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Supplementary	Figures	

	
Supplementary	Figure	1.	Preparatory-epoch	and	movement-epoch	correlation	structure	for	strongly	
selective	neurons.		
This	figure	shows	the	same	result	as	Figure	3	from	the	main	text	but	on	the	subset	of	neurons	that	are	
strongly	selective	at	both	the	preparatory	and	movement	epochs	(96	neurons	monkey	B,	79	neurons	
monkey	A).	We	considered	a	neuron	strongly	selective	during	the	preparatory	epoch	if	its	maximum	
firing	rate	range	across	conditions	during	the	preparatory	epoch	exceeded	8	spikes	per	sec,	and	we	
considered	a	neuron	strongly	selective	during	the	movement	epoch	if	its	maximum	firing	rate	range	
across	conditions	during	the	movement	epoch	exceeded	10	spikes	per	sec.	Additionally,	we	required	
the	maximum	firing	rate	range	for	both	the	preparatory	and	movement	responses	to	be	greater	than	
1.5	times	the	firing	rate	range	of	the	neuron	baseline	activity	(activity	prior	to	target	onset).	(a)	
Preparatory-epoch	(left)	and	movement-epoch	(right)	correlation	matrices	for	neurons	with	strong	
selectivity	during	both	the	preparatory	and	movement	epochs	for	monkey	B	(top)	and	monkey	A	
(bottom).		Each	entry	in	the	matrix	gives	the	degree	to	which	the	response	pattern	was	similar	for	the	
two	neurons	during	that	epoch.	The	order	of	neurons	is	the	same	for	the	preparatory-epoch	matrix	
and	the	movement-epoch	matrix.	(b)	The	correlation	for	each	neuron	pair	during	the	movement	epoch	
plotted	against	the	correlation	for	the	same	pair	during	the	preparatory	epoch	(R2	=	0.13	±	0.03	for	
monkey	B,	R2	=	0.10	±	0.03	for	monkey	A).		
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Supplementary	Figure	2.	Venn	diagram	of	possible	population	structures	that	are	consistent	with	the	
findings	from	Kaufman	et	al.1.		
That	work	found	that	preparatory	activity	avoids	output-potent	dimensions.	The	dimensions	spanned	
by	the	movement	activity	(large	circle)	can	be	decomposed	to	dimensions	that	directly	influence	
muscle	(output	potent;	light	green)	and	dimensions	that	do	not	(output	null;	blue).	Kaufman	et	al.	
showed	that	the	dimensions	spanned	by	preparatory	activity	(red)	are	not	contained	within	output-
potent	dimensions.	Gray	represents	other	neural	dimensions	not	relevant	to	the	task.	(a)	The	
preparatory	dimensions	do	not	overlap	with	the	output-potent	dimensions	yet	are	fully	contained	
(overlapping)	within	other	(output-null)	movement	dimensions.	This	structure	is	consistent	with	the	
generator	model	of	Churchland	et	al.2,	and	the	findings	of	Kaufman	et	al.	(see	Figures	2	and	3b	in	that	
paper).	(b)	The	preparatory	dimensions	are	partially	overlapping	with	the	movement	dimensions.	(c)	
The	preparatory	dimensions	do	not	overlap	with	(are	orthogonal	to)	the	movement	dimensions.		  
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Supplementary	Figure	3.		Random	dimensions	within	data	space.	
Two	toy	examples:	one	demonstrating	uniformly	sampling	random	dimensions	in	the	neural	space,	and	
the	other	demonstrating	sampling	dimensions	confined	to	the	space	occupied	by	the	data.	The	dots	
are	simulated	responses.	(a)	Sampling	random	dimensions	(200	gray	lines).		Note,	the	random	
dimensions	uniformly	fill	the	whole	neural	space	(2D	space),	but	are	not	biased	to	the	space	occupied	
by	the	data	(i.e.,	do	not	follow	the	data	correlation	structure).	(b)	Data-correlation	aligned	sampling.	
Note	that	the	random	dimensions	(200	gray	lines)	are	more	numerous	in	directions	more	heavily	
occupied	by	the	data,	and	thus	the	sampled	random	dimensions	follow	the	data	correlation	structure.	
