
 

Supplementary Figure 1  

Corrected Fisher randomization (CFR) and tensor maximum entropy (TME) methods. 

(a) Creating S surrogate datasets using CFR (top) and TME methods (bottom). Sample CFR: original neural responses are shuffled 

across conditions, yielding a randomized dataset with distorted primary features. Optimize CFR: find the best neural readout that 
operates on the shuffled data to retain the primary features of the original dataset. Optimize TME: find the maximum entropy distribution 
of tensor-valued datasets that has the same primary features (first and second marginal moments) as the original dataset. Sample 
TME: use efficient Kronecker methods to sample from the maximum entropy distribution. (b) Using surrogate datasets from CFR or 

TME to test the null hypothesis that population structure is an expected byproduct of given primary features. Quantify structure: 
evaluate a summary statistic such as R

2
 or variance explained that quantifies the degree that a hypothesized population structure exists 

in population data. Evaluate the summary statistic from the original neural data and from S surrogate datasets. Use the S values of the 
summary statistics from the surrogate datasets as the null distribution of population structure arising from the primary features alone. 
The summary statistic from the original neural data is then compared to that null distribution to obtain a p-value for the null hypothesis. 
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Supplementary Figure 2 

Quantification of primary features in the surrogate datasets based on motor cortex data. 

Each surrogate dataset Xsurr
(i)

  (for i ∈ {1, … ,S},  S=100) has marginal covariance  ΣT 
(i)

, ΣN 
(i)

, and ΣC 
(i)

, which, in the surrogate-TNC 
control (right column of each panel), should match the specified primary features ΣT, ΣN, and ΣC of the original neural data. The right 
column demonstrates that fit: the top two rows (panel a) of the right column shows that CFR and TME match the true covariances in 
expectation (see equation on vertical axis); the bottom two rows (panel b) show that CFR has very minor variance around that mean, 

whereas TME has meaningful variance (see equation on vertical axis), as expected. Each dot corresponds to one of the nine separate 
datasets collected in the motor cortex
(A, B, J1, J2, J3, J4, J-Array, N, and N-Array; see Methods for data details). The left and middle 
columns of each panel of the figure correspond to the surrogate-T (left) and surrogate-TN (middle) controls.  Here we see as expected 
that all covariances that are specified in the control ΣT in the left column; both ΣT and ΣN in the middle column) are very well matched.  
Correspondingly, we also see that covariances that are not specified in the control do not match the moments of the data. Taken 
together, these data demonstrate quantitatively that the CFR and TME methods behave as desired, both in terms of preserving the 

specified structure, and in terms of destroying structure not specified.  
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Supplementary Figure 3 

Quantification of primary features in the surrogate datasets based on PFC data. 

Each surrogate dataset Xsurr
(i)

  (for i  {1, … ,S},  S=100) has marginal covariances ΣT 
(i)

, ΣN 
(i)

, and ΣC 
(i)

, which, in the surrogate-TNC 
control (right column of each panel), should match the specified primary features ΣT, ΣN, and ΣC of the original neural data. The right 
column demonstrates that fit: the top two rows (panel a) of the right column shows that CFR and TME match the true covariances in 
expectation (see equation on vertical axis); the bottom two rows (panel b) show that CFR has very minor variance around that mean, 

whereas TME has meaningful variance (again see equation on vertical axis), as expected. Each dot corresponds to one of the two 
datasets collected in the prefrontal cortex (RR15 and RR14; see Methods for data details). The left and middle columns of each panel 
of the figure correspond to the surrogate-T (left) and surrogate-TN (middle) controls. Here we see as expected that all covariances that 
are specified in the control (ΣT in the left column; both ΣT and ΣN in the middle column) are very well matched.  Correspondingly, we 
also see that covariances that are not specified in the control do not match the moments of the data. Taken together, these data 
demonstrate quantitatively that the CFR and TME methods behave as desired, both in terms of preserving the specified structure, and 
in terms of destroying structure not specified. 
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Supplementary Figure 4 

Neural responses in prefrontal cortex vs. surrogates. 

