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Abstract

Our seemingly effortless ability to make coordinated movements belies the sophis-

ticated computational machinery at work in our nervous system. Much has been

learned about motor cortical processing with classic systems neuroscience approaches.

In recent years, the field has been dramatically expanding the complexity of its data,

recording technologies, and experiments. This shift seeks to deliver a much deeper

understanding of cortical processing and a much improved ability to control neural

prosthetic devices (also called brain-machine interfaces). Realizing this payoff, how-

ever, requires analytical and computational methods that can exploit this changing

paradigm. This dissertation describes algorithmic developments for understanding

cortical processing and for prosthetic systems. The first part focuses on our signal

processing efforts to extract useful signals underlying noisy neural activity in the

motor system of the primate brain, both for single neurons and for populations of

simultaneously recorded neurons. Specifically, I discuss analyzing single neurons us-

ing machine learning techniques (Gaussian Processes) in a point process framework,

and I describe an approach to mitigate the significant optimization challenges of this

method. I then discuss extending this idea across many simultaneously recorded neu-

rons (with a factor analysis-like algorithm) to extract population-level signatures of

neural activity. This part also points to broader implications of this work for engi-

neering and statistics. The second part focuses on algorithmic challenges in neural

prosthetic systems, first describing performance improvements available via algorith-

mic optimization of a prosthetic interface. I then discuss other algorithmic areas of

prosthetic design, reviewing a number of areas for improvement and pointing to future

work to address these current problems. As a whole, this dissertation offers analytical

methods that push forward advanced research into the brain’s motor system and our

ability to meaningfully interface with it.
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Chapter 1

Introduction

In many biomedical applications, including neuroscience, data analysis needs are in-

creasing dramatically. My research and this dissertation focus on motor cortical

processing and the medically relevant field of neural prosthetic systems. This disser-

tation should be viewed in the context of the broader goal of developing algorithms

to address critical analytical needs in this field, significantly advancing our ability to

understand the brain, and enabling clinically viable neural prosthetic devices.

Classic systems neuroscience involves tightly controlled experiments, during which

a subject repeats trials of a task specifically designed to elucidate a feature of cortex.

Electrophysiologists typically record a single neuron’s spiking activity on each trial,

and they correlate neural activity with features of physical behavior. This paradigm

has produced virtually all the knowledge we now have about the brain’s systems-level

function. However, new technologies are altering this classic approach. First, multi-

electrode arrays are being implanted in different areas of cortex, allowing simultaneous

recordings from hundreds of neurons across the brain. Second, wireless technology is

enabling always-on recordings from hundreds of neurons, 24 hours a day, during free,

“real world” physical behavior that is not under any experimental control. Third, in

addition to intracortical electrode techniques, technologies such as optogenetics are

becoming available, offering a multitude of stimulation and recording modalities.

These technologies alone mark a fundamental shift in systems neuroscience that

parallels technological shifts seen previously in other domains. When communica-

tions technology shifted from dedicated single channels to MIMO systems and net-

work multi-user systems, communications algorithms were fundamentally redesigned,

1
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resulting in a profound technological revolution. Neuroscience may benefit from a

similar path of algorithmic development. The mammalian brain is among the most

complex systems in existence, and understanding such complexity must require fo-

cused research in both technology and methodology. While this goal is hugely reward-

ing from a basic science perspective, it also should significantly advance the important

medical application of neural prosthetic devices for the millions of people with motor

deficits due to ALS, paralysis, and other conditions. Currently, neural prostheses

work reasonably well in highly controlled scenarios (e.g., making discrete choices or

making very slow movements), but the field will require major algorithmic progress

before a prosthesis can rival the capabilities of a functional human arm.

With this high level motivation, the following sections introduce the two major

parts of this dissertation, which are followed by an outline of the specific work included

in each chapter.

1.1 Part I

It has long been known that certain brain areas are intimately involved in the process

of planning and executing movement (Evarts, 1968; Tanji and Evarts, 1976; Rosen-

baum, 1980; Weinrich et al., 1984; Riehle and Requin, 1989) (to name just a few).

In this dissertation, as is the case in much of the motor cortical literature, we dis-

cuss particularly the arm reaching system, as it provides an excellent experimental

paradigm with which to study how the brain (specifically primary motor (M1) and

dorsal premotor (PMd) cortices) plans and executes movement. For example, early

work that showed a linear correspondence between parameters of a reach (direction

of movement, speed, etc.) and neural activity (Georgopoulos et al., 1986). A vast

number of follow-on studies have found many more parameters (force, joint torque,

etc.) that are correlated with neural activity, and some of these studies have called

into question the generality and appropriateness of a simple “representational” re-

lationship between parameters of a reach and neural activity (Todorov and Jordan,

2002; Todorov, 2000)1. This and much more prior work illustrates that a great deal

of interesting motor control occurs in these brain areas and, second, that the field has

1The reviews and discussion in Todorov and Jordan (2002); Todorov (2000); Moran and Schwartz
(2000) provide a thorough background of this interesting and sometimes contentious debate.
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by no means reached a central conclusion about how this motor control is conducted

in these brain areas. Questions of motor cortical processing remain deeply important

to a broader understanding of how the brain computes, and there exists a large and

active field interested in this scientific pursuit.

Typically, motor cortical processing is studied with the classic systems neuro-

science paradigm described above, by recording and averaging many experimental

trials of spiking neural data and correlating that neural activity to behavioral fea-

tures. This paradigm allows researchers to ask how a neuron responds on average to

a particular behavioral feature, but it does not necessarily allow investigation into the

computational mechanisms in the motor system that actually control movement. For

example (and in anticipation of Chapters 2 and 5), if the neural responses are more

a reflection of internal processing rather than external stimulus drive, the timecourse

of the neural responses may differ on nominally identical trials. This is particularly

true of behavioral tasks involving perception, decision making, attention, or motor

planning. In such settings, it is critical that the neural data not be averaged across

trials, but instead be analyzed on a trial-by-trial basis (Arieli et al., 1996; Nawrot

et al., 1999; Horwitz and Newsome, 2001; Ventura et al., 2005; Briggman et al., 2006;

Yu et al., 2006; Churchland et al., 2007; Jones et al., 2007; Czanner et al., 2008).

This high-level example, which is described in much greater detail in 5.1, points

out that not all questions of motor cortical processing can be answered with averaged

neural responses gathered with a classic systems neuroscience paradigm. Instead,

one might ideally want a direct view of the time-evolution of neural activity (across a

population of many neurons in the motor areas) on a single trial, as such a view could

allow deeper investigation into the computational mechanisms employed by the motor

system. This dissertation discusses these problems and algorithmic opportunities in

understanding motor cortical processing.

1.2 Part II

Debilitating diseases like Amyotrophic Lateral Sclerosis (ALS/Lou Gehrig’s disease)

can leave a human without voluntary motor control. However, in many cases, the

brain itself maintains normal function. The same is true with spinal cord injuries

that result in severe paralysis. Millions of people worldwide suffer motor deficits due
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to these diseases and injuries that result in significantly diminished ability to interact

with the physical world. Indeed, tetrapalegic humans list regaining “arm/hand func-

tion” as the top priority for improving their quality of life, as restoring this function

would allow significant independence (Anderson, 2004). To address this huge medical

need, neural prosthetic systems seek to access the information in the brain and use

that information to control a prosthetic device such as a robotic arm or a computer

cursor. Such systems, if successful, would have large quality of life impact for many

people living with these debilitating medical conditions.

In the last decade, advances in neural recording technologies have accelerated

research in neural prosthetic systems (also called brain-computer interfaces or brain-

machine interfaces). Technologies used in neural prosthetic systems include min-

imally invasive electroencephalography (EEG), electrocorticography (ECoG, below

the skull), and invasive penetrating electrode or microwire arrays (see Lebedev and

Nicolelis (2006) for a review). Each technology can record tens to hundreds of chan-

nels, but the tradeoff for surgical invasiveness is spatial and temporal resolution of

the recorded signals. EEG has shown promise in allowing users control of a cursor

on a 2D screen (Wolpaw and McFarland, 2004; Blankertz et al., 2004). To design a

prosthetic arm that can be controlled continuously with high precision, most work

has focused on penetrating electrodes implanted directly into motor cortical areas

(Schwartz, 2004). Another important context for neural prosthetic systems is in a

communications prosthesis setting (Shenoy et al., 2003). Here, the goal is to select

from a number of discrete targets (such as keys on a keyboard), rather than to decode

moment-by-moment parameters of a reaching arm. In both motor and communica-

tions prostheses, researchers use nonhuman primates (rhesus monkeys, as we do in

this work) or, rarely, human participants (Hochberg et al., 2006; Kim et al., 2008).