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Supplementary	Figure	4.	Percentage	of	variance	explained	by	preparatory	and	movement	principal	
components	(prep-PCs	and	move	PCs).		
This	figure	shows	the	same	result	as	Figure	4	from	the	main	text	but	for	multielectrode	array	datasets	
in	a	more	complex	task	structure.	These	data	are	precisely	those	analyzed	in	both	Churchland	et	al.2	
and	Kaufman	et	al.1	(see	those	papers	for	task	description),	providing	a	key	connection	to	those	works.		
(a)	Percentage	of	preparatory-epoch	data	variance	(red	bars)	and	movement-epoch	data	variance	
(green	bars)	explained	by	the	top	ten	prep-PCs.		(b)	Percentage	of	preparatory-epoch	data	variance	
and	movement-epoch	data	variance	explained	by	the	top	ten	move-PCs.	(c)	Alignment	index	for	neural	
and	random	data.	For	each	pair	the	two	bars	correspond	to	data	from	monkey	J	and	N,	or	to	simulated	
datasets	based	on	the	real	data	from	those	two	monkeys.	Bars	labeled	‘random’	correspond	to	the	
distribution	of	the	indices	expected	from	random	dimensions	within	the	data	space.	Stars	for	the	
neural	data	bars	denote	a	significantly	lower	index	relative	to	both	random	and	to	all	models	(monkey	
J:	p<0.01,	and	monkey	N:	p<0.001;	one-tailed	test).	For	random	data,	the	bars	show	the	median	index	
across	multiple	bootstrap	resamples,	and	error	bars	denote	the	95%	confidence	interval	(based	on	the	
distribution	obtained	via	bootstrap).	
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Supplementary	Figure	5.	Illustration	of	the	dimensionality	reduction	method.	
(a)	Three	examples	illustrating	the	identification	of	two	orthogonal	subspaces	using	the	dimensionality	
reduction	method	developed	in	this	work	when	the	true	subspaces	are	completely	aligned	(left),	
partially	aligned	(middle),	and	completely	orthogonal	(right).	The	green	(heavy)	dots	are	simulated	data	
points	belonging	to	one	epoch	and	the	red	(light)	dots	are	simulated	data	belonging	to	another	epoch.	
Dashed	lines	show	the	subspaces	identified	by	the	method.	Note	the	importance	of	the	orthogonality	
between	the	subspaces:	when	the	true	subspaces	of	data	at	different	epochs	are	completely	
orthogonal	(right),	the	identified	orthogonal	subspaces	are	identical	to	the	true	subspaces.	Thus,	each	
subspace	is	occupied	only	during	its	epoch,	and	accordingly	each	subspace	must	have	high	variance	
during	its	relevant	epoch,	and	low	variance	during	the	other	epoch	(as	shown	in	Figure	5b).	This	fact	is	
reflected	by	the	high	separation	index	between	the	data	at	the	two	epochs	shown	in	the	left	axis	of	
panel	b	(this	figure).	Note	also	that	if	the	true	subspaces	are	completely	aligned	(left)	or	somewhat	
aligned	(middle),	the	identified	subspaces	would	be	occupied	during	both	epochs	(this	fact	is	reflected	
by	the	low	separation	index	between	the	data	across	the	two	epochs).	(b)	The	separation	index	of	the	
responses	in	the	identified	subspaces	(left	axis,	black).	The	horizontal	axis	denotes	the	angle	between	
the	subspaces	in	the	simulated	datasets	(averaged	over	100	simulated	datasets).	This	index	is	the	
objective	function	that	the	dimensionality	reduction	method	maximizes	(Methods).	The	separation	
index	is	maximal	(equaling	1)	when	the	data	across	the	two	epochs	are	completely	orthogonal.	Note	
the	high	separation	index	(near	1)	of	the	real	data	from	monkey	B	and	monkey	A,	indicated	by	the	red	
and	yellow	arrows	on	the	separation	index	axis,	respectively.	In	blue	(right	axis),	the	alignment	index	
(refer	to	Figure	4c)	of	the	simulated	data	at	the	two	epochs	as	a	function	of	the	true	relation	between	
the	two	subspaces	(the	black	and	blue	traces	are	the	average	over	100	simulated	datasets).				