This figure is similar to Fig. 3 from the main text but showing preprocessed data with soft-normalization and mean-condition 
subtraction. 
(a) Example neuron (neuron number 15 of 571 total) from prefrontal cortex. Each trace is the trial-averaged firing of the 

twelve task conditions (six stimuli and two decisions). The traces color and style reflect the twelve possible experimental conditions. 
Horizontal bars denote the times of first (F1) and second (F2) vibrotactile stimuli. (b-d) Example neurons from one surrogate-T,  
surrogate-TN, and surrogate-TNC dataset, respectively. b-d panels follow the same convention as panel a. Top panels in b-d are 
surrogate datasets generated using Corrected Fisher Randomization (CFR) and bottom panels in b-d are surrogate datasets generated 

using Tensor Maximum Entropy (TME). 
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Supplementary Figure 5 

Neural responses in motor cortex vs. surrogates. 

This figure is showing preprocessed data with soft-normalization and mean-condition subtraction. (a) Example neuron (neuron number 

175 of 218 total) recorded from the motor cortex of one monkey during the delayed-reach task. Each trace is the trial-averaged 
normalized rate during one of 108 reaching conditions (neuron 175 from monkey N-Array; see Methods). The trace color indicates the 
reach condition from Fig. 5a in the main text. (b-d) Example neurons from one
surrogate-T, surrogate-TN, and surrogate-TNC dataset, 
respectively. b-d panels follow the same convention as panel a. Top panels in b-d are surrogate datasets generated using Corrected 
Fisher Randomization (CFR) and bottom panels in b-d are surrogate datasets generated using Tensor Maximum Entropy (TME). Scale 
bars and time markers in b-d match the scale bar and time markers in a. 
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Supplementary Figure 6 

Decision (or stimulus) readouts in PFC are not (or are) an expected byproduct. 

This figure is similar to Fig. 4e,f but with reconstruction variance (termed explained variance in Kobak et al.
37

) instead of the 
conventional percentage variance explained. (a) Percent reconstruction variance of the population projection onto the top decision 

readout. Black lines show the percent variance explained from the original neural data, colored box-whisker plots show the variance 
explained distribution from 200 surrogate samples (same convention as Fig. 4 e,f; stars denote significantly high variance; upper-tail 

test). The variance of the decision projection is calculated during the decision epoch (100 ms after the second stimulus onset, until the 
second stimulus offset). (b) Same as a but for reconstruction variance of the population projection onto the top stimulus readout. The 

variance of the stimulus projection is calculated during the stimulus epoch (100 ms after first stimulus onset, until the second stimulus 
onset). 
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Supplementary Figure 7 

Single-neuron tuning to stimulus is prominent in PFC. 

Left column: the lower triangle is the unique values of the condition covariance matrix (lower triangle of ΣC) of the original neural data 
(normalized to have unit norm); the upper triangle is the unique values of the outer product of the stimulus vector with itself (again 
normalized to have unit norm, shown above the diagonal line). Right column: lower triangle is the same as the left panel but the upper 
triangle is now the unique values of the outer product of the decision vector (right). Top row is for monkey RR15 and bottom row is for 
monkey RR14 (see Methods for data details). The left column has a closer qualitative match between upper and lower triangles, 
indicating stimulus tuning is similar to the condition covariance matrix. Compare to the right column, which looks highly non-symmetric, 
meaning that ΣC does not capture decision tuning well. 
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Supplementary Figure 8 

Dimensionality of the linear dynamical system structure in motor cortex. 

We measured the fit quality (R
2
) of the motor cortex data to a linear dynamical system with different dimensionalities using leave-one-

condition-out cross-validation. Model dimensionalities in the horizontal axis reflect the number of principal components retained in the 
population response before fitting the dynamical system. Colored traces show the R

2 
from different datasets from the motor cortex (nine 

datasets). Black dot is the highest cross-validated R
2 

value, which is used in Fig. 6a and Supplementary Fig. 9.  Note that all test 
results are robust to this choice of dimensionality over a wide range (all but the smallest dimensionalities; see Fig. 6b). 

Nature Neuroscience: doi:10.1038/nn.4617



 

Supplementary Figure 9 

Population dynamics in motor cortex from many datasets are consistently significant. 

