× n matrix Rθ.

4.2 RELATION TO THE SHRINKAGE
ESTIMATOR

The spectral kernel mean shrinkage estimator (S-KMSE)
of Muandet et al. (2013) for a fixed kernel k is defined as:

µ̌λ = Σ̂XX(Σ̂XX + λI)−1µ̂, (9)

where µ̂ =
∑n
i=1 k(·, xi) is the empirical embedding,

Σ̂XX = 1
n

∑n
i=1 k(·, xi) ⊗ k(·, xi) is the empirical co-

variance operator on Hk, and λ is a regularization param-
eter. (Muandet et al., 2013, Proposition 12) shows that
µ̌λ can be expressed as a weighted kernel mean µ̌λ =∑n
i=1 βik(·, xi), where

β =
1

n
(K + nλI)−1K1

= (K + nλI)−1[µ̂(x1), . . . , µ̂(xn)]>.

Now, evaluating S-KMSE at any point x∗ gives

µ̌λ(x∗) =

n∑
i=1

βik(x∗, xi)

= K>∗ (K + nλI)−1[µ̂(x1), . . . , µ̂(xn)]>,

where K∗ = [k(x∗, x1), . . . , k(x∗, xn)]
>. Thus, the pos-

terior mean in Eq. (7) recovers the S-KMSE estimator
(Muandet et al., 2013), where the regularization parameter
is related to the variance in the likelihood model (5), with a
difference that in our case the kernel kθ used to compute the
empirical embedding is not the same as the kernel rθ used
to compute the kernel matrices. We note that our method
has various advantages over the frequentist estimator µ̌λ:
we have a closed-form uncertainty estimate, while we are
not aware of a principled way of calculating the standard er-
ror of the frequentist estimators of embeddings. Our model
also leads to a method for learning the hyperparameters,
which we discuss next.

4.3 INFERENCE OF THE KERNEL
PARAMETERS

In this section we focus on hyperparameter learning in our
model. For the purposes of hyperparameter learning, we



want to integrate out the kernel mean embedding µθ and
consider the probability of our observations {xi}ni=1 given
the hyperparameters θ. In order to link our generative
model directly to the observations, we use a pseudolike-
lihood approach as discussed in detail below.

We use the term pseudolikelihood because the model in this
section will not correspond to the likelihood of the infinite
dimensional empirical embedding; rather it will rely on the
evaluations of the empirical embedding at a finite set of
points. Let us fix a set of points z1, . . . , zm in X ⊂ RD,
with m ≥ D. These points are not treated as random, and
the inference method we develop does not require any spe-
cific choice of {zj}mj=1. However, to ensure that there is
a reasonable variability in the values of k(xi, zj), these
points should be placed in the high density regions of P.
The simplest approach is to use a small held out portion of
the data (with m � n but m ≥ D). Now, when we eval-
uate µ̂θ at these points, our modelling assumption from (5)
on vector µ̂θ(z) = [µ̂θ(z1), . . . , µ̂θ(zm)] can be written as

µ̂θ(z)|µθ ∼ N
(
µθ(z),

τ2

n
Im

)
. (10)

However, as µ̂θ(zj) = 1
n

∑n
i=1 kθ(Xi, zj) and all the terms

kθ(Xi, zj) are independent given µθ, by Cramér’s decom-
position theorem, this modelling assumption is for the map-
ping φz : RD 7→ Rm, given by

φz(x) := [kθ(x, z1), . . . , kθ(x, zm)] ∈ Rm,

equivalent to:

φz(Xi)|µθ ∼ N
(
µθ(z), τ2Im

)
. (11)

Applying the change of variable x 7→ φz(x) and using
the generalization of the change-of-variables formula to
non-square Jacobian matrices as described in (Ben-Israel,
1999), we obtain a distribution for x conditionally on µθ
and θ:

p(x|µθ, θ) = p (φz(x)|µθ(z)) vol [Jθ(x)] , (12)

where Jθ(x) =
[
∂kθ(x,zi)
∂x(j)

]
ij

is an m × D matrix,

and

vol [Jθ(x)] =
(
det
[
Jθ(x)>Jθ(x)

])1/2
=

det

[
m∑
l=1

∂kθ(x, zl)

∂x(i)

∂kθ(x, zl)

∂x(j)

]
ij

1/2

=: γθ(x) . (13)

The notation γθ(x) highlights the dependence on both θ
and x. An explicit calculation of γθ(x) for squared expo-
nential kernels is described in Section 4.4.