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Supplementary	Figure	6.	Separating	preparation-related	and	movement-related	aspects	of	the	
population	response.		
This	figure	shows	the	same	result	as	Figure	5	from	the	main	text	but	for	a	different	choice	of	
dimensionality	for	the	preparatory	and	movement	subspaces.	
(a)	Projections	of	the	neural	population	responses	onto	the	10-dimensional	preparatory	subspace	(red	
traces)	and	the	10-dimensional	movement	subspace	(green	traces).	Light-to-dark	color	shading	
corresponds	to	different	reach	conditions	(right-to-left).	(b)	Percentage	of	variance	explained	by	the	
preparatory	(red)	and	movement	(green)	subspaces.		The	left	pair	of	bars	corresponds	to	variance	
captured	during	the	preparatory	epoch.		The	right	pair	of	bars	corresponds	to	variance	captured	during	
the	movement	epoch.	Stars	denote	significantly	higher	variance	(p<0.001,	one-tailed	test)	with	respect	
to	10-dimensional	random	subspaces	(NS:	not	significant).		
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Supplementary	Figure	7.	Separating	preparation-related	and	movement-related	aspects	of	the	
population	response	(multielectrode	array	dataset).		
This	figure	shows	the	same	result	as	Supplementary	Figure	5	but	for	a	multielectrode	array	dataset	
analyzed	in	both	Churchland	et	al.2	and	Kaufman	et	al.1	(a)	Projections	of	the	neural	population	
responses	onto	the	10-dimensional	preparatory	subspace	(red	traces)	and	the	10-dimensional	
movement	subspace	(green	traces).	Light-to-dark	color	shading	corresponds	to	different	reach	
conditions	(grey	inset).	(b)	Percentage	of	variance	explained	by	the	preparatory	(red)	and	movement	
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(green)	subspaces.		The	left	pair	of	bars	corresponds	to	variance	captured	during	the	preparatory	
epoch.		The	right	pair	of	bars	corresponds	to	variance	captured	during	the	movement	epoch.	Stars	
denote	significantly	higher	variance	(p<0.001,	one	tailed	test)	with	respect	to	10-dimensional	random	
subspaces	(NS:	not	significant).	Readers	familiar	with	Kaufman	et	al.1	may	note	an	apparent	difference	
between	this	figure	and	Figure	4a	of	Kaufman	et	al.	despite	using	the	same	data.	We	point	out	that	
there	is	no	inconsistency	between	these	results.	Kaufman	et	al.	identified	output-potent	dimensions	by	
regressing	neural	activity	against	muscle	activity.	In	order	to	test	their	hypothesis,	they	performed	their	
identification	of	subspaces	blind	to	preparatory	activity,	and	therefore	likely	did	not	identify	their	
subspaces	perfectly.	Here,	we	perform	our	subspace	identification	informed	by	both	preparatory	and	
movement	activity,	and	therefore	could	achieve	better	segregation	of	preparatory	and	movement	
subspaces.	
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Supplementary	Figure	8.	Neural	activity	in	four	subspaces	in	response	to	three	key	task	events	(target	
onset,	go	cue,	and	movement	onset).		
This	figure	shows	the	same	result	as	Figure	6	from	the	main	text	but	for	monkey	A.	Each	trace	
corresponds	to	a	different	reach	direction.	(a)	Responses	during	a	150	ms	window	beginning	at	target	
onset.	Data	are	shown	for	the	neural	population	response	(monkey	A)	projected	onto	two	dimensions	
of	the	preparatory	subspace	(top),	projected	onto	two	dimensions	of	the	movement	subspace	(second	
from	top),	for	the	top	two	principal	components	of	muscle	activity	(second	from	bottom)	and	for	hand	
position	(bottom).		(b)	Same	as	in	a	but	for	response	to	go	cue	(during	a	250ms	window	starting	at	the	
go	cue	and	ending	at	approximately	the	onset	of	movement).	(c)	Same	as	in	a	but	for	a	200	ms	window	
starting	at	movement	onset.	 	
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Supplementary	Note	1	
	