There are many medical, scientific, and engineering challenges in developing such a

system (Lebedev and Nicolelis, 2006; Schwartz, 2004), but all neural prosthetic sys-

tems must have a decode algorithm. Decode algorithms map neural activity into

physical commands such as kinematic parameters to control a robotic arm or select

from among several target choices.

Much work has gone into this domain, and many experimental paradigms and

decoding approaches have been developed and used (Georgopoulos et al., 1986; Wess-

berg et al., 2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; Shenoy
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et al., 2003; Wu et al., 2004; Hatsopoulos et al., 2004; Lebedev et al., 2005; Carmena

et al., 2005; Wu et al., 2006; Hochberg et al., 2006; Santhanam et al., 2006; Chestek

et al., 2007; Velliste et al., 2008; Kim et al., 2008; Brown et al., 1998; Gao et al., 2002;

Eden et al., 2004; Kemere et al., 2004; Brockwell et al., 2004; Paninski et al., 2004b;

Shoham et al., 2005; Kim et al., 2006; Shakhnarovich et al., 2006; Srinivasan et al.,

2006; Srinivasan and Brown, 2007; Yu et al., 2007; Srinivasan et al., 2007; Artemi-

adis et al., 2007; Mulliken et al., 2008; Wu and Hatsopoulos, 2008; Ventura, 2008).

Despite this abundance of work, our ability to decode arm movements accurately re-

mains limited. To decode an arbitrary, continuous reach, the current state-of-the-art

algorithm is the Kalman filter (introduced nearly fifty years ago in Kalman (1960),

used in this context in Wu et al. (2006); Kim et al. (2008)), which is the only algorithm

that has been vetted in online human experiments as having better performance than

some competing possibilities (Kim et al., 2008). Current achievable performance is,

loosely, that the decoded reach moves in roughly the correct direction but fails to get

near or stop at the intended target (see Wu et al. (2006) or the review Cunningham

et al. (2009)). While meaningful information throughput in communications pros-

theses has been reported (Santhanam et al., 2006), the field still has not produced

a robust system with adequately high performance to be widely deployed in human

patients. This dissertation discusses problems and algorithmic opportunities in both

communications and motor prostheses.

1.3 Outline

With that scientific background to the dissertation, we here lay out the specific mo-

tivation for each of the subsequent chapters. Each of these chapters contributes to

the overall goal of developing and testing algorithms that can help improve the field’s

understanding of motor cortical processing and help push the field towards a clinically

viable neural prosthetic system.

� Part I describes signal processing research that has allowed deeper insight into

motor cortical processing. These applied algorithms also raised research-grade

computational questions and pointed to other non-neuroscientific algorithmic

developments, which are also detailed in this part.
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– Chapter 2 approaches the challenges inherent in analyzing neural spike

trains due to their noisy, spiking nature. Many studies of neuroscientific

and neural prosthetic importance rely on a smoothed, denoised estimate

of the spike train’s underlying firing rate. Current techniques to find time-

varying firing rates require ad hoc choices of parameters, offer no confidence

intervals on their estimates, and can obscure potentially important single

trial variability. We present a new method, based on Gaussian Process

regression from the field of machine learning, for inferring probabilistically

optimal estimates of firing rate functions underlying single or multiple

neural spike trains. We test the performance of the method on simulated

data and experimentally gathered neural spike trains, and we demonstrate

improvements over conventional estimators.

– Chapter 3 considers the serious computational requirements of the method

introduced in Chapter 2, both in terms of memory and runtime require-

ments. Using large scale optimization techniques, this work shows orders

of magnitude computational improvement and elimination of the memory

burden of such a method. As this firing rate inference method is meant

to be used by scientific researchers in real applied settings, such compu-

tational improvements may mean the difference between an academically

interesting method and one that becomes well-used in practice.

– Chapter 4 describes a non-neuroscientific finding of broad statistical inter-

est that was developed during the investigation of computational methods

described in Chapter 3. The Gaussian is the most fundamental and widely

used probability distribution in existence, but no closed-form formula ex-

ists for the cumulative distribution function. Extremely fast and accurate

methods have been developed for univariate Gaussians, but a similar al-

gorithm for multivariate Gaussians has not been found. We turn to the

seemingly unrelated field of Bayesian inference - specifically Expectation

Propagation - to develop a much simpler, more principled, and computa-

tionally faster method for calculating multivariate probabilities with high

accuracy. This method is also the first to produce an analytical solution,

which is largely important in many applied settings.
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– Chapter 5 uses and advances the developments described in previous chap-

ters to investigate motor cortical processing across populations of simulta-

neously recorded neurons. We consider the problem of extracting smooth,

low-dimensional neural trajectories that summarize the activity recorded

simultaneously from many neurons on individual experimental trials. Be-

yond the benefit of visualizing the high-dimensional, noisy spiking activity

in a compact form, such trajectories can offer insight into the dynamics of

the neural circuitry underlying the recorded activity. We present a novel

method for extracting neural trajectories, Gaussian-process factor analysis

(GPFA), and we apply these methods to the activity of 61 neurons recorded

simultaneously in premotor and motor cortices during reach planning and

execution.

These chapters conclude the algorithmic efforts we have developed to im-

prove the field’s ability to understand motor cortical processing and neural

signals more generally.

� Part II describes algorithmic research focused on improving the performance of

neural prosthetic systems.

– Chapter 6 develops an algorithm to automate the target placement process

and increase decode accuracy in communication prostheses by selecting

target locations based on the neural population at hand. We present an

optimal target placement algorithm that approximately maximizes decode

accuracy with respect to target locations. We test and show statistically

significant performance improvements in simulated neural spiking data.

We also trained a monkey in this paradigm and tested the algorithm with

experimental neural data to confirm some of the results found in simula-

tion.

– Chapter 7 turns to the question of firing rate estimation raised in Part I.

The Gaussian Process method of Chapter 2 is one of many algorithmic

approaches that has been developed in recent years to address this neu-

ral signal processing challenge, but no systematic comparison has been

made between these methods. In an effort to understand the relevance of
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these methods to the field of neural prostheses, we also apply these estima-

tors to experimentally-gathered neural data from a prosthetic arm-reaching

paradigm. Using these estimates of firing rate, we apply standard pros-

thetic decoding algorithms to compare the performance of the different

firing rate estimators, and, perhaps surprisingly, we find minimal differ-

ences. This study serves as a review of available spike train smoothers

and a first quantitative comparison of their performance for brain-machine

interfaces.

– Lastly, Chapter 8 discusses current problems and future directions for algo-

rithmic developments in neural prosthetic systems. This chapter highlights

several outstanding problems that exist in most current approaches to de-

code algorithm design. These include two problems that may not result

in further dramatic increases in performance, specifically spike sorting and

spiking models. We also discuss three issues that have been less examined

in the literature, and we argue that addressing these issues may result in

dramatic future increases in performance. These include: non-stationarity

of recorded waveforms, limitations of a linear mappings between neural

activity and movement kinematics, and the low signal to noise ratio of the

neural data. We demonstrate these problems with data from 39 experimen-

tal sessions with a non-human primate performing reaches and with recent

literature. In all, this study suggests that research in cortically-controlled

prosthetic systems may require reprioritization to achieve performance that

is acceptable for a clinically viable human system.

These chapters conclude the algorithmic efforts we have investigated to

improve the field’s ability to decode physical behavior from neural activity.

Taken together, these chapters carefully investigate state-of-the-art algorithms in

neural signal processing and neural prosthetic systems, and they offer advances for

both scientific and applied biomedical goals. It is important to note that most of

the following work was done in collaboration with other researchers, to whom this

dissertation and I owe a debt of gratitude. In particular, this dissertation reflects very

heavily the efforts of Krishna Shenoy, Maneesh Sahani, Byron Yu, and Vikash Gilja.

I describe the relevant researchers at the beginning of each chapter.