Neural responses in the motor cortex from the 400 ms duration reflecting movement response were projected onto the top PCs (see 
Supplementary Fig. 8), and then fit to a linear dynamical system. (a) Quality of fit (R

2
) of the original neural responses to the 

dynamical system model. Black bar denotes the R
2 

from the original neural data. Colored bars denote the median R
2 

from 100 different 
surrogates from each control type (error bars denote the 95th percentile of the distribution). Stars denote significantly higher R

2 
value in 

the original data than in the surrogates (P<0.001; upper-tail test). (b) Same as a, but using leave-one-condition-out cross-validated R
2
. 
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Supplementary Figure 10 

Quasirhythmic population response in motor cortex is not an expected byproduct. 

Churchland et al.
9
 identified a quasi-rhythmic population response during reaching from motor cortex data. They designed a 

dimensionality reduction method (jPCA; Churchland et al.
9
) to identify a population projection, which revealed the presence or absence 

of rotational dynamics in the neural trajectories. Some have expressed concern that the observed population oscillations may be an 
expected byproduct of the primary features of neural data. (a) Projections of population responses onto the top jPCA plane. Each trace 

shows neural trajectories reflecting the first 200 ms of movement-related activity for one of 108 reaching conditions. The colors of the 
traces are based on the variance of the preparatory state along jPC1. (b) jPCA projections from one sample of each surrogate type. (c) 
Quality of fit (R

2
) of the jPCA oscillatory dynamical system model of the original neural data and the surrogate datasets (same 

convention as Fig. 6a).  This figure validates the claim that quasi-rhythmic dynamics are not an expected byproduct. 
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Supplementary Note 1

This note proves two propositions regarding the marginal mean tensor.

Preliminaries: Given a data tensor X ∈ IRT×N×C , let x = vec(X) ∈ IRTNC be the

vectorized tensor (vec(.) is vectorization in the order from the first to the last tensor

mode). Define the matrix HT = 1
NC

(1C ⊗ 1N ⊗ IT ) ∈ IRTNC×T . HT computes the

marginal mean of the tensor X along the temporal mode (i.e., µT = HT
⊤x ∈ IRT ).

Similarly, define the matrices HN = 1
TC

(1C ⊗ IN ⊗ 1T ) ∈ IRTNC×N and HC = 1
TN

(IC ⊗

1N ⊗ 1T ) ∈ IRTNC×C , which map x to its other marginal means. Throughout, ⊗ is the

Kronecker product, ID is the identity matrix of size D ×D, and 1D is the ones vector of

size D.

We define a marginal mean tensor M ∈ IRT×N×C as any tensor that, when subtracted

from the data X , results in a tensor with zero marginal means; that is, X̄ = X −M has

HT
⊤x̄ = 0, HN

⊤x̄ = 0, HC
⊤x̄ = 0 or equivalently m = vec(M) has HT

⊤m = µT , etc.

The subspace M = {M ∈ IRT×N×C : HT
⊤m = µT , HN

⊤m = µN , HC
⊤m = µC} has

dimension TNC − (T + N + C). A procedure for creating a marginal mean tensor is

sequential mean subtraction: applying HT , HN , HC in a specified order, say:

x̄(1) = x− (NCHT )
(
HT

⊤x
)

x̄(2) = x̄(1) − (TCHN)
(
HN

⊤x̄(1)
)

x̄ = x̄(2) − (TNHC)
(
HC

⊤x̄(2)
)
.

Note that (NCHT ), (TCHN), and (TNHC) copy the measured marginal means into the

appropriate locations in the vectorized tensor. The resulting tensor X̄ has zero marginal

means with implied marginal mean tensor M̂ = X − X̄ . Note also by construction that

11
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M̂ ∈ M; that is, M̂ is a valid marginal mean tensor.

Proposition 1.1: The marginal mean tensor M̂ that results from sequential mean sub-

traction is invariant to the order in which the marginal means are subtracted.

Proof: Expand x̄ = vec(X̄) as:

x̄ =
(
ITNC − TNHCHC

⊤) (ITNC − TCHNHN
⊤) (ITNC −NCHTHT

⊤)x
=

(
(IC ⊗ IN ⊗ IT )−

(
IC ⊗ 1

N
1N1N

⊤ ⊗ 1

T
1T1T

⊤
))

(
(IC ⊗ IN ⊗ IT )−

(
1

C
1C1C

⊤ ⊗ IN ⊗ 1

T
1T1T

⊤
))

(
(IC ⊗ IN ⊗ IT )−

(
1

C
1C1C

⊤ ⊗ 1

N
1N1N

⊤ ⊗ IT

))
x

def
= PC PN PT x.