Orthogonality	implies,	but	is	not	implied	by,	a	change	in	tuning		
	

Across	cortical	systems,	a	mainstay	of	neural	data	analysis	has	been	to	consider	selectivity	or	

tuning3,4	of	single	neurons.	In	the	motor	cortex,	many	studies	have	shown	that	the	selectivity	of	

individual	neurons	changes	across	different	task	contexts	and	across	time9,10.	In	particular,	selectivity	

often	changes	substantially	between	movement	preparation	and	movement	execution11.		Thus,	one	

naturally	asks:	is	the	orthogonality	between	the	preparatory	and	movement	neural	responses	a	

consequence	of	changing	selectivity?	

Here,	we	prove	that	change	in	selectivity	does	not	imply	that	the	population	activity	switches	

from	one	subspace	to	an	orthogonal	subspace.	To	do	so,	we	construct	a	counterexample	where	data	

has	zero	average	correlation	between	selectivity	at	one	epoch	relative	to	another	epoch	(different	

selectivity),	yet	the	data	in	both	epochs	occupy	a	single	neural	subspace.	The	response	subspace	of	

dimensionality	𝑑	may	be	defined	by	the	top	𝑑	principal	components,	which	are	the	top	left	singular	

vectors	of	the	data	matrix.	For	the	sake	of	this	example,	we	define	two	toy	responses	at	two	epochs	(𝑃	

and	𝑀)	that	occupy	the	same	neural	subspace:	let	𝑃 ∈  ℝ! ×! 	be	the	preparatory	response	matrix,	

with	𝑃 = 𝑉 𝑆! 𝑈!,	and	𝑀 ∈  ℝ! ×! 	be	the	movement	response	matrix	with,	𝑀 = 𝑉 𝑆! 𝑍! 	(𝐶:	number	

of	conditions;	𝑁:	number	of	neurons; 𝑈	and	𝑍 ∈  ℝ! ×!:	right	singular	vectors	for	𝑃	and	𝑀,	

respectively;	𝑉 ∈  ℝ! ×!:	the	shared	left	singular	vectors	for	𝑃	and	𝑀;	𝑆!	and	𝑆!	are	the	matrices	of	𝑑	

nonzero	singular	values).	Note	by	design,	the	left	singular	vectors	of	𝑃 and	𝑀	are	identical,	reflecting	

the	fact	that	they	occupy	the	same	single	subspace.	

The	correlation	of	the	selectivity	of	the	𝑖-th	neuron	responses	between	the	two	epochs	(𝑃!:	𝑖-th	

row	of	𝑃,	and	𝑀!:	𝑖-th	row	of	𝑀)	is	as	follows:	

𝜌 𝑃! ,𝑀! =  
𝑐𝑜𝑣(𝑃! ,𝑀!)
𝜎!!  𝜎!!

=  
𝑃!" −  𝑃! 𝑀!" −  𝑀!

!
!!!

𝑃!" −  𝑃!
!!

!!! 𝑀!" −  𝑀!
!!

!!!

= 𝑃!!𝑀!  	
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assuming	for	simplicity	and	without	loss	of	generality	that	𝑃! 	and	𝑀! 	are	mean	centered	(i.e.,	 𝑃! = 0 	

and	𝑀! = 0 )	and	with	unity	variance	(i.e.,	𝜎!!  = 1	and 𝜎!! = 1).	The	average	correlation	of	the	

selectivity	between	the	two	epochs	over	all	neurons	is	then:	

𝜌  =   
1
𝑁 𝜌 𝑃! ,𝑀!

!

!!!

 

=
1
𝑁 𝑃!!𝑀!

!

!!!

 

=
1
𝑁 𝑇𝑟 𝑃

!𝑀  

=  
1
𝑁 𝑇𝑟 𝑉𝑆!𝑈

!𝑍𝑆!𝑉!   

=  
1
𝑁 𝑇𝑟 𝑆!𝑆!𝑈

!𝑍 	

The	above	expression	depends	on	the	dot	product	between	the	right	singular	vectors	of	𝑃	and	

𝑀	(𝑈	and	𝑍).	For	example,	if	𝑍 = 𝑈	the	average	correlation	between	the	two	responses	is	maximum	

(𝜌 = 1).	If	𝑍 = −𝑈	the	two	responses	will	be	negatively	correlated	(𝜌 = −1).	More	importantly,	if	𝑍	is	

in	the	null	space	of	the	columns	of	𝑈	the	two	responses	will	be	uncorrelated	(𝜌 = 0).	Thus,	the	

responses	𝑃 and	𝑀,	which	occupy	the	same	neural	subspace,	may	have	perfectly	matched	selectivity	

or	mismatched	selectivity.	Hence,	selectivity	mismatch	does	not	imply	orthogonal	subspaces.		To	

summarize,	we	can	create	datasets	that	occupy	the	same	subspace	but	have	arbitrary	selectivity,	which	

shows	that	differences	in	selectivity	across	computational	epochs	alone	cannot	explain	the	

orthogonality	between	preparation	and	movement	subspaces	that	we	observe	in	the	motor	cortex.	