By the conditional independence of {φz(Xi)}ni=1 given
µθ, we obtain the pseudolikelihood of all n observa-
tions:

p(x1, . . . , xn|µθ, θ) =

n∏
i=1

N
(
φz(xi);µθ(z), τ2Im

)
γθ(xi)

= N
(
φz(x);mθ(z), τ2Imn

) n∏
i=1

γθ(xi), (14)

where

φz(x) =
[
φz(x1)> · · ·φz(xn)>

]>
= vec {Kθ,zx} ∈ Rmn

and in the mean vector mθ(z) =
[
µθ(z)> · · ·µθ(z)>

]>
,

µθ(z) repeats n times. Under the prior (3), this mean vector
has mean 0 and covariance 1n1

>
n ⊗ Rθ,zz where Rθ,zz is

them×mmatrix such that its (i, j)-th element is rθ(zi, zj).
Combining this prior and the pseudolikelihood in (14), we
have the marginal pseudolikelihood:

p(x1, . . . , xn|θ) =

∫
p(x1, . . . , xn|µθ, θ)p(µθ|θ)dµθ

=

∫
N
(
φz(x);mθ(z), τ2Imn

) [ n∏
i=1

γθ(xi)

]
p(µθ|θ)dµθ

= N
(
φz(x);0,1n1

>
n ⊗Rθ,zz + τ2Imn

) n∏
i=1

γθ(xi).

(15)

While the marginal pseudolikelihood in Eq. (15) involves
a computation of the likelihood for an mn-dimensional
normal distribution, the Kronecker structure of the covari-
ance matrix allows efficient computation as described in
Appendix A.4. The complexity for calculating this like-
lihood is O(m3 + mn) (dominated by the inversion of
Rθ,zz + (τ2/n)Im). The Jacobian term depends on the
parametric form of kθ, but a typical cost as shown in Sec-
tion 4.4 for the squared exponential kernel is O(nD3 +
nmD2). In this case, the computation of matrices Rθ,zz
and φz(x) = vec {Kθ,zx} is O(m2D) and O(mnD) re-
spectively.

Just as in GP modeling, the marginal pseudolikelihood can
be maximized directly for maximum likelihood II (also
known as empirical Bayes) estimation, in which we look
for a single best θ̂, or it can be used to construct an efficient
MCMC sampler from the posterior of θ.

4.4 EXPLICIT CALCULATIONS FOR SQUARED
EXPONENTIAL (RBF) KERNEL

Consider the isotropic squared exponential kernel with
lengthscale matrix θ2ID defined by

kθ(x, y) = exp(−.5(x− y)>θ−2ID(x− y)). (16)



In this case, we can analytically calculate rθ(x, y), exact
form is given in the Appendix in Section A.3.

The partial derivatives of kθ(x, y) with respect to x(i) for
i = 1, . . . D can be easily derived as

∂kθ(x, y)

∂x(i)
= kθ(x, y)

x(i) − y(i)

θ2

and therefore the Jacobian from Eq. (13) is equal to

γθ(x) =

det

[
m∑
l=1

kθ(x, zl)
2 (x(i) − z(j)

l )2

θ4

]
ij

1/2

.

(17)

The computation of the matrix isO(mD2) and the determi-
nant isO(D3). Since we must calculate γθ(xi) for each xi,
the overall time complexity is O(nD3 + nmD2).

5 EXPERIMENTS

We demonstrate our approach on two synthetic datasets and
one example on real data, focusing on two-sample test-
ing with MMD and independence testing with HSIC. First,
we use our Bayesian Kernel Embedding model and learn
the kernel hyperparameters with maximum likelihood II,
optimizing the marginal likelihood. Second, we take a
fully Bayesian approach to inference and learning with our
model. Finally, we apply the PC algorithm for causal struc-
ture discovery to a real dataset. The PC algorithm relies
on a series of independence tests; we use HSIC with the
lengthscales set with Bayesian Kernel Learning.