The order of mean subtraction is equivalent to the order of matrix multiplication of the

mean-centering matrices PC , PN , and PT . To show that that this mean subtraction is order

invariant, it is sufficient to show that PC , PN , and PT commute. From the mixed-product

property of the Kronecker product,AC⊗BD = (A⊗B)(C⊗D), this commutation can be

readily seen by noting that the multiplication of any pair of the matrices PC , PN , and PT

only involves the multiplication of the submatrices ( 1
T
1T1T

⊤, 1
N
1N1N

⊤, and 1
C
1C1C

⊤)

by themselves or by the (appropriately sized) identity matrix. Every matrix commutes

with itself and the identity; thus PC , PN , and PT commute, which completes the proof.

Proposition 1.2: Sequential mean subtraction produces the least norm marginal mean

tensor; that is, m̂ = vec(M̂) = argminm∈M ∥m∥22.

12
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Proof: We already have from above that m̂ ∈ M. The least norm solution is the orthog-

onal projection of the origin onto the feasible set M, and thus it is sufficient to show that

the difference between m̂ and any other feasible point m ∈ M is orthogonal to m̂, in

which case:

∥m∥22 = ∥m− m̂+ m̂∥22

= ∥m− m̂∥22 + ∥m̂∥22 (by orthogonality)

≥ ∥m̂∥22 .

Using the fact m̂ = x− x̄ = (I − PCPNPT )x (see proof of Proposition 1.1), we have:

m̂⊤(m̂−m) = m̂⊤m̂− m̂⊤m

= x⊤(I − PCPNPT )(I − PCPNPT )x− x⊤(I − PCPNPT )m

= x⊤(I − PCPNPT )x− x⊤(I − PCPNPT )m

= x⊤(I − PCPNPT )(x−m)

= x⊤(I − PCPNPT )x̄

= x⊤(x̄− x̄)

= 0.

The third equality is because (I − PCPNPT ) is idempotent. Further note that x̄ = x−m

has zero marginal means because both x and m satisfy the mean constraint (x,m ∈ M),

and the operation of PCPNPT is equivalent to sequentially subtracting the marginal means

of a tensor (see proof of proposition 1.1). As a result, PCPNPT x̄ = x̄ as the subtracted

marginal means are equal to zero in this case. Thus, m̂ ⊥ (m̂ − m) and consequently

∥m̂∥22 ≤ ∥m∥22 ∀m ∈ M, which completes the proof.

13
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Supplementary Note 2

This note proves a proposition regarding the constraint placed on the readout matrix K in

the CFR method, such that the application of K does not distort the marginal means. It

also discusses optimization practicalities.

Preliminaries: We have a surrogate dataset S̄0 ∈ IRT×N×C with zero marginal means

(see definitions and preliminaries in Supplementary Note 1), to which we apply the neural

readout matrix K ∈ IRN×N so that the resulting surrogate S̄ ∈ IRT×N×C , where S̄(t, :

, c) = K⊤S̄0(t, :, c) for condition c ∈ {1, . . . , C} and time t ∈ {1, . . . , T}, will have the

correct marginal covariances. Note that, for any K, the resulting surrogate S̄ will have

zero mean along the neural mode (µN = 0), if S̄0 has zero mean along the neural mode:

µN =
1

NC

T∑
t=1

C∑
c=1

S̄(t, :, c)

=
1

NC

T∑
t=1

C∑
c=1

K⊤S̄0(t, :, c)

= K⊤ 1

NC

(
T∑
t=1

C∑
c=1

S̄0(t, :, c)

)
= K⊤0N

= 0N .

However, the mean for the other tensor modes can be non-zero even when the mean of S̄0

is zero along these other modes.

Proposition 2.1: If the readout K has eigenvector 1N with a corresponding eigenvalue of

zero, the resulting surrogate S̄ will maintain the zero marginal means of S̄0.