Part I

Understanding Motor Cortical

Processing
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Chapter 2

Inferring Firing Rates from Neural

Spike Trains

To move towards a better understanding of motor cortical processing, we first ask if we

can develop a method to smooth and denoise the signals that we record from neurons

in motor cortex. These neural spike trains have long presented challenges to analytical

efforts due to their noisy, spiking nature. Many studies of neuroscientific and neural

prosthetic importance rely on a smoothed, denoised estimate of the spike train’s

underlying firing rate. However, current techniques to find time-varying firing rates

require ad hoc choices of parameters, offer no confidence intervals on their estimates,

and can obscure potentially important single trial variability. Here we present a new

method, based on the machine learning technology of Gaussian Process regression,

for inferring probabilistically optimal estimates of firing rate functions underlying

single or multiple neural spike trains. We test the performance of the method on

simulated data and experimentally gathered neural spike trains, and we demonstrate

improvements over conventional estimators. This work, which has been published as

Cunningham et al. (2008c), was done jointly with Byron Yu, Maneesh Sahani, and

Krishna Shenoy.

2.1 Introduction

Neuronal activity, particularly in cerebral cortex, is highly variable. Even when exper-

imental conditions are repeated closely, the same neuron may produce quite different

10
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spike trains from trial to trial. This variability may be due to both randomness in the

spiking process and to differences in cognitive processing on different experimental

trials. One common view is that a spike train is generated from a smooth underlying

function of time (the firing rate) and that this function carries a significant portion

of the neural information. If this is the case, questions of neuroscientific and neural

prosthetic importance may require an accurate estimate of the firing rate. Unfortu-

nately, these estimates are complicated by the fact that spike data gives only a sparse

observation of its underlying rate. Typically, researchers average across many trials

to find a smooth estimate (averaging out spiking noise). However, averaging across

many roughly similar trials can obscure important temporal features (Yu et al., 2006).

Thus, estimating the underlying rate from only one spike train (or a small number of

spike trains believed to be generated from the same underlying rate) is an important

but challenging problem.

The most common approach to the problem has been to collect spikes from

multiple trials in a peri-stimulus-time histogram (PSTH), which is then sometimes

smoothed by convolution or splines (Kass et al., 2005; DiMatteo et al., 2001). Bin

sizes and smoothness parameters are typically chosen ad hoc (but see Shimazaki and

Shinomoto (2007b); Endres et al. (2008)) and the result is fundamentally a multi-trial

analysis. An alternative is to convolve a single spike train with a kernel. Again, the

kernel shape and time scale are frequently ad hoc. For multiple trials, researchers may

average over multiple kernel-smoothed estimates. Kass et al. (2005) gives a thorough

review of classic methods.

More recently, point process likelihood methods have been adapted to spike data

(Barbieri et al., 2001; Brown et al., 2002; Truccolo et al., 2005). These methods

optimize (implicitly or explicitly) the conditional intensity function λ(t|x(t), H(t)) —

which gives the probability of a spike in [t, t + dt), given an underlying rate function

x(t) and the history of previous spikes H(t) — with respect to x(t). In a regression

setting, this rate x(t) may be learned as a function of an observed covariate, such as

a sensory stimulus or limb movement. In the unsupervised setting of interest here, it

is constrained only by prior expectations such as smoothness. Probabilistic methods

enjoy two advantages over kernel smoothing. First, they allow explicit modeling of

interactions between spikes through the history term H(t) (e.g., refractory periods).

Second, as we will see, the probabilistic framework provides a principled way to share
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information between trials and to select smoothing parameters.

In neuroscience, most applications of point process methods use maximum likeli-

hood estimation. In the unsupervised setting, it has been most common to optimize

x(t) within the span of an arbitrary basis (such as a spline basis (DiMatteo et al.,

2001)). In other fields, a theory of generalized Cox processes has been developed,

where the point process is conditionally Poisson, and x(t) is obtained by applying a

link function to a draw from a random process, often a Gaussian process (GP) (e.g.

Moller et al. (1998)). In this approach, parameters of the GP, which set the scale

and smoothness of x(t), can be learned by optimizing the (approximate) marginal

likelihood or evidence, as in GP classification or regression. However, the link func-

tion, which ensures a nonnegative intensity, introduces possibly undesirable artifacts.

For instance, an exponential link leads to a process that grows less smooth as the

intensity increases.

Here, we make two advances. First, we adapt the theory of GP-driven point pro-

cesses to incorporate a history-dependent conditional likelihood, suitable for spike

trains. Second, we formulate the problem such that nonnegativity in x(t) is achieved

without a distorting link function or sacrifice of tractability. We also demonstrate

the power of numerical techniques that makes application of GP methods to this

problem computationally tractable. We show that GP methods employing evidence

optimization outperform both kernel smoothing and maximum-likelihood point pro-

cess models.

2.2 Gaussian Process Model For Spike Trains

Spike trains can often be well modeled by gamma-interval point processes (Barbieri

et al., 2001; Miura et al., 2007). We assume the underlying nonnegative firing rate

x(t) : t ∈ [0, T ] is a draw from a GP, and then we assume that our spike train is a

conditionally inhomogeneous gamma-interval process (IGIP), given x(t). The spike

train is represented by a list of spike times y = {y0, . . ., yN}. Since we will model this
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spike train as an IGIP1, y | x(t) is by definition a renewal process, so we can write:

p(y | x(t)) =

N∏

i=1

p(yi | yi−1, x(t)) · p0(y0 | x(t)) · pT (T | yN , x(t)), (2.1)

where p0(·) is the density of the first spike occuring at y0, and pT (·) is the density of

no spikes being observed on (yN , T ]; the density for IGIP intervals (of order γ ≥ 1)

(see e.g. Barbieri et al. (2001)) can be written as:

p(yi | yi−1, x(t)) =
γx(yi)

Γ(γ)

(
γ

∫ yi

yi−1

x(u)du

)γ−1

exp

{
−γ

∫ yi

yi−1

x(u)du

}
. (2.2)

The true p0(·) and pT (·) under this gamma-interval spiking model are not closed

form, so we simplify these distributions as intervals of an inhomogeneous Poisson

process (IP). This step, which we find to sacrifice very little in terms of accuracy,

helps to preserve tractability. Note also that we write the distribution in terms of

the inter-spike-interval distribution p(yi|yi−1, x(t)) and not λ(t|x(t), H(t)), but the

process could be considered equivalently in terms of conditional intensity.

We now discretize x(t) : t ∈ [0, T ] by the time resolution of the experiment (∆,

here 1ms), to yield a series of n evenly spaced samples x = [x1, . . ., xn]′ (with n = T
∆

).

The events y become N + 1 time indices into x, with N much smaller than n. The

discretized IGIP output process is now (ignoring terms that scale with ∆):

p(y | x) =

N∏

i=1

[
γxyi

Γ(γ)

(
γ

yi−1∑

k=yi−1

xk∆

)γ−1

exp

{
−γ

yi−1∑

k=yi−1

xk∆

}]

· xy0
exp

{
−

y0−1∑

k=0

xk∆

}
· exp

{
−

n−1∑

k=yN

xk∆

}
, (2.3)

where the final two terms are p0(·) and pT (·), respectively (Daley and Vere-Jones,

2002). Our goal is to estimate a smoothly varying firing rate function from spike

1The IGIP is one of a class of renewal models that works well for spike data (much better than
inhomogeneous Poisson; see Barbieri et al. (2001); Miura et al. (2007)). Other log-concave renewal
models such as the inhomogeneous inverse-Gaussian interval can be chosen, and the implementation
details remain unchanged.
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times. Loosely, instead of being restricted to only one family of functions, GP allows

all functions to be possible; the choice of kernel determines which functions are more

likely, and by how much. Here we use the standard squared exponential (SE) kernel.

Thus, x ∼ N (µ1, Σ), where Σ is the positive definite covariance matrix defined by

Σ =
{
K(ti, tj)

}
i,j∈{1,...,n} where K(ti, tj) = σ2

fexp

{
−κ

2
(ti − tj)

2

}
+ σ2

vδij. (2.4)

For notational convenience, we define the hyperparameter set θ = [µ; γ; κ; σ2
f ; σ

2
v ].