Choosing lengthscales with the median heuristic is often a
very bad idea. In the case of two sample testing, Gretton
et al. (2012b) showed that MMD with the median heuristic
failed to reject the null hypothesis when comparing sam-
ples from a grid of isotropic Gaussians to samples from a
grid of non-isotropic Gaussians. We repeated this exper-
iment by considering a distribution P of a mixture of bi-
variate Gaussians centered on a grid with diagonal covari-
ance and unit variance and a distribution Q of a mixture
of bivariate Gaussians centered at the same locations but
with rotated covariance matrices with a ratio ε of largest to
smallest covariance eigenvalues.

As illustrated in Figures 2(A) and (B), for small values of
ε both distributions are very similar whereas the distinction
between P and Q becomes more apparent as ε increases.
For different values of ε, we sample 100 observations from
each mixture component, yielding 900 observations from
P and 900 observations from Q and then perform a two-
sample test (H0 : P = Q vs. H1 : P 6= Q) using the MMD
empirical estimate with an isotropic squared exponential
kernel with one hyperparameter, the lengthscale. The type
II error (i.e. probability that the test fails to reject the null

hypothesis that P = Q at α = 0.05) is shown in Figure
2(C) for differently skewed covariances (ε from 0.5 to 15)
when the median heuristic is chosen to select the kernel
lengthscale or when using the Bayesian Kernel Learning.
In this example, the median heuristic picks a kernel with a
large lengthscale, since the median distance between points
is large. With this large lengthscale MMD always fails to
reject at α = 0.05 even for simple cases where ε is large.
When we use Bayesian Kernel Learning and optimize the
marginal likelihood of Eq. (15) for τ2 = 1 (our results
were not sensitive to the choice of this parameter, but in
the fully Bayesian case below we show that we can learn
it) we found the maximum marginal likelihood at a length-
scale of 0.85. With this choice of lengthscale, MMD cor-
rectly rejects the null hypothesis at α = 0.05 even for very
hard situations when ε = 2. We observe that when ε is
smaller than 2, the type II error of MMD is very high for
both choices of lengthscale, because the two distributions P
and Q are so similar that the test always retains the null hy-
pothesis. In Figure 2(D) we illustrate the BKL marginal
likelihood across a range of lengthscales. Interestingly,
there are multiple local optima and the median heuristic
lies between the two main modes. The plot indicates that
multiple scales may be of interest for this dataset, which
makes sense given that the true data generating process is
a mixture model. This insight can be incorporated into the
Bayesian Kernel Embedding framework by expanding our
model, as discussed below. In Figure 2(E) we used the BKE
posterior to estimate the witness function µP,θ−µQ,θ. This
function is large in magnitude in the locations where the
two distributions differ. For ease of visualization we do not
try to include posterior uncertainty intervals, but these are
readily available from our model, and we show them for a
1-dimensional case below.

Our model does not just provide a better way of choos-
ing lengthscales. We can also use it in a fully Bayesian
context, where we place priors over the hyperparameters
θ and τ2, and then integrate them out to learn a posterior
distribution over the mean embedding. Switching to one
dimension, we consider a distribution P = N (0, 1) and a
distribution Q = Laplace(0,

√
.5). The densities are shown

in Figure 3(A). Notice that the first two moments of these
distributions are equal. To create a synthetic dataset we
sampled n observations from each distribution, and then
combined them together into a sample of size 2n, follow-
ing the strategy in the previous experiment to learn a sin-
gle lengthscale and kernel mean embedding for the com-
bined dataset. We ran a Hamiltonian Monte Carlo sampler
(HMC) with NUTS (Stan source code is in the Appendix in
Section B) for the Bayesian Kernel Embedding model with
a squared exponential kernel, placing a Gamma(1, 1) prior
on the lengthscale θ of the kernel and a Gamma(1, 1) prior
on τ2. We ran 4 chains for 400 iterations, discarding 200
iterations as warmup, with the chains starting at different
random initial values. Standard convergence and mixing
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(A) data, epsilon=2
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Figure 2: Two sample testing on a challenging simulated data set: comparing samples from a grid of isotropic Gaussians
(black dots) to samples from a grid of non-isotropic Gaussians (red dots) with a ratio ε of largest to smallest covariance
eigenvalues. Panels (A) and (B) illustrate such samples for two values of ε. (C) Type II error as a function of ε for significant
level α = 0.05 following the median heuristic or the BKL approach to choose the lengthscale. (D) BKL marginal log-
likelihood across a range of lengthscales. It is maximised for a lengthscale of 0.85 whereas the median heuristic suggests
a value of 20. (E) Witness function for the difficult case where ε = 2 using the BKL lengthscale.