14
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Proof: Write the tensor S̄ in a vector form as s̄ = (IC⊗K⊤⊗IT )s̄0, where s̄0 = vec(S̄0)

and s̄ = vec(S̄). Then:

µT = HT
⊤s̄

=
1

NC
(1C

⊤ ⊗ 1N
⊤ ⊗ IT )(IC ⊗K⊤ ⊗ IT )s̄0

=
1

NC
(1C

⊤IC ⊗ 1N
⊤K⊤ ⊗ IT IT )s̄0

=
1

NC
(1C

⊤ ⊗ (K1N)
⊤ ⊗ IT )s̄0

=
1

NC
(1C

⊤ ⊗ 01N
⊤ ⊗ IT )s̄0

= 0
1

NC
(1C

⊤ ⊗ 1N
⊤ ⊗ IT )s̄0

= 0T .

Exchanging HC for HT , the same result for µC is immediate, by the same steps, which

completes the proof.

Implementation Note: This eigenvector condition can be imposed on K by right multi-

plying
(
IN − 1

N
1N1N

⊤), a special case of the general fact that a zero eigenvalue can be

imposed via subtraction of a normalized rank-one outer product:

K

(
I − 1

∥v∥22
vv⊤

)
v = Kv − 1

∥v∥22
Kv

∥∥v2
2

∥∥ = 0.

This linear projection integrates easily into the optimization by using a projected gradient:

instead of optimizing f(K) with gradient steps η∇Kf (η: step size), we take projected

15
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gradient steps ηGKf = η∇Kf
(
I − 1

∥v∥22
vv⊤

)
to remain in the feasible set:

Ki+1 = (Ki − ηi∇Ki
f)

(
I − 1

∥v∥22
vv⊤

)

= Ki

(
I − 1

∥v∥22
vv⊤

)
− ηi∇Ki

f

(
I − 1

∥v∥22
vv⊤

)

= Ki − ηi∇Ki
f

(
I − 1

∥v∥22
vv⊤

)
= Ki − ηiGKi

f.

The advantage here is that we do not need to impose the constraint once we have this

form of the projected gradient: the projected gradient can be used directly with any un-

constrained optimization package, and it will yield solutions that satisfy the constraints if

K is initialized properly (i.e., K0 satisfy the constraint).

16
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Supplementary Note 3

This note provides the main proof of the form of the maximum entropy distribution used

in TME. To proceed in full generality with respect to the number of tensor modes, we

require additional notation:

⊕: Kronecker sum (i.e., A⊕B = A⊗ I + I ⊗B).

n: index over tensor modes (n ∈ {1, . . . , N}).

n̄: all tensor modes except the nth mode.

Dn: dimensionality of a tensor along the nth mode (number of elements).

Dn̄: the product of the dimensionalities of all tensor modes except the nth mode.

ZDn: matrix unfolding of Z ∈ IRD1×...×DN along the nth mode, namely XDn ∈ IRDn×Dn̄ .

Σ(n): the marginal Dn × Dn covariance of X along the nth mode (note by necessity we

have switched notation from the preceding, where this matrix was denoted Σn; e.g., ΣT ).

Throughout we will assume without loss of generality that all modal means are 0 (with

mean treatment as discussed in the main text).

Theorem 3.1 Given tensor dataX ∈ IRD1×...×DN with marginal covariances Σ(1), . . . ,Σ(N)

that factorize as Σ(n) = Q(n)S(n)Q(n)⊤ (svd), the maximum entropy problem

maximize
p

−
∫
p(Z)log p(Z)dZ

subject to
∫
p(Z)dZ = 1

p(Z) ≥ 0

Ep

(
ZDn

Z⊤
Dn

)
= Σ(n) ∀n ∈ {1, ..., N}

17
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has solution p̂(Z), a tensor variate probability distribution, with density on z = vec(Z):

p̂(z) = N
(

0 ,
1

2

(
⊗N

n=1Q
(n)
) (

⊕N
n=1Λ

(n)
)−1 (⊗N

n=1Q
(n)
)⊤ )

,

where the Λ(n) = diag{λ(n)1 , . . . , λ
(n)
dn

} are a function of S(n) = diag{s(n)1 , . . . , s
(n)
dn

},

solving the system of equations:

s
(1)
d1

=
1

2

D2∑
d2=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

, ∀d1 ∈ {1, . . . , D1}

...

s
(N)
dN

=
1

2

D1∑
d1=1

. . .