Typically, the GP mean µ is set to 0. Since our intensity function is nonnegative,

however, it is sensible to treat µ instead as a hyperparameter and let it be optimized

to a positive value. We note that other standard kernels - including the rational

quadratic, Matern ν = 3
2
, and Matern ν = 5

2
- performed similarly to the SE; thus

we only present the SE here. For an in depth discussion of kernels and of GP, see

Rasmussen and Williams (2006).

As written, the model assumes only one observed spike train; it may be that we

have m trials believed to be generated from the same firing rate profile. Our method

naturally incorporates this case: define p({y}m1 | x) =
∏m

i=1
p(y(i) | x), where y(i)

denotes the ith spike train observed.2 Otherwise, the model is unchanged.

2.3 Finding an Optimal Firing Rate Estimate

2.3.1 Algorithmic Approach

Ideally, we would calculate the posterior on firing rate p(x | y) =
∫

θ
p(x | y, θ)p(θ)dθ

(integrating over the hyperparameters θ), but this problem is intractable. We consider

two approximations: replacing the integral by evaluation at the modal θ, and replacing

the integral with a sum over a discrete grid of θ values. We first consider choosing

a modal hyperparameter set (ML-II model selection, see Rasmussen and Williams

(2006)), i.e. p(x | y) ≈ q(x | y, θ∗) where q(·) is some approximate posterior, and

2Another reasonable approach would consider each trial as having a different rate function x that
is a draw from a GP with a nonstationary mean function µ(t). Instead of inferring a mean rate
function x∗, we would learn a distribution of means. We are considering this choice for future work.
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θ∗ = argmax
θ

p(θ | y) = argmax
θ

p(θ)p(y | θ) = argmax
θ

p(θ)

∫

x

p(y | x, θ)p(x | θ)dx.

(2.5)

(This and the following equations hold similarly for a single observation y or mul-

tiple observations {y}m1 , so we consider only the single observation for notational

brevity.) Specific choices for the hyperprior p(θ) are discussed in Results. The in-

tegral in Eq. 2.5 is intractable under the distributions we are modeling, and thus

we must use an approximation technique. Laplace approximation and Expectation

Propagation (EP) are the most widely used techniques (see Kuss and Rasmussen

(2005) for a comparison). The Laplace approximation fits an unnormalized Gaussian

distribution to the integrand in Eq. 2.5. Below we show this integrand is log concave

in x. This fact makes reasonable the Laplace approximation, since we know that the

distribution being approximated is unimodal in x and shares log concavity with the

normal distribution. Further, since we are modeling a non-zero mean GP, most of

the Laplace approximated probability mass lies in the nonnegative orthant (as is the

case with the true posterior). Accordingly, we write:

p(y | θ) =

∫

x

p(y | x, θ)p(x | θ)dx ≈ p(y | x∗, θ)p(x∗ | θ) (2π)
n
2

|Λ∗ + Σ−1| 12
, (2.6)

where x∗ is the mode of the integrand and Λ∗ = −∇2
xlog p(y | x, θ) |x=x∗. Note

that in general both Σ and Λ∗ (and x∗, implicitly) are functions of the hyperparame-

ters θ. Thus, Eq. 2.6 can be differentiated with respect to the hyperparameter set, and

an iterative gradient optimization (we used conjugate gradients) can be used to find

(locally) optimal hyperparameters. Algorithmic details and the gradient calculations

are typical for GP; see Rasmussen and Williams (2006). The Laplace approximation

also naturally provides confidence intervals from the approximated posterior covari-

ance (Σ−1 + Λ∗)−1.

We can also consider approximate integration over θ using the Laplace approx-

imation above. The Laplace approximation produces a posterior approximation

q(x | y, θ) = N (x∗, (Λ∗ + Σ−1)−1) and a model evidence approximation q(θ | y)

(Eq. 2.6). The approximate integrated posterior can be written as p(x | y) =
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Eθ|y[p(x | y, θ)] ≈ ∑
j q(x | y, θj)q(θj | y) for some choice of samples θj (which

again gives confidence intervals on the estimates). Since the dimensionality of θ is

small, and since we find in practice that the posterior on θ is well behaved (well peaked

and unimodal), we find that a simple grid of θj works very well, thereby obviating

MCMC or another sampling scheme. This approximate integration consistently yields

better results than a modal hyperparameter set, so we will only consider approximate

integration for the remainder of this report.

For the Laplace approximation at any value of θ, we require the modal estimate

of firing rate x∗, which is simply the MAP estimator:

x∗ = argmax
x�0

p(x | y) = argmax
x�0

p(y | x)p(x). (2.7)

Solving this problem is equivalent to solving an unconstrained problem where

p(x) is a truncated multivariate normal (but this is not the same as individually

truncating each marginal p(xi); see Horrace (2005)). Typically a link or squashing

function would be included to enforce nonnegativity in x, but this can distort the

intensity space in unintended ways. We instead impose the constraint x � 0, which

reduces the problem to being solved over the (convex) nonnegative orthant. To pose

the problem as a convex program, we define f(x) = −log p(y | x)p(x):

f(x) =
N∑

i=1

(
−log xyi

− (γ − 1)log
( yi−1∑

k=yi−1

xk∆
))

+

yN−1∑

k=y0

γxk∆

−log xy0
+

y0−1∑

k=1

xk∆ +
n−1∑

k=yN

xk∆ +
1

2
(x− µ1)T Σ−1(x− µ1) + C, (2.8)

where C represents constants with respect to x. From this form follows the Hessian

∇2
xf(x) = Σ−1 + Λ where Λ = −∇2

xlog p(y | x, θ) = B + D, (2.9)

where D = diag(x−2
y0

, . . ., 0, . . ., x−2
yi

. . ., 0, . . ., x−2
yN

) is positive semidefinite and diag-

onal. B is block diagonal with N blocks. Each block is rank 1 and associates its

positive, nonzero eigenvalue with eigenvector [0, . . ., 0,bT
i , 0, . . ., 0]T . The remaining

n − N eigenvalues are zero. Thus, B has total rank N and is positive semidefinite.

Since Σ is positive definite, it follows then that the Hessian is also positive definite,
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proving convexity. Accordingly, we can use a log barrier Newton method to efficiently

solve for the global MAP estimator of firing rate x∗(Boyd and Vandenberghe, 2004).

In the case of multiple spike train observations, we need only add extra terms

of negative log likelihood from the observation model. This flows through to the

Hessian, where ∇2
xf(x) = Σ−1 + Λ and Λ = Λ1 + . . . + Λm, with Λi ∀ i ∈ {1, . . ., m}

defined for each observation as in Eq. 2.9.

2.3.2 Computational Practicality

This method involves multiple iterative layers which require many Hessian inversions

and other matrix operations (matrix-matrix products and determinants) that cost

O(n3) in run-time complexity and O(n2) in memory, where (x ∈ IR
n). For any

significant data size, a straightforward implementation is hopelessly slow. With 1ms

time resolution (or similar), this method would be restricted to spike trains lasting less

than a second, and even this problem would be burdensome. Achieving computational

improvements is critical, as a naive implementation is, for all practical purposes,

intractable. Techniques to improve computational performance are a subject of study

in themselves which we detail in the following chapter (Chapter 3). We give a brief

outline in the following paragraph.

In the MAP estimation of x∗, since we have analytical forms of all matrices, we

avoid explicit representation of any matrix, resulting in linear storage. Hessian inver-

sions are avoided using the matrix inversion lemma and conjugate gradients, leaving

matrix vector multiplications as the single costly operation. Multiplication of any

vector by Λ can be done in linear time, since Λ is a (block-wise) vector outer product

matrix. Since we have evenly spaced resolution of our data x in time indices ti, Σ is

Toeplitz; thus multiplication by Σ can be done using Fast Fourier Transform (FFT)

methods (Silverman, 1982). These techniques allow exact MAP estimation with lin-

ear storage and nearly linear run time performance. In practice, for example, this

translates to solving MAP estimation problems of 103 variables in fractions of a sec-

ond, with minimal memory load. For the modal hyperparameter scheme (as opposed

to approximately integrating over the hyperparameters), gradients of Eq. 2.6 must

also be calculated at each step of the model evidence optimization. In addition to

using similar techniques as in the MAP estimation, log determinants and their deriva-

tives (associated with the Laplace approximation) can be accurately approximated
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by exploiting the eigenstructure of Λ.