	
Now	we	prove	the	converse	that	the	orthogonality	between	the	preparatory	and	movement	

subspaces	does	imply	that	neural	selectivity	between	preparation	and	movement	will	be	highly	

different.	In	other	words,	subspace	orthogonality	predicts	that	the	preparation	and	movement	

selectivity	will	be	uncorrelated	on	average.	As	before,	we	define	two	responses	𝑃	and	𝑀.	Unlike	the	

above,	𝑃	and	𝑀	are	now	assumed	to	have	orthogonal	neural	subspaces.	In	other	words,	𝑃 = 𝑉𝑆! 𝑈!	

and	𝑀 = 𝑄 𝑆!𝑍!,	where	𝑈,	 𝑍,	 𝑆!	and 𝑆!	are	defined	as	before.	𝑉	and	𝑄	are	the	left	singular	vectors,	

defining	the	neural	subspaces.	Before,	𝑄	was	equal	to	𝑉	implying	a	single	neural	subspace,	but	now	we	
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assume	that 𝑄 is	in	the	null-space	of	the	columns	of	V.	This	assumption	reflects	the	fact	that	neural	

subspaces	of	P	and	M	are	orthogonal.	The	expression	for	the	mean	selectivity	correlation	between	𝑃	

and	𝑀	can	be	written	as	above:		

𝜌  =  
1
𝑁 𝑇𝑟 𝑃

!𝑀  

=  
1
𝑁 𝑇𝑟 𝑉𝑆!𝑈

!𝑍𝑆!𝑄!   

=
1
𝑁 𝑇𝑟 𝑄

!𝑉𝑆!𝑈!𝑍𝑆!   

= 0	

Thus,	if	the	neural	responses	occupy	orthogonal	subspaces,	the	selectivity	of	neurons	across	epochs	is	
expected	to	be	uncorrelated	on	average.	
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Supplementary	Note	2	
	
Coding	model	

The	coding	model	stems	from	the	classical	view	that	the	firing	rates	of	neurons	in	the	motor	

cortex	are	coding	different	kinematic	factors.	The	neural	responses	during	movement	were	a	function	

of	the	hand	position	 𝑝 ,	velocity (𝑣),	acceleration	(𝑎),	and	jerk	 𝑗 	with	the	following	relative	

sensitivities	(position:	12.5,	velocity:	10,	acceleration:	1,	jerk:	0.05).	Responses	𝑟 𝑡, 𝑐 	at	each	time	

𝑡 and	condition	𝑐 were	simulated	by	summing	these	kinematics	factors	at	each	time	with	weights	 𝛽𝑠 	

drawn	randomly	from	a	uniform	distribution	in	the	range	from	-1	to	1	for	each	simulated	neuron	as	

follows:	

𝑟 𝑡, 𝑐 =  𝛽!!𝑝! 𝑡, 𝑐 + 𝛽!!𝑝! 𝑡, 𝑐 + 𝛽!𝑝 𝑡, 𝑐  

+ 𝛽!!𝑣! 𝑡, 𝑐 + 𝛽!!𝑣! 𝑡, 𝑐 + 𝛽!𝑣 𝑡, 𝑐  

+ 𝛽!!𝑎! 𝑡, 𝑐 + 𝛽!!𝑎! 𝑡, 𝑐 + 𝛽!𝑎 𝑡, 𝑐  

+ 𝛽!!𝑗! 𝑡, 𝑐 + 𝛽!!𝑗! 𝑡, 𝑐 + 𝛽!𝑗 𝑡, 𝑐 	

where	𝑝! ,𝑝! , and	𝑝 are	the	position	in	the	x	direction,	y	directions	and	distance	from	reach	starting	