DN−1∑
dN−1=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

, ∀dN ∈ {1, . . . , DN}.

Proof: Optimization of the Lagrangian in the standard fashion, with Lagrange multiplier

matrices L(n), yields the expected exponential family form:

p̂(z) ∝ exp

{
−

N∑
n=1

tr
(
L(n)⊤ZDn

Z⊤
Dn

)}
.

Rearranging the exponent and factorizing L(n) = U (n)Λ(n)U (n)⊤ (which must be symmet-

ric to produce a positive definite quadratic form, required for p̂ to integrate to 1) produces:

N∑
n=1

tr
(
L(n)⊤ZDn

Z⊤
Dn

)
= tr

(
Z⊤

D1
L(1)ZD1

)
+ . . .+ tr

(
Z⊤

DN
L(N)ZDN

)
= z⊤(IDN

⊗ . . .⊗ L(1))z+ . . .+ z⊤(L(N) ⊗ . . .⊗ ID1)z

= z⊤
(
L(N) ⊕ . . .⊕ L(1)

)
z

= z⊤
(
U (N)Λ(N)U (N)⊤ ⊕ . . .⊕ U (1)Λ(1)U (1)⊤) z

= z⊤
(
⊗N

n=1U
(n)
) (

⊕N
n=1Λ

(n)
) (

⊗N
n=1U

(n)
)⊤

z,
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where the last line is technically involved; we prove it in Proposition 4.1. This quadratic

form makes apparent the anticipated Gaussian p̂(z) = N (0,Ψ), with covariance:

Ψ =
1

2

(
⊗N

n=1U
(n)
) (

⊕N
n=1Λ

(n)
)−1 (⊗N

n=1U
(n)
)⊤
, (1)

proving the form of the distribution as stated in the theorem. What remains then is to

choose the U (n) and Λ(n) such that this distribution has marginal covariances Σ(n) =

Q(n)S(n)Q(n)⊤. Without loss of generality (since we can always consider a different tensor

mode and vectorize the tensor starting with that mode), we consider the first marginal

covariance Ψ(1) of this distribution, which is the sum of the D1 × D1 main-diagonal

blocks of Ψ (a technical detail proven in Proposition 4.2). To consider the form of these

blocks, we write

Ψ =
1

2
(U (1̄) ⊗ U (1))


Λ1

Λ2

. . .
ΛD1̄


−1

(U (1̄) ⊗ U (1))⊤,

where Λi ∈ IRD1×D1 is the ith diagonal block of the inverse of the (diagonal) eigenvalue

matrix
(
⊕N

n=1Λ
(n)
)

(note the critical notational distinction between Λi, the blocks of this

Kronecker sum matrix, and Λ(n), the constituents of the Kronecker sum that arise from

the Lagrange multipliers). Proposition 4.3 shows the form of the ith main-diagonal block

of Ψ to be
∑D1̄

d=1

(
U

(1̄)
i,d

)2
U (1)Λ−1

d U (1)⊤, and thus Ψ(1), the sum of these blocks, is:

Ψ(1) =
1

2

D1̄∑
i=1

D1̄∑
d=1

(
U

(1̄)
i,d

)2
U (1)Λ−1

d U (1)⊤

= U (1)

(
1

2

D1̄∑
d=1

Λ−1
d

D1̄∑
i=1

(
U

(1̄)
i,d

)2)
U (1)⊤

= U (1)

(
1

2

D1̄∑
d=1

Λ−1
d

)
U (1)⊤,
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where the last line results because U (1̄) is an orthogonal matrix. This is a key result, in so

much as we aimed to set Ψ(n) to Σ(n) = Q(n)S(n)Q(n)⊤ (the constraint); it is now proven

that the Lagrange multiplier eigenvectors U (n) are each equal to Q(n), the given eigenvec-

tors of the marginal covariance constraints, which is then substituted into Equation 1 to

give the eigenvector form in the theorem statement, completing that piece of the proof.