In total, these techniques allow optimal firing rates functions of 103 to 104 variables

to be estimated in seconds or minutes (on a 2006 era workstation). These data sizes

translate to seconds of spike data at 1ms resolution, long enough for most electro-

physiological trials. This algorithm achieves a reduction from a naive implementation

which would require large amounts of memory and would require many hours or days

to complete.

2.4 Results

We tested the methods developed here using both simulated neural data, where the

true firing rate was known by construction, and in real neural spike trains, where the

true firing rate was estimated by a PSTH that averaged many similar trials. The

real data used were recorded from macaque premotor cortex during a reaching task

(see Chestek et al. (2007) for experimental method). Roughly 200 repeated trials per

neuron were available for the data shown here.

We compared the IGIP-likelihood GP method (hereafter, GP IGIP) to other rate

estimators (kernel smoothers, Bayesian Adaptive Regressions Splines or BARS (Di-

Matteo et al., 2001), and variants of the GP method) using root mean squared dif-

ference (RMS) to the true firing rate. PSTH and kernel methods approximate the

mean conditional intensity λ(t) = EH(t)[λ(t|x(t), H(t))]. For a renewal process, we

know (by the time rescaling theorem (Brown et al., 2002; Daley and Vere-Jones,

2002)) that λ(t) = x(t), and thus we can compare the GP IGIP (which finds x(t))

directly to the kernel methods. To confirm that hyperparameter optimization im-

proves performance, we also compared GP IGIP results to maximum likelihood (ML)

estimates of x(t) using fixed hyperparameters θ. This result is similar in spirit to

previously published likelihood methods with fixed bases or smoothness parameters.

To evaluate the importance of an observation model with spike history dependence

(the IGIP of Eq. 2.3), we also compared GP IGIP to an inhomogeneous Poisson (GP

IP) observation model (again with a GP prior on x(t); simply γ = 1 in Eq. 2.3).

The hyperparameters θ have prior distributions (p(θ) in Eq. 2.5). For σf , κ, and

γ, we set log-normal priors to enforce meaningful values (i.e. finite, positive, and

greater than 1 in the case of γ). Specifically, we set log(σ2
f ) ∼ N (5, 2) , log(κ) ∼
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(a) L20061107.214.1; 1 spike train
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(b) L20061107.14.1; 4 spike trains
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(c) L20061107.151.5; 8 spike trains
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(d) L20061107.46.3; 1 spike train

Figure 2.1: Sample GP firing rate estimates. The empirical average firing rate of
the spike trains is shown in bold red. The spike trains (trains of black dots) were
generated from these rates using an IGIP (γ = 4). In bold blue, we see x∗, the results
of the GP IGIP method, with light blue 95% confidence intervals. See full description
in text.

N (2, 2), and log(γ − 1) ∼ N (0, 100). The variance σv can be set arbitrarily small,

since the GP IGIP method avoids explicit inversions of Σ with the matrix inversion

lemma (see 2.3.2). For the approximate integration, we chose a grid consisting of the

empirical mean rate for µ (that is, total spike count N divided by total time T ) and

(γ, log(σ2
f ), log(κ)) ∈ [1, 2, 4] × [4, . . ., 8] × [0, . . ., 7]. We found this coarse grid (or

similar) produced similar results to many other very finely sampled grids.

The four examples in Fig. 2.1 represent experimentally gathered firing rate profiles

(according to the methods in Chestek et al. (2007)). In each of the plots, the empirical

average firing rate of the spike trains is shown in bold red. For simulated spike trains,

the spike trains were generated from each of these empirical average firing rates using

an IGIP (γ = 4, comparable to fits to real neural data). For real neural data, the
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Figure 2.2: Average percent RMS improvement of GP IGIP method (with model
selection) vs. method indicated in the column title. Only significant results are shown
(paired t-test, p < 0.05). Blue improvement bars are for simulated spike trains; red
improvement bars are for real neural spike trains. See full description in text.

spike train(s) were selected as a subset of the roughly 200 experimentally recorded

spike trains that were used to construct the firing rate profile. These spike trains

are shown as a train of black dots, each dot indicating a spike event time (the y-axis

position is not meaningful). This spike train or group of spike trains is the only input

given to each of the fitting models. In thin green and magenta, we have two kernel

smoothed estimates of firing rates; each represents the spike trains convolved with

a normal distribution of a specified standard deviation (50 and 100ms). We also

smoothed these spike trains with adaptive kernel (Richmond et al., 1990), fixed ML

(as described above), BARS (DiMatteo et al., 2001), and 150ms kernel smoothers.

We do not show these latter results in Fig. 2.1 for clarity of figures. These standard

methods serve as a baseline from which we compare our method. In bold blue, we

see x∗, the results of the GP IGIP method. The light blue envelopes around the bold

blue GP firing rate estimate represent the 95% confidence intervals. Bold cyan shows

the GP IP method. This color scheme holds for all of Fig. 2.1.

We then ran all methods 100 times on each firing rate profile, using (separately)

simulated and real neural spike trains. We are interested in the average performance
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of GP IGIP vs. other GP methods (a fixed ML or a GP IP) and vs. kernel smoothing

and spline (BARS) methods. We show these results in Fig. 2.2. The four panels

correspond to the same rate profiles shown in Fig. 2.1. In each panel, the top, mid-

dle, and bottom bar graphs correspond to the method on 1, 4, and 8 spike trains,

respectively. GP IGIP produces an average RMS error, which is an improvement

(or, less often, a deterioration) over a competing method. Fig. 2.2 shows the percent

improvement of the GP IGIP method vs. the competing method listed. Only sig-

nificant results are shown (paired t-test, p < 0.05). Blue improvement bars are for

simulated spike trains; red improvement bars are for real neural spike trains. The

general positive trend indicates improvements, suggesting the utility of this approach.

Note that, in the few cases where a kernel smoother performs better (e.g. the long

bandwidth kernel in panel (b), real spike trains, 4 and 8 spike trains), outperforming

the GP IGIP method requires an optimal kernel choice, which can not be judged

from the data alone. In particular, the adaptive kernel method generally performed

more poorly than GP IGIP. The relatively poor performance of GP IGIP vs. different

techniques in panel (d) is considered in the Discussion section. The data sets here are

by no means exhaustive, but they indicate how this method performs under different

conditions.

2.5 Discussion

We have demonstrated a new method that accurately estimates underlying neural

firing rate functions and provides confidence intervals, given one or a few spike trains

as input. This approach is not without complication, as the technical complexity

and computational effort require special care. Estimating underlying firing rates is

especially challenging due to the inherent noise in spike trains. Having only a few spike

trains deprives the method of many trials to reduce spiking noise. It is important here

to remember why we care about single trial or small number of trial estimates, since

we believe that in general the neural processing on repeated trials is not identical.

Thus, we expect this signal to be difficult to find with or without trial averaging.

In this study we show both simulated and real neural spike trains. Simulated

data provides a good test environment for this method, since the underlying firing

rate is known, but it lacks the experimental proof of real neural spike trains (where
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spiking does not exactly follow a gamma-interval process). For the real neural spike

trains, however, we do not know the true underlying firing rate, and thus we can

only make comparisons to a noisy, trial-averaged mean rate, which may or may not

accurately reflect the true underlying rate of an individual spike train (due to different

cognitive processing on different trials). Taken together, however, we believe the real

and simulated data give good evidence of the general improvements offered by this

method.

Panels (a), (b), and (c) in Fig. 2.2 show that GP IGIP offers meaningful improve-

ments in many cases and a small loss in performance in a few cases. Panel (d) tells

a different story. In simulation, GP IGIP generally outperforms the other smoothers

(though, by considerably less than in other panels). In real neural data, however, GP

IGIP performs the same or relatively worse than other methods. This may indicate

that, in the low firing rate regime, the IGIP is a poor model for real neural spiking.

It may also be due to our algorithmic approximations (namely, the Laplace approx-

imation, which allows density outside the nonnegative orthant). We will report on

this question in future work.

Furthermore, some neural spike trains may be inherently ill-suited to analysis.

A problem with this and any other method is that of very low firing rates, as only

occasional insight is given into the underlying generative process. With spike trains of

only a few spikes/sec, it will be impossible for any method to find interesting structure

in the firing rate. In these cases, only with many trial averaging can this structure

be seen.