point,	respectively;	𝑣! , 𝑣! , and	𝑣 are	the	velocity	in	the	x	direction,	y	directions	and	hand	speed,	

respectively,	and	similar	for	𝑎! , 𝑎! , 𝑎, 𝑗! , 𝑗! , 𝑗.	Simulated	preparatory	activity	was	assumed	to	be	

proportional	to	horizontal	reach	end	point,	vertical	reach	end	point,	and	maximum	reach	speed.	This	

procedure	will	generate	neurons	with	preferred	directions	in	the	kinematics	space	as	specified	in	

previous	literature3,4.	

Generator	model	

The	pattern	generator	model	simulates	an	oscillatory	dynamical	system	that	generates	muscle	

activity.	This	model	has	been	previously	proposed2,	and	is	presented	in	detail	in	Churchland	et	al.2.	Two	

state	space	rotational	planes	with	two	different	frequencies	were	simulated.	These	two	rotational	

responses	were	summed	with	different	weights	to	produce	muscle	activity	(EMG).	The	oscillations	

were	90	degrees	out	of	phase	to	mimic	rotational	trajectories	in	the	state	space,	and	were	windowed	

by	a	gamma	function.	Different	reaching	conditions	were	simulated	by	running	the	system	from	a	

different	initial	condition,	which	corresponds	to	an	oscillatory	response	with	a	different	amplitude	and	
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phase.	However,	the	rotational	frequencies	and	the	relation	between	the	leading	and	lagging	

responses	remained	consistent	for	all	conditions.	These	initial	states	were	extended	back	in	time	to	

simulate	the	preparatory	neural	activity.	The	initial	conditions	were	optimized	to	fit	the	EMG	activity	at	

each	condition	via	regression.	The	two	oscillation	frequencies,	the	parameters	of	the	gamma	

windowing	function,	and	the	system	evolution	time	were	numerically	optimized.	The	simulated	neural	

responses	were	then	a	weighted	sum	of	the	underlying	oscillations	with	weights	drawn	randomly.		

Non-normal	recurrent	neural	network	(RNN1)	

Simulated	responses	were	generated	from	a	recurrent	neural	network	with	non-normal	

connectivity	matrix,	which	has	been	proposed	previously	in	Hennequin	et	al.5.		The	weights	matrix	was	

initially	sparse	and	random	with	half	the	columns	positive	only	and	half	the	columns	negative	only.	

Then,	the	inhibitory	(negative)	weights	of	the	connectivity	matrix	were	optimized	according	to	the	

stability	optimization	procedure	discussed	in	Hennequin	et	al.	This	optimization	procedure	maintains	

the	non-normal	structure	of	the	network6	while	stabilizing	the	network’s	chaotic	activity.		Refer	to	

Hennequin	et	al.	for	full	details	of	the	model	and	the	stability	optimization	procedure.	The	simulated	

preparatory	activity	was	generated	from	holding	the	network	activity	at	an	initial	fixed	point,	and	the	

simulated	movement	activity	was	generated	by	freely	running	the	network	from	this	initial	fixed	point.	

The	initial	fixed	point	was	different	for	each	reaching	condition.	These	initial	conditions	were	chosen	to	

generate	network	responses	with	energy	that	matched	the	real	evoked	neural	energy	(the	square	

norm	of	the	vector	of	firing	rates	at	each	time)	as	follows:	first,	we	identified	a	ranked	dictionary	of	𝑁		

preferred	states	(𝑁:	number	of	units	in	the	network)	that	evoke	the	most	to	the	least	energy	of	the	

network.	In	other	words,	the	top	preferred	state	(𝐱! ∈ ℝ!)	evokes	the	highest	neural	energy	in	the	

network;	the	second	preferred	state	(𝐱! ∈ ℝ!) evokes	the	second	highest	neural	energy,	and	so	on.	

For	a	condition	𝑐,	we	assumed	that	the	network	initial	fixed	point	at	that	condition	(𝐫 0, 𝑐 ∈ ℝ!)	is	a	

weighted	sum	of	all	the	preferred	states.	To	obtain	the	corresponding	weights,	for	each	condition,	we	

measured	the	correlation	coefficient	between	the	real	neural	energy	and	the	model	energy	evoked	

from	each	of	the	𝑁	preferred	states.	We	then	picked	the	top	5	preferred	states	that	evoked	energy	

similar	to	the	real	data	and	weighted	them	as	follows:	

𝐫 0, 𝑐 = 𝐱! 𝐱!…  𝐱!
𝐰!