diagnostics were good (R̂ ≈ 1), so we considered the re-
sult to be 800 draws from the posterior distribution. Recall
that for fixed hyperparameters θ and τ2 we can obtain a
posterior distribution over µP,θ and µQ,θ. For each of our
800 draws, we drew a sample from these two distributions
and then calculated the witness function as the difference,
thus obtaining a random function drawn from the posterior
distribution over µP,θ − µQ,θ (where in practice we eval-
uate this function at a fine grid for plotting purposes). We
thus obtained the full posterior distribution over the wit-
ness function, integrating over the kernel hyperparameter.
We followed this procedure twice to create a dataset with
n = 50 and a dataset with n = 400. In Figure 3(B) we see
that the witness function for the small dataset is not able to
distinguish between the distributions as it rarely excludes 0.
(Note that our model has the function 0 as its prior, which
corresponds to the null hypothesis that the two distributions
are equal. This could easily be changed to incorporate any
relevant prior information.). As shown in Figure 3(C), with
more data the witness function is able to distinguish be-
tween the two distributions, mostly excluding 0.

Finally, we consider the ozone dataset analyzed in Breiman
and Friedman (1985), consisting of daily measurements of
ozone concentration and eight related meteorological vari-
ables. Following the approach in Flaxman et al. (2015), we
first pre-whiten the data to control for underlying tempo-
ral autocorrelation, then we use a combination of Gaussian

process regression followed by HSIC to test for conditional
independence. Each time we run HSIC, we set the ker-
nel hyperparameters using Bayesian Kernel Learning. The
graphical model that we learn is shown in Figure 4. The
directed edge from the temperature variable to ozone is en-
couraging, as higher temperatures favor ozone formation
through a variety of chemical processes which are not rep-
resented by variables in this dataset (Bloomer et al., 2009;
Sillman, 1999). Note that this edge was not present in the
graphical model in Flaxman et al. (2015) in which the me-
dian heuristic was used.

6 DISCUSSION

We developed a framework for Bayesian learning of ker-
nel embeddings of probability measures. It is primarily
designed for unsupervised settings, and in particular for
kernel-based hypothesis testing. In these settings, one re-
lies critically on a good choice of kernel and our framework
yields a new method, termed Bayesian Kernel Learning, to
inform this choice. We only explored learning the length-
scale of the squared exponential kernel, but our method ex-
tends to the case of richer kernels with more hyperparame-
ters. We conceive of Bayesian Kernel Learning as a drop-
in replacement for selecting the kernel hyperparameters in
settings where cross-validation is unavailable. A sampling-
based Bayesian approach is also demonstrated, enabling in-
tegration over kernel hyperparameters, and e.g., obtaining
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Figure 3: The true data generating process is shown in (A)
where two samples of size n are drawn from distributions
with equal means and variances. We then fit our Bayesian
Kernel Embedding model, with priors over the hyperpa-
rameters θ and τ2 to obtain a posterior over the witness
function for two-sampling testing. The witness function
indicates the model’s posterior estimates of where the two
distributions differ (when the witness function is zero, it in-
dicates no difference between the distributions). Posterior
means and 80% uncertainty intervals are shown. In (B) the
small sample size means that the model does not effectively
distinguish between samples from a normal and a Laplace
distribution, while in (C) larger samples enable the model
to find a clear difference, with much of the uncertainty en-
velope excluding 0.

the full posterior distribution over the witness function in
two-sample testing.

While our method is designed for unsupervised settings,
there are various reasons it might be helpful in supervised
settings or in applied Bayesian modelling more generally.
With the rise of large-scale kernel methods, it has become
possible to apply, e.g. SVMs or GPs to very large datasets.

Ozone

Temp InvHt

Pres

Vis Hgt

Hum InvTmp

Wind

Figure 4: Graphical model representing an equivalence
class of DAGs for the Ozone dataset from Breiman and
Friedman (1985), learned using the PC algorithm follow-
ing the approach in Flaxman et al. (2015) with HSIC to test
for independence. We used BKL to set hyperparameters of
HSIC. Singly directed edges represent causal links, while
bidirected edges represent edges that the algorithm failed
to orient. The causal edge from temperature to ozone ac-
cords with scientific understanding, and was not present in
the graphical model learned in Flaxman et al. (2015) which
employed the median heuristic.