Several studies have investigated the inhomogeneous gamma and other more gen-

eral models (e.g. Barbieri et al. (2001); Kass and Ventura (2003)), including the

inhomogeneous inverse gaussian (IIG) interval and inhomogeneous Markov interval

(IMI) processes. The methods of this paper apply immediately to any log-concave in-

homogeneous renewal process in which inhomogeneity is generated by time-rescaling

(this includes the IIG and several others). The IMI (and other more sophisticated

models) will require some changes in implementation details; one possibility is a vari-

ational Bayes approach. Another direction for this work is to consider significant

nonstationarity in the spike data. The SE kernel is standard, but it is also stationary;

the method will have to compromise between areas of categorically different covari-

ance. Nonstationary covariance is an important question in modeling and remains an
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area of research (Paciorek and Schervish, 2003). Advances in that field should inform

this method as well.
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Chapter 3

Fast Computational Methods for

Rate Estimation

We saw in the previous chapter that algorithmic development can improve our ability

to smooth and denoise spike trains, in addition to providing benefits such as auto-

matic smoothness detection and confidence intervals on our estimates. Unfortunately,

the price paid for these benefits is the price of many machine learning methods and

Gaussian process methods in particular - computational complexity. Naive imple-

mentations of these methods will become computationally infeasible in any problem

of reasonable size, both in memory and run time requirements. In this chapter, we

develop problem specific methods for a class of renewal processes to eliminate the

memory burden and reduce the solve-time by orders of magnitude. These methods

draw on techniques from large-scale optimization and numerical linear algebra. From

the perspective of neural signal processing, having tractable computational methods

is critical to enable the use of this method, in a real applied setting, by neuroscience

researchers. While we developed this method to facilitate the motor cortical pro-

cessing effort of Chapter 2, we note importantly that the following computational

methods are generic to a class of point process signal processing methods. Thus, this

algorithmic development is an example of applied algorithmic research informing a

broader technical field. Accordingly, the following chapter is written not specifically

for the neuroscientist. This work, which has been published as Cunningham et al.

(2008a), was done jointly with Maneesh Sahani and Krishna Shenoy.

24
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3.1 Introduction

Point processes with temporally or spatially varying intensity functions arise naturally

in many fields of study. When the intensity function is itself a random process (often

a Gaussian Process), the process is called a doubly-stochastic or Cox point process.

Application domains including economics and finance (e.g. Basu and Dassios (2002)),

neuroscience (e.g. Cunningham et al. (2008c)), ecology (e.g. Moller et al. (1998)), and

others. In neuroscience, as we saw in Chapter 2, this underlying intensity function is

defined over time and is typically called the firing rate function.

Given observed point process data, one can use a Gaussian Process (GP) frame-

work to infer an optimal estimate of the underlying intensity. In this paper we

consider GP prior intensity functions coupled with point process observation models.

The problem of intensity estimation then becomes a modification of GP regression

and inherits the computational complexity inherent in GP methods (e.g. Rasmussen

and Williams (2006)). The data size n will grow with the length (e.g. total time)

of the point process. Naive methods will be O(n2) in memory requirements (storing

Hessian matrices) and O(n3) in run time (matrix inversions and determinants). At

one thousand data points (such as one second of millisecond-resolution data), a naive

solution to this problem is already quite burdensome on a common workstation. At

ten thousand or more, this problem is for all practical purposes intractable.

While applications of doubly-stochastic point processes are numerous, there is

little work proposing solutions to the serious computational issues inherent in these

methods. Thus, the development of efficient methods for intensity estimation would

be of broad appeal. In this paper, we do not address the appropriateness of doubly-

stochastic point process models for particular applications, but rather we focus on the

significant steps required to make such modeling computationally tractable. We build

on previous work from both GP regression and large-scale optimization to create a

considerably faster and less memory intensive algorithm for doubly-stochastic point-

process intensity estimation.

As part of the GP intensity estimation problem we optimize model hyperparam-

eters using a Laplace approximation to the marginal likelihood or evidence. This

requires an iterative approach which divides into two major parts. First, at each

iteration we must find a modal (MAP) estimate of the intensity function. Second, we

must calculate the approximate model evidence and its gradients with respect to GP
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hyperparameters. Both aspects of this problem present computational and memory

problems. We develop methods to reduce the costs of both drastically.

We show that for certain classes of renewal process observation models, MAP

estimation may be framed as a tractable convex program. To ensure nonnegativity in

the intensity function we use a log barrier Newton method (Boyd and Vandenberghe,

2004), which we solve efficiently by deriving decompositions of matrices with known

structure. By exploiting a recursion embedded in the algorithm, we avoid many

costly matrix inversions. We combine these advances with large scale optimization

techniques, such as conjugate gradients (CG, as used by Gibbs and MacKay (1997))

and fast fourier transform (FFT) matrix multiplication methods.

To evaluate the model evidence, as well as its gradients with respect to hyperpa-

rameters, we again exploit the structure imposed by the renewal process framework to

find an exact but considerably less burdensome representation. We then show that a

further approximation loses little in accuracy, but makes the cost of this computation

insignificant.

Combining these advances, we are able to reduce a problem that is effectively

computationally infeasible to a problem with minimal memory load and very fast

solution time. O(n2) memory requirements are eliminated, and O(n3) computation

is reduced to modestly superlinear.

3.2 Problem Overview

Define x ∈ IR
n to be the intensity function (the high dimensional signal of interest);

x is indexed by input1 time points t ∈ IR
n. Let the observed data y = {y0, . . ., yN} ∈

IR
N+1 be a set of N + 1 time indices into the vector x; that is, the ith point event

occurs at time yi, and the intensity at that time is xyi
. Denote all hyperparameters

by θ. In general, the prior and observation models are both functions of θ. The GP

framework implies a normal prior on the intensity p(x | θ) = N (µ1, Σ), where the

nonzero mean is a sensible choice because the intensity function is constrained to be

nonnegative. Thus we treat µ as a hyperparameter (µ ∈ θ). The positive definite

covariance matrix Σ (also a function of θ) is defined by an appropriate kernel such

1In this work we restrict ourselves to a single input dimension (which we call time), as it aligns
with the family of renewal processes in one-dimension. Some ideas here can be extended to multiple
dimensions (e.g. if using a spatial Poisson process).
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as a squared exponential or Ornstein-Uhlenbeck kernel (see Rasmussen and Williams

(2006), for a discussion of GP kernels). The point-process observation model gives

the likelihood p(y | x, θ). In this work, we consider renewal processes (i.e. one-

dimensional point processes with independent event interarrival times), a family of

point processes that has both been well-studied theoretically and applied in many

domains (Daley and Vere-Jones, 2002).

The GP prior is log concave in x, and the nonnegativity constraint on intensity

(x � 0) is convex (constraining x to be nonnegative is equivalent to solving an uncon-

strained problem where the prior on the vector x is a truncated multivariate normal

distribution, but this is not the same as truncating the GP prior in the continuous,

infinite dimensional function space; see Horrace (2005)). Thus, if the observation

model is also log concave in x, the MAP estimate x∗ is unique and can be readily

found using a log barrier Newton method (Boyd and Vandenberghe, 2004; Paninski,

2004). Renewal processes are simply defined by their interarrival distribution fz(z).

A common construction for a renewal process with an inhomogeneous underlying

intensity is to use the intensity rescaling m(ti | ti−1) =
∫ ti

ti−1

x(u)du (in practice, a dis-

cretized sum of x) (Barbieri et al., 2001; Daley and Vere-Jones, 2002). Accordingly,

the density for an observation of event times y can be defined

p(y) =

N∏

i=1

p(yi | yi−1)

=
N∏

i=1

|m′(yi | yi−1)| fz(m(yi | yi−1)) (3.1)

by a change of variables for the interarrival distribution (Papoulis and Pillai, 2002).

Since m(t) is a linear transformation of the intensity function (our variables of inter-

est), the observation model obeys log concavity as long as the distribution primitive

fz(z) is log concave. Examples of suitable renewal processes include the inhomoge-

neous Poisson, gamma interval, Weibull interval, inverse Gaussian (Wald) interval,

Rayleigh interval, and other processes (Papoulis and Pillai, 2002). For this paper, we

choose one of these distributions and focus on its details. However, for processes of

the form above, the implementation details are identical up to the forms of the actual

distributions.