Further, we also see that the Lagrange multiplier eigenvalues Λ(n) are the solutions to

S(n) = 1
2

∑Dn̄

d=1 Λ
−1
d , where S(n) are the given eigenvalues of the marginal covariance

constraints. Explicitly, the expression for the dnth element of the nth constraint eigenvalue

(a form which is detailed in Proposition 4.4) is, for all dn ∈ {1, ..., Dn}:

s
(n)
dn

=
1

2

D1∑
d1=1

. . .

Dn−1∑
dn−1=1

Dn+1∑
dn+1=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ . . .+ λ
(n−1)
dn−1

+ λ
(n)
dn

+ λ
(n+1)
dn+1

+ . . . λ
(N)
dN

,

which is the eigenvalue form in the theorem statement, thus completing the proof.

Optimization Note: The above system of equations has no closed form solution, but there

is a bijection between the set of s(n)dn
eigenvalues (given) and the set of λ(n)dn

eigenvalues

(unknown). Accordingly we numerically optimize the squared error objective over these

D1 + ...+DN variables:

min
λ
(1)
1 ...λ

(N)
DN

D1∑
d1=1

(
s
(1)
d1

− 1

2

D2∑
d2=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

)2

+

. . .+

DN∑
dN=1

s(N)
dN

− 1

2

D1∑
d1=1

. . .

DN−1∑
dN−1=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

2

.

This objective is fast to compute and can be readily differentiated. When the S(n) matrices

are well conditioned, optimizing this objective converges quickly to the global optimum
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(namely 0, up to machine precision). When the given S(n) are poorly conditioned (i.e.,

close to low rank), we found that optimization can be sped up significantly by instead

defining the objective as the squared loss of the log eigenvalues, namely:

min
ν
(1)
1 ,...,ν

(N)
DN

D1∑
d1=1

(
log s(1)d1

− log
D2∑

d2=1

. . .

DN∑
dN=1

0.5

eν
(1)
d1 + eν

(2)
d2 + . . .+ e

ν
(N)
dN

)2

+

. . .+

DN∑
dN=1

log s(N)
dN

− log
D1∑

d1=1

. . .

DN−1∑
dN−1=1

0.5

eν
(1)
d1 + eν

(2)
d2 + . . .+ e

ν
(N)
dN

2

,

which optimizes quickly to machine precision in all situations we have tested.

21

Nature Neuroscience: doi:10.1038/nn.4617



Supplementary Note 4

This note provides supporting technical proofs that are necessary for the main proof that

precedes (Supplementary Note 3).

Proposition 4.1: L(N) ⊕ . . . ⊕ L(1) = (U (N) ⊗ . . . ⊗ U (1))(Λ(N) ⊕ . . . ⊕ Λ(1))(V (N) ⊗

. . .⊗ V (1))⊤ where L(n) = U (n)Λ(n)V (n)⊤ (svd) for n ∈ {1, . . . , N}.

Proof: We will leverage the following known linear algebraic properties:

• property 1: exp(A⊕B) = exp(A)⊗ exp(B)

• property 2: exp (Z) = UZ exp (SZ)V
⊤
Z where Z = UZSZV

⊤
Z

• property 3: AC ⊗BD = (A⊗B)(C ⊗D)

Then consider the matrix exponential:

exp(L(N) ⊕ . . .⊕ L(1))

= exp(L(N))⊗ . . .⊗ exp(L(1)) (property 1)

= U (N) exp(Λ(N))V (N)⊤ ⊗ . . .⊗ U (1) exp(Λ(1))V (1)⊤ (property 2)

= (U (N) ⊗ . . .⊗ U (1))
(
exp(Λ(N))⊗ . . .⊗ exp(Λ(1))

)
(V (N) ⊗ . . .⊗ V (1))⊤ (property 3)

= (U (N) ⊗ . . .⊗ U (1)) exp(Λ(N) ⊕ . . .⊕ Λ(1))(V (N) ⊗ . . .⊗ V (1))⊤. (property 1)

From property 2, the left singular vectors, right singular vectors, and singular values

of (L(N) ⊕ . . . ⊕ L(1)) are equal to (U (N) ⊗ . . . ⊗ U (1)), (V (N) ⊗ . . . ⊗ V (1)), and

(Λ(N) ⊕ . . .⊕ Λ(1)), respectively, which completes the proof.
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Proposition 4.2: Let Z ∈ IRD1×...×DN and Ψ = E
(
zz⊤

)
∈ IRD1...DN×D1...DN for

z = vec(Z). Then Ψ(1) = E
(
ZD1

Z⊤
D1

)
∈ IRD1×D1 is the sum of the D1 × D1 diag-

onal blocks of Ψ.