But even with efficient methods, it can be very costly to
run cross-validation over a large space of hyperparameters.
In practice, when, e.g. large scale approximations based
on random Fourier features (Rahimi and Recht, 2007) are
used, we have not seen much attention paid to kernel learn-
ing – the features are often just one part of a complicated
pipeline, so again the median heuristic is often employed.
For these reasons, we think that the developed method for
Bayesian Kernel Learning would be a judicious alterna-
tive. Moreover, it would be straightforward to develop scal-
able approximate versions of Bayesian Kernel Learning it-
self.
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Milan N. Lukić and Jay H. Beder. Stochastic Processes with
Sample Paths in Reproducing Kernel Hilbert Spaces. Trans-
actions of the American Mathematical Society, 353(10):3945–
3969, 2001.

Joris M Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheis-
chler, and Bernhard Schölkopf. Distinguishing cause from ef-
fect using observational data: methods and benchmarks. The
Journal of Machine Learning Research, pages 1–96, 2015.

K. Muandet, B. Sriperumbudur, K. Fukumizu, A. Gretton, and
B. Schölkopf. Kernel Mean Shrinkage Estimators. Journal of
Machine Learning Research (forthcoming), 2016.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur,
Arthur Gretton, and Bernhard Schölkopf. Kernel mean estima-
tion and Stein’s effect. arXiv preprint arXiv:1306.0842, 2013.

Krikamol Muandet, Bharath Sriperumbudur, and Bernhard

Schölkopf. Kernel mean estimation via spectral filtering. In
Advances in Neural Information Processing Systems, pages 1–
9, 2014.

Emanuel Parzen. On estimation of a probability density function
and mode. The Annals of Mathematical Statistics, 33(3):1065–
1076, 1962.

Natesh S Pillai, Qiang Wu, Feng Liang, Sayan Mukherjee, and
Robert L Wolpert. Characterizing the function space for
bayesian kernel models. Journal of Machine Learning Re-
search, 8(8), 2007.

A. Rahimi and B. Recht. Random features for large-scale ker-
nel machines. In Advances in Neural Information Processing
Systems (NIPS), pages 1177–1184, 2007.

Aaditya Ramdas and Leila Wehbe. Nonparametric independence
testing for small sample sizes. 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI), 2015.

Aaditya Ramdas, Sashank Jakkam Reddi, Barnabás Póczos, Aarti
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A Some derivations for Bayesian Kernel Embedding

A.1 Notation

Consider a dataset x1, . . . , xn ∈ RD and suppose that there exists some unknown probability distribution P for which the
xi are i.i.d.:

xi ∼ P . (18)

Denote by µθ the RKHS mean embedding element for a given kernel kθ(·, ·) with hyperparameter θ ∈ RQ and by µ̂θ(·)
the empirical mean embedding

µ̂θ(·) :=
1

n

n∑
i=1

kθ(xi, ·) . (19)

We posit as our model that µθ has a GP prior with covariance rθ, where

rθ(x, y) =

∫
kθ(x, u)kθ(u, y)ν(du) ,

where ν is a finite measure on RD thus ensuring that µθ ∈ Hkθ when drawn from the prior

µθ|θ ∼ GP(0, rθ(·, ·)) . (20)

In addition, we model the link between the population mean embedding and the empirical mean embedding functions at a
given location x as follows

p(µ̂θ(x)|µθ(x)) = N (µ̂θ(x);µθ(x), τ2/n) (21)

where τ2 is another hyperparameter.

A.2 Priors over RKHS

The results in this section have appeared in the literature before, but as they are not well known or collected in one place,
we have included them for completeness. A similar discussion appears in Pillai et al. (2007), but without the construction
of explicit GP priors over the RKHSs which we provide below.