To solve the GP intensity estimation, we first find a MAP estimate x∗ given fixed
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hyperparameters θ, and then we approximate the model evidence p(y | θ) (for which

we need x∗) and its gradients in θ. Iterating these two steps, we can find the optimal

model θ̂ (we do not integrate over hyperparameters). Finally, MAP estimation under

these optimal hyperparameters θ̂ gives an optimal estimate of the underlying intensity.

This iterative solution for θ̂ can be written:

θ̂ = argmax
θ

p(θ)p(y | θ) (3.2)

≈ argmax
θ

p(θ)p(y | x∗, θ)p(x∗ | θ) (2π)
n
2

|Λ∗ + Σ−1| 12
,

where the last term is a Laplace approximation to the intractable form of p(y |
θ), x∗ is the mode of p(y | x)p(x) (MAP estimate), and Λ∗ = −∇2

x log p(y |
x, θ) |x=x∗. The log concavity of our problem in x supports the choice of a Laplace

approximation. Each of the two major steps in this algorithm (MAP estimation and

model selection) involves computational and memory challenges. We address these

challenges in Sections 3.4 and 3.5.

The computational problems inherent in GP methods have been well studied, and

much progress has been made in sparsification (e.g. Quinonero-Candela and Ras-

mussen (2005)). Unfortunately, these methods do not apply directly to point process

estimation, as there are no distinct training and test sets. The reader might wonder

if a coarser grid would be adequate, thereby obviating the detailed methods devel-

oped here. We have found in experiments (not shown) that the sacrifice in accuracy

required to allow reasonable computational tractability is large, and thus we do not

consider the coarse grid a viable option. One could also consider re-expressing the

problem in terms of the integrals m(yi | yi−1) appearing in Eq. 3.1. While this is pos-

sible in certain cases, it requires additional approximation. Finally, we note that the

Laplace approximation is often inferior to Expectation Propagation (EP) (Kuss and

Rasmussen, 2005) for GP methods. While many of the same techniques used here

could also be used with EP, EP requires additional approximations and computa-

tional overhead. We find in experiments (not shown) that EP yields similar accuracy

to the Laplace approximation in this domain, but EP incurs increased complexity

and computational load. We describe the details of the EP implementation for this

problem in Appendix B. We also note that this EP implementation pointed to an
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additional finding of broad stastical interest, which we detail in depth in Chapter 4.

3.3 Model Construction

To demonstrate our fast method, we choose the specific observation model of an

inhomogeneous gamma interval process (Barbieri et al., 2001) (with hyperparameter

γ ∈ θ, γ ≥ 1). If time has been discretized with precision ∆, this can be written

p(y | x, θ) =
N∏

i=1

[
γxyi

Γ(γ)

(
γ

yi−1∑

k=yi−1

xk∆

)γ−1

exp

{
−γ

yi−1∑

k=yi−1

xk∆

}]
, (3.3)

(where we have ignored terms that scale with ∆). Let f(x) = − log p(y | x, θ)p(x | θ).
Our MAP estimation problem is to minimize f(x) subject to the constraint x � 0

(nonnegativity). In the log barrier method, we consider the above problem as a

sequence of convex problems where we seek to minimize, at increasing values of τ ,

the (unconstrained) objective function

fτ (x) = f(x)−
n∑

k=1

(1

τ

)
log(xk) (3.4)

which has Hessian (positive definite by our log concave construction):

H = ∇2
xfτ (x) = Σ−1 + Λ, where Λ = B + D, (3.5)

with D = diag(x−2
y0

, . . ., 0, . . ., x−2
yi

, . . ., 0. . ., x−2
yN

) + ( 1
τ
)diag(x−2

1 , . . ., x−2
n ) being

positive definite and diagonal. B is block diagonal with N blocks B̂i:

B̂i = bib
T
i where bi =

√
(γ − 1)

( yi−1∑

k=yi−1

xk

)−1

1. (3.6)

B is thus block rank 1 (with the positive eigenvalue in each block corresponding to the

eigenvector bi). This matrix is key, as we exploit its structure to achieve improvements

in computational performance.
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3.4 MAP Estimation Problem

As outlined in Section 3.2, we first find the MAP estimate x∗ for any model defined

by hyperparameters θ. The log barrier method has the intensive requirements of

calculating the objective Eq. 3.4, its gradient g (in x), and the Newton step xnt =

−H−1g. Each of these calculations is O(n3) in run time and O(n2) in memory. We

show an approach that alleviates these burdens.

3.4.1 Finding the Newton Step

First we consider the Hessian, H = Σ−1 + Λ, which itself contains the costly inverse

Σ−1. We would like to avoid this inversion of Σ entirely with the matrix inversion

lemma (Sherman-Woodbury-Morrison formula):

−H−1 = −(Σ−1 + Λ)−1

= −Σ + ΣR(I + RT ΣR)−1RT Σ (3.7)

where R is any valid factorization such that RRT = Λ. This decomposition preserves

symmetry in the remaining matrix inverse (required for CG) and has advantageous

numerical properties. With this form, instead of calculating xnt = −H−1g directly, we

need only multiply the rightmost expression in Eq. 3.7 with the gradient g. Doing so

requires the inversion (I+RT ΣR)−1v where v = RT Σg. CG allows us to avoid directly

calculating matrix inverses and instead achieve the desired inversion by iteratively

multiplying (I + RT ΣR)z for different vectors z (Gibbs and MacKay, 1997).

It is common to precondition the CG method to reduce the number of iterations

required for convergence. However, our experience with preconditioning (using both

classic preconditioners and some of our own design) was that it actually degraded run-

time performance. Preconditioners typically aim to improve the condition number

of the Hessian, which indeed they do in this problem. However, the rapidity of CG

convergence here is facilitated more by spectral concentration – many eigenvalues

being equal or close to 1 – than by overall conditioning. Thus, we found it more

effective to use CG inversion directly on (I + RT ΣR).

In general, however, finding the decomposition Λ = RRT is an O(n3) operation,

which would remove any computational benefit from this approach. For log concave
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renewal processes, we can derive a valid decomposition in closed form and linear

computation time. Since Λ is block diagonal, we consider only one block without loss

of generality. Calling this block Λ̂, we know Λ̂ = bbT +D̂, where D̂ is a diagonal block

of the larger diagonal matrix D, and b is defined in Eq. 3.6. D̂ is positive definite,

so T = D̂− 1

2 satisfies TD̂T = I (a similarity transform). Then, calling b̃ = Tb, we

have T Λ̂T = b̃b̃T + I. With this form, we see that the general structure of T Λ̂T is

preserved under the desired matrix decomposition, up to scaling of the components:

(αb̃b̃T + I)(αb̃b̃T + I)T = (α2‖b̃‖2 + 2α)b̃b̃T + I (3.8)

and we want to choose α such that (Eq. 3.8) equals b̃b̃T + I. Using the quadratic

formula to find this α, we see then that

R̃ =

(√
1 + ‖b̃‖2 − 1

‖b̃‖2

)
b̃b̃T + I (3.9)

satisfies T Λ̂T = R̃R̃T . Since T is diagonal, it easily inverts to T−1 = D̂
1

2 . Then:

Λ̂ = T−1R̃R̃T T−1 = (T−1R̃)(T−1R̃)T = R̂R̂T . (3.10)

To be explicit, we have found that

R̂ =

(√
1 + ‖D̂− 1

2 b‖2 − 1

‖D̂− 1

2 b‖2

)
bbT D̂− 1

2 + D̂
1

2 (3.11)

is a valid decomposition R̂R̂T = Λ̂. This decomposition can be seen as a partial

rank-one (blockwise) update to a Cholesky factorization (Gill et al., 1974), in that

D̂ can trivially be factorized to D̂
1

2 . The final form is not, however, a Cholesky

factorization, since R̂ is not triangular (making a triangular factor would require

additional computation and the explicit representation of the Cholesky matrix).

Since all of the products needed to construct R̂ can be formed in O(m) time

(where m is the size of the block), and since the larger matrix R can be formed by

tiling the blocks R̂, we have a total complexity for this decomposition of O(n). We
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can then use CG to find the solution to (I + RT ΣR)−1(RT Σg). With this inversion

calculated, we can perform the remaining forward multiplications in Eq. 3.7; this

completes calculation of a Newton step.