Proof: Denote the dth column of ZD1 by vd ∈ IRD1 for d ∈ {1, . . . , D1̄} , then z =

[v1
⊤, . . . ,vD1̄

⊤]⊤. We then write:

Ψ(1) = E
(
ZD1

Z⊤
D1

)
= E

[v1 . . . vD1̄

]  v⊤
1
...

v⊤
D1̄




=

D1̄∑
d=1

E
(
vdv

⊤
d

)
,

the summands of which each correspond to a D1 × D1 diagonal block of Ψ, which thus

completes the proof.

Proposition 4.3: Given a matrix Ψ with singular value decomposition

Ψ = (UB ⊗ UA)


Φ1

Φ2

. . .
ΦDB

 (UB ⊗ UA)⊤,

where the Φi are the DB main-diagonal blocks of size DA × DA, the ith diagonal block

of Ψ has the form UA
(∑DB

d=1

(
UB
i,d

)2
Φd

)
UA⊤.
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Proof: Considering first the left multiplication of
(
UB ⊗ UA

)
,

(
UB ⊗ UA

)

Φ1

Φ2

. . .
ΦDB

 =

 UB
1,1U

A . . . UB
1,DB

UA

...
. . .

...
UB
DB ,1U

A . . . UB
DB ,DB

UA



Φ1

Φ2

. . .
ΦDB


=

 UB
1,1U

AΦ1 . . . UB
1,DB

UAΦDB

...
. . .

...
UB
DB ,1U

AΦ1 . . . UB
DB ,DB

UAΦDB

 .

By repeating the steps for the right multiplication of
(
UB ⊗ UA

)⊤, the ith block along

the main diagonal is seen to be
∑DB

d=1(U
B
i,d)

2UAΦdU
A⊤, which completes the proof.

Proposition 4.4: Let Ψ(1) = 1
2

∑D1̄
d=1 Λ

−1
d ∈ IRD1×D1 , where Λd is the dth main-diagonal

block of Λ = Λ(N) ⊕ . . . ⊕ Λ(1), and Λ(n) is a diagonal matrix with Dn elements. Then

ψ
(1)
d1

, the d1th diagonal element of Ψ(1), is equal to 1
2

∑DN

dN=1 . . .
∑D2

d2=1
1

λ
(1)
d1

+λ
(2)
d2

+...+λ
(N)
dN

.

Proof: Note that the Kronecker sum of diagonal matrices Λ(N), . . . ,Λ(1) (i.e., Λ) can be

seen as a counting system where the most to least significant digit goes from elements of

Λ(N) to the elements of Λ(1), and those elements are then added to form the entry in the

matrix. Λ−1 then simply inverts each entry. For example, if N = 2, then:

(Λ(2) ⊕ Λ(1))−1 =




1

λ
(1)
1 +λ

(2)
1

. . .
1

λ
(1)
D1

+λ
(2)
1


. . . 

1

λ
(1)
1 +λ

(2)
D2

. . .
1

λ
(1)
D1

+λ
(2)
D2




.
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We can see from the above example that the entry in the dith position of each of the

D1 ×D1 main-diagonal blocks share the λ(1)di
element in the entry’s denominator, and the

other elements of that denominator change systematically (in the counting fashion) as we

move down along the main-diagonal blocks. Accordingly,

ψ
(1)
d1

=
1

2

D1̄∑
d=1

Λ−1
d =

1

2

DN∑
dN=1

. . .

D2∑
d2=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

,

which completes the proof. In full generality for the dnth eigenvalue of Ψ(n), for all

dn ∈ {1, ..., Dn}, the same steps show that

ψ
(n)
dn

=
1

2

D1∑
d1=1

. . .

Dn−1∑
dn−1=1

Dn+1∑
dn+1=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ . . .+ λ
(n−1)
dn−1

+ λ
(n)
dn

+ λ
(n+1)
dn+1

+ . . . λ
(N)
dN

.
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