It is well known that the sample paths of a GP with kernel k are almost surely outside RKHS Hk, the result known
as Kallianpur’s 0-1 law (Kallianpur, 1970; Wahba, 1990). It is easiest to demonstrate this by considering a Mercer’s
expansion Rasmussen and Williams (2006, Section 4.3) of kernel k given by

k(x, x′) =

∞∑
i=1

λiei(x)ei(x
′), (22)

for the eigenvalue-eigenfunction pairs {(λi, ei)}ni=1. Then, a representation of f ∼ GP(0, k) is given by f =∑∞
i=1

√
λiZiei, where {Zi}∞i=1 are independent and identically distributed standard normal random variables. However,

‖f‖2Hk =

∞∑
i=1

λiZ
2
i

λi
=

∞∑
i=1

Z2
i =∞, a.s. (23)

so f 6∈ Hk almost surely. This issue is often sidelined in the literature, cf. e.g. (Rasmussen and Williams, 2006, Section 6.1)
– in GP regression, it is not necessary to ensure that the prior on the regression function is supported on Hk (the posterior
mean will still lie in Hk, however). However, since the object of our interest, kernel embedding, is by construction an
element of Hk - we opt for an approach where the prior is indeed specified over the correct space. Fortunately, it is
straightforward to construct a kernel r such that the realizations from a GP with kernel r are almost surely inside RKHS
Hk. For this, we will need notions of dominance and nuclear dominance for kernel functions.
Definition 1. Kernel k is said to dominate kernel r (written k � r) ifHr ⊆ Hk.

Lukić and Beder (2001, Theorem 1.1) characterise dominance k � r via the existence of a certain positive, continuous and
self-adjoint operator L : Hk → Hk for which

r(x, x′) = 〈L[k(·, x)], k(·, x′)〉Hk , ∀x, x′ ∈ X . (24)

When L is also a trace class operator, dominance is termed nuclear, and denoted k �� r. The following theorem from
Lukić and Beder (2001, Theorem 7.2) then fully characterises kernels that lead to valid GP priors over RKHSHk.



Theorem 1. Let Hk be separable and let m ∈ Hk. Then GP(0, r(·, ·)) has trajectories in Hk with probability 1 if and
only if k �� r.

Thus, we just need to specify a trace-class, positive, continuous and self-adjoint operator L : Hk → Hk and compute
〈L[k(·, x)], k(·, x′)〉Hk . A convenient choice for a given bounded continuous kernel k can be defined as follows. Take the
convolution operator Sk : L2(X ; ν)→ Hk with respect to a finite measure ν, defined as

[Skf ](x) =

∫
f(u)k(x, u)ν(du). (25)

It is well known that the adjoint of Sk is the inclusion ofHk into L2 (Steinwart and Christmann, 2008, Section 4.3). Thus,
we let L = SkS

∗
k , which is the (uncentred) covariance operator L =

∫
k(·, u) ⊗ k(·, u)ν(du) of ν. As a covariance

operator, L is then positive, continuous and self-adjoint. It is also trace-class in most cases of interest – and in particular
whenever

∫
k(u, u)ν(du) < ∞ (Steinwart and Christmann, 2008, Theorem 4.27), and thus for every stationary kernel

provided that ν is a finite measure. This leads to

r(x, x′) = 〈SkS∗k [k(·, x)], k(·, x′)〉Hk
= 〈S∗k [k(·, x)], S∗kk(·, x′)〉L2(X ;ν)

=

∫
k(x, u)k(u, x′)ν(du),

so r can be simply computed as a convolution of k with itself, and we can use GP(0, r(·, ·)) as a prior overHk.

A.3 Covariance function rθ

In this subsection, we derive the covariance function rθ for squared exponential kernels. Consider a squared exponential
kernel on X = RD with full covariance matrix Σθ defined by

kθ(x, y) = exp

(
−1

2
(x− y)TΣ−1

θ (x− y)

)
, x, y ∈ RD. (26)

While we have required in A.2 that ν is a finite measure for the covariance operator to be trace class when working with
stationary kernels, let us for simplicity first consider the instructive case when ν is the Lebesgue measure. Then, we
have

rθ(x, y) =

∫
kθ(x, u)kθ(u, y)du

=

∫
exp

(
−1

2

(
(x− u)TΣ−1

θ (x− u) + (y − u)TΣ−1
θ (y − u)

))
du

Note that

(x− u)TΣ−1
θ (x− u) + (y − u)TΣ−1

θ (y − u) = 2

(
u− x+ y

2

)T
Σ−1
θ

(
u− x+ y

2

)
+

1

2
(x− y)TΣ−1

θ (x− y) .