𝐰! !
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where	𝐰! ∈ ℝ!	is	the	vector	that	contains	the	top	5	correlation	coefficients	of	the	network	energy	

with	the	real	data	energy	at	condition	𝑐.	These	initial	conditions	generated	network	responses	with	

similar	energy	to	the	real	data.	In	addition,	the	network	responses	were	rich	enough	to	reproduce	real	

muscle	activity	(EMG)	with	a	simple	linear	read	out.		

Regularized	recurrent	neural	network	model	(RNN2)	

Simulated	responses	were	generated	from	another	randomly	connected	recurrent	neural	

network,	described	in	full	detail	in	Sussillo	et	al.7.	The	network	responses	were	trained	to	generate	

EMG	activity	while	regularizing	the	network	responses	to	be	as	simple	and	smooth	dynamics	as	

possible.	The	network	activity	was	held	at	a	fixed	point	during	the	preparatory	epoch.	Then,	a	go	signal	

turned	on	strong	network	dynamics	simulating	the	movement	activity.	Here	we	used	the	simulated	

data	from	Sussillo	et	al.	
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Supplementary	Note	3	
	
Sampling	random	dimensions	in	the	space	of	neural	data	

Here	we	aim	to	draw	random	subspaces	biased	to	the	data	covariance	structure.	The	

assumption	here	is	that	there	is	a	fixed	correlation	between	neurons	that	governs	the	neural	responses	

at	all	times8.	This	fixed	correlation	implies	a	fixed	space	where	computations	can	be	performed.	Our	

goal	is	to	test	if	the	orthogonality	between	specific	neural	subspaces,	such	as	preparatory	and	

movement,	is	beyond	what	is	expected	from	randomly	sampled	subspaces	within	this	space.	Sampling	

directions	uniformly	in	neural	space	will	depend	mainly	on	the	number	of	neurons	recorded,	not	the	

correlation	structure	of	the	data.	To	overcome	this	difficulty,	we	developed	a	Monte	Carlo	analysis	that	

generated	random	subspaces	aligned	to	the	space	occupied	by	neural	data	(preserving	this	correlation	

structure).	We	first	calculated	the	covariance	matrix	 𝐶  from	real	neural	responses	across	all	times	of	

the	task.	We	then	sampled	random	subspaces	(𝐯!"#$%)	aligned	to	the	structure	of	neural	data	space	

according	to	this	static	covariance,	as	follows:	

𝐯!"#$% = 𝒐𝒓𝒕𝒉
𝑈 𝑆𝐯
𝑈 𝑆𝐯

𝟐

	

	where	𝑈	and 𝑆	are	the	eigenvectors	and	eigenvalues	matrices	of	𝐶, respectively.	𝐯 ∈ ℝ!×! 	is	a	matrix	

with	each	element	drawn	independently	from	a	normal	distribution	with	mean	zero	and	variance	one.	

𝒐𝒓𝒕𝒉(𝑍)	returns	the	orthonormal	basis	of	the	matrix	𝑍	defined	by	its	left	singular	vectors.	This	

procedure	samples	subspaces	biased	towards	the	space	of	neural	activity,	such	that	the	sampled	

random	subspaces	will	have	the	specified	neuronal	covariance	structure	𝐶	(Supplementary	Fig.	3).	To	

calculate	the	distribution	of	alignment	indices	of	any	two	10-dimensional	random	subspaces	(𝑑 = 10),	

we	sampled	two	sets	of	random	dimensions	(𝐯!"#$%
(!) 	and	𝐯!"#$%

(!) ).	The	alignment	index	is	then	𝐴!"  =

𝑻𝒓 𝐯!"#$%
! ! 𝐯!"#$%

! 𝐯!"#$%
! !  𝐯!"#$%

!

!
.	The	distribution	of	random	alignment	indices	(Main	text	Figure	4c)	is	obtained	

from	repeating	this	sampling	procedure	10000	times.	
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