Then

rθ(x, y) = exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)∫
exp

(
−1

2

(
u− x+ y

2

)T (
1

2
Σθ

)−1(
u− x+ y

2

))
du

= exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)
× (2π)D/2|Σθ/2|1/2

= πD/2 |Σθ|1/2 exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)
.

Thus rθ is proportional to another squared exponential kernel with covariance 2Σθ. For the special case where the covari-
ance matrix Σθ is diagonal – let Σθ = θID and θ = (θ(1), . . . , θ(D))T – we have

rθ(x, y) = πD/2

(
D∏
d=1

θ(d)

)1/2

exp

(
−1

2
(x− y)T (2θID)−1(x− y)

)
. (27)



Now, take ν(du) = exp
(
−‖u‖

2
2

2η2

)
du, i.e., ν is a finite measure and is proportional to a Gaussian measure on Rd. In that

case, we have

rθ(x, y) =

∫
kθ(x, u)kθ(u, y)ν(du)

=

∫
exp

−1

2

(
(x− u)TΣ−1

θ (x− u) + (y − u)TΣ−1
θ (y − u) + η−2u>u

)︸ ︷︷ ︸
A

 du.

From standard Gaussian integration rules, it follows that

A =
1

2
(x− y)TΣ−1

θ (x− y) + (u−m)>S−1(u−m) +

(
x+ y

2

)>(
1

2
Σθ + η2ID

)−1(
x+ y

2

)
where m = S−1Σ−1

θ (x+ y) and S = (2Σ−1
θ + η−2ID)−1. Therefore

rθ(x, y) = (2π)D/2|S|1/2 exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)− 1

2

(
x+ y

2

)>(
1

2
Σθ + η2ID

)−1(
x+ y

2

))

= (2π)D/2
∣∣2Σ−1

θ + η−2ID
∣∣−1/2

exp

(
−1

2
(x− y)T (2Σθ)

−1(x− y)

)
× exp

(
−1

2

(
x+ y

2

)>(
1

2
Σθ + η2ID

)−1(
x+ y

2

))
.

Thus, we see that rθ has a nonstationary component that penalises the norm of
(
x+y

2

)
. This is reminiscent of the well known

locally stationary covariance functions (Silverman, 1957). However, for large values of η, the nonstationary component
becomes negligible and rθ reverts to being proportional to a standard squared exponential kernel with covariance 2Σθ, just
like in the case of Lebesgue measure. We note that any choice of η > 0 gives a valid prior over Hk. Treating η as another
hyperparameter to be learned would be an interesting direction for future research.

A.4 Fast computation of the marginal pseudolikelihood

The marginal pseudolikelihood in Eq. (15) requires computation of the likelihood for an mn-dimensional normal distribu-
tion

N
(
vec {Kθ,zx} ;0, 1n1

>
n ⊗Rθ,zz + τ2Imn

)
.

However, the Kronecker product structure in the covariance matrix C = 1n1
>
n ⊗ Rθ,zz + τ2Imn allows efficient compu-

tation. We denote with Rθ,zz = QΛQ> the eigendecomposition of the matrix Rθ,zz with Λ = diag [λ1, . . . , λm]. Note
that 1n1>n is a rank-one matrix with the eigenvalue equal to n. Therefore C has top m eigenvalues equal to nλi + τ2,
i = 1, . . . ,m, and the remaining n(m− 1) all equal to τ2. Thus, the log-determinant is simply

log detC =

m∑
i=1

log(nλi + τ2) +m(n− 1) log τ2 = log det
[
Rθ,zz + (τ2/n)Im

]
+m log n+m(n− 1) log τ2. (28)

Further, we need to compute vec {Kθ,zx}> C−1vec {Kθ,zx}. By completing b1 = n−1/21n to an orthonormal basis
{b1, . . . , bn} of Rn and forming the corresponding matrixB = [b1 · · · bn], and denoting by n an n×nmatrix with n11 = n
and nij = 0 elsewhere, we have that

C−1 = (B ⊗Q)(n⊗ Λ + τ2Inm)−1(B ⊗Q)>. (29)

We now simply need to apply Kronecker identity (B> ⊗Q>)vec {Kθ,zx} = vec
{
Q>Kθ,zxB

}
, to obtain

vec {Kθ,zx}> C−1vec {Kθ,zx} = vec
{
Q>Kθ,zxB

}>
(n⊗ Λ + τ2Inm)−1vec

{
Q>Kθ,zxB

}
=

m∑
j=1

n−1
[
Q>Kθ,zx1n

]2
j

nλj + τ2
+

1

τ2

n∑
i=2

m∑
j=1

[
Q>Kθ,zxbi

]2
j
. (30)



For the first term, we have

m∑
j=1

n−1
[
Q>Kθ,zx1n

]2
j

nλj + τ2
=

m∑
j=1

[
Q>µ̂(z)

]2
j

λj + τ2/n
=

m∑
j=1

Tr
[
µ̂(z)µ̂(z)>qjq

>
j

]
λj + τ2/n

= µ̂(z)>
(
Rθ,zz + (τ2/n)Im

)−1
µ̂(z). (31)

And for the second term:

1

τ2

n∑
i=2

m∑
j=1

[
Q>Kθ,zxbi

]2
j

=
1

τ2

m∑
j=1

n∑
i=2

[
q>j Kθ,zxbi

]2
=

1

τ2

m∑
j=1

{
‖Kθ,xzqj‖2 − n

(
q>j µ̂(z)

)2}
=

1

τ2
‖Kθ,xz‖2F −

n

τ2
‖µ̂ (z)‖2 . (32)

Altogether, the log-likehood is given by

log
{
N
(
vec {Kθ,zx} ;0, 1n1

>
n ⊗Rθ,zz + τ2Imn

)}
= −1

2

{
log det

[
Rθ,zz + (τ2/n)Im

]
(33)

+ µ̂(z)>
(
Rθ,zz + (τ2/n)Im

)−1
µ̂(z)

+
1

τ2
‖Kθ,xz‖2F −

n

τ2
‖µ̂ (z)‖2

+m log n+m(n− 1) log τ2 +mn log(2π)

}
.

B Source for Stan model

functions {
// phi should be m x n
real kron_multi_normal(matrix K,matrix R,matrix Q1,vector e1,int m,int n,real sigma2) {
vector[m*n] e;
matrix[m,m] Q2;
vector[m] e2;
vector[m] ones;
vector[m*n] mv2;
real mvp;
real logdet;
Q2 <- eigenvectors_sym(R);
e2 <- eigenvalues_sym(R);
for(j in 1:m) {
ones[j] <- 1;
for(i in 1:n)
e[(j-1)*n + i] <- 1/(e1[i] * e2[j] + sigma2);

}
mv2 <- to_vector((transpose(Q2) * transpose(K)) * Q1);
mvp <- sum(mv2 .* e .* mv2);
logdet <- sum(log(e2 .* (ones * n) + ones * sigma2)) + m * (n-1) * log(sigma2);

return( - .5 * logdet - .5 * mvp);
}

}

data {
int<lower=1> n;
int<lower=1> m;
vector[n] x;



vector[m] u;
}

transformed data {
matrix[n,m] xu_dist2;
matrix[m,m] u_dist2;
matrix[n,n] ones;
vector[n] zeros;
matrix[n,n] Q1;
vector[n] e1;

for (i in 1:n) {
zeros[i] <- 0;
e1[i] <- 0;
for (j in 1:n)
ones[i,j] <- 1;

for(j in 1:m)
xu_dist2[i, j] <- square(x[i] - u[j]);

}
for(i in 1:m) {
for(j in 1:m)
u_dist2[i,j] <- square(u[i] - u[j]);

}
e1[1] <- n;
Q1 <- eigenvectors_sym(ones);

}

parameters {
real<lower=0> lengthscale;
real<lower=0> sigma2;

}
transformed parameters {
matrix[m,m] R;
matrix[n,m] J;
matrix[n,m] K;

// R <- lengthscale * sqrt(pi()) *
R <- exp(- u_dist2/(4*lengthscaleˆ2));
K <- exp(- xu_dist2/(2*lengthscaleˆ2));
J <- K .* K .* xu_dist2 / lengthscaleˆ4;

}

model {
for(i in 1:n) // Jacobian
increment_log_prob(log(.5 * sum(J[i])));

increment_log_prob(kron_multi_normal(K, R, Q1, e1, m, n, sigma2));
lengthscale ˜ gamma(1,1);
sigma2 ˜ gamma(1,1);

}
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