In fact, we need not form the matrix R in memory. Instead, we retain each of

its component elements (in Eq. 3.11), and reduce multiplication of a vector by R to

a sequence of inner products and multiplications by diagonal matrices, all of which

can be stored and calculated in O(n) time. Thus, we eliminate the need for O(n2)

storage, and we perform the relevant matrix multiplications in O(n) time. Since R

can be multiplied in linear time, the complexity of multiplying vectors by (I +RT ΣR)

depends on multiplying vectors by the covariance matrix Σ.

Since we have evenly spaced resolution of our data x in time indices ti, Σ is

Toeplitz. This matrix can be embedded in a larger circulant matrix, multiplication

by which is simply a convolution operation of the argument vector with a row of

this circulant matrix. Thus, the operation can be quickly done in O(n log n) using

frequency domain multiplications(Silverman, 1982). Further, we need never represent

the matrix Σ; we only store the first row of the circulant matrix. Again we have

eliminated O(n2) memory needs. Other methods for fast kernel matrix multiplications

include Fast Gauss Transforms (FGT) (Raykar et al., 2005) and kd-Trees (Shen et al.,

2006; Gray and Moore, 2003). We note that the single input dimension (time) enables

this Toeplitz structure, and thus an extension to multiple dimensions should use

FGT or similar. The regular structure of the data points in any dimension make Σ

multiplications very fast with such a method. Further, these methods avoid explicit

representation of Σ. Here, the simple FFT approach for this one-dimensional problem

significantly outperforms other (more general) methods in both speed and accuracy.

Finally, we note that the matrix (I + RT ΣR) is particularly well suited to CG.

Although RT ΣR is full rank by definition, in practice its spectrum has very few large

eigenvalues (typically fewer than N , the number of events). Loosely, the matrix looks

like identity plus low rank. In practice, the CG method converges with high accuracy

almost always in fewer than 50 steps (very often under 30). This is drastically fewer

than the worst case of n steps (n of 103 to 104).

Instead of decomposing Λ = RRT , one might have considered using the matrix in-

version lemma to write (Σ−1 +Λ)−1 = Σ−ΣΛ(Λ+ΛΣΛ)−1ΛΣ. Indeed this valid form

enables all of the CG and fast multiplication methods previously discussed. While it
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may seem that this form’s ease of derivation (compared to the matrix decomposition

in Eq. 3.11) warrants its use in general, the matrix to be inverted is poorly condi-

tioned compared to (I + RT ΣR), and thus the inversion requires more CG steps. We

have found in testing that the number of CG steps can roughly double. Thus, the

decomposition of Eq. 3.11 is computationally worthwhile.

In this section, we have constructed a fast method for calculating the Newton step

that costs O(n log n) per CG step and incurs a very small number of CG steps. Also,

we have avoided explicit representation of any matrix, so that memory requirements

are only linear in the data size n, allowing problem sizes of potentially millions of

time steps. These two factors stand in contrast to the cubic run time and quadratic

storage needs of a naive method.

3.4.2 Evaluating the Gradient and Objective

Calculating the objective fτ (x) (Eq. 3.4) and its gradient (both required for the log

barrier method) require finding Σ−1(x − µ1). Note that the kth iterate x(k) (of the

log barrier method) has the form

(x(k) − µ1) = x(k−1) + t(k−1)x
(k−1)
nt − µ1

=
k−1∑

j=1

t(j)x
(j)
nt + (x(0) − µ1) (3.12)

where t(j) and x
(j)
nt represent the jth iterates of the Newton step size t and the step

xnt, and x(0) is the algorithm initial point. The most logical starting point x(0) is µ1,

in which case the rightmost term in Eq. 3.12 drops out. Thus, letting x(0) = µ1 and

using the form of xnt = −H−1g with −H−1 defined as in Eq. 3.7, we write:

Σ−1(x(k) − µ1) =

k−1∑

j=1

t(j)
(
−g(j) + R(j)(I + R(j)T ΣR(j))−1R(j)T Σg(j)

)
. (3.13)

In the earlier calculation of xnt (Section 4.1), both of the right hand side arguments

in Eq. 3.13 have already been found. As such, we have a recurrence that obviates

the invertion of Σ, with no additional memory demands (Rasmussen and Williams,

2006).

The above steps reduce a naive MAP estimation (of any log concave renewal
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process) that requires cubic effort and quadratic storage to an algorithm that is

modestly superlinear in run time and linear in memory requirements.

3.5 Model Selection Problem

Having now found x∗ for any hyperparameters θ, the second major part of the problem

is to find the negative logarithm of our approximation to the evidence p(y | θ) in

Eq. 3.2, and its gradients with respect to θ. The approximated log evidence can be

written as:

− log p(y | θ) ≈ − log p(y | x∗)

+
1

2
(x∗ − µ1)TΣ−1(x∗ − µ1) +

1

2
log|I + ΣΛ∗| (3.14)

(ignoring constants). Each of these terms has an explicit and an implicit gradient

with respect to θ, where the latter result from the dependence of the MAP estimate

x∗ on the hyperparameters (such implicit gradients are typical for the use of Laplace

approximation in GP learning; see Rasmussen and Williams (2006), section 5.5.1).

The implicit gradients in this problem are extremely computationally burdensome

to calculate (requiring the trace of matrix inversions and matrix-matrix products for

each element of x). In empirical tests, we find implicit gradients to be quite small

relative to the explicit gradients (often by several orders of magnitude). Ignoring

these gradients is undesirable but essential to make this problem computationally

feasible. Thus we consider only explicit gradients. This is a common approach for

GP methods; see Rasmussen and Williams (2006).

Efficient computation of the first two terms of Eq. 3.14, as well as their gradients

with respect to θ, can be achieved by the fast multiplication method and the recursion

derived in Sec. 3.4. Specifically, the values of the first and second terms of Eq. 3.14

are calculated during the MAP estimation, so no additional memory or computation

is necessary for them. The gradient of the first term is nonzero only with respect to

γ and is linear in x (no matrix multiplications are required). Thus it can be quickly

calculated with no additional memory demands. Computation of the gradient of the

second term (the prior) can exploit the fact that we calculated Σ−1(x∗ − µ1) in the

final step of the MAP estimation. The gradient of this term with respect to µ is a
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simple inner product 1T (Σ−1(x∗−µ1)) (since we have already calculated the right side

of this inner product, this computation is O(n) in run time and requires no additional

memory). The gradient of this term with respect to a kernel hyperparameter θi (e.g.

a lengthscale or variance) is:

d

dθi

[1
2
(x∗ − µ1)T Σ−1(x∗ − µ1)

]
=

1

2

(
Σ−1(x∗ − µ1)

)T(dΣ

dθi

)(
Σ−1(x∗ − µ1)

)
. (3.15)

Since we have Σ−1(x∗ − µ1), this gradient only requires one matrix-vector multipli-

cation. dΣ
dθi

has the same Toeplitz structure as Σ and can thus be quickly multiplied.

Thus, calculating the first two terms of Eq. 3.14 and their gradients adds no com-

plexity to the method developed so far.

Only the term 1
2
log|I + ΣΛ∗| presents difficulty. Determinants in general require

O(n2) memory and O(n3) solve time using a Cholesky or PLU factorization, so we

must consider the problem more carefully. We examine the eigenstructure of (I+ΣΛ∗).

Since we are not trying to find a MAP estimate, there is no log barrier term (i.e. let

τ →∞); thus D (from Eq. 3.5) is rank N only. This means that Λ∗ = B+D (Eq. 3.6)

is block outer product plus sub rank diagonal, so it is also rank deficient with block

rank 2. Thus, it has 2N nonzero eigenvalues (two corresponding to each of the N

events, one in each block from B and one in each block from D). Using the eigenvalue

decomposition Λ∗ = USUT , we see

log|I + ΣΛ∗| = log|I + ΣUSUT |
= log|UT ||I + ΣUSUT ||U |
= log|I + UT ΣUS|, (3.16)

since the orthogonal matrix U has determinant 1 and UT U = I by definition. Since

Λ∗ has rank 2N , we know that S is diagonal with zeros on the last n − 2N entries.

By construction, the number of events N is much smaller than the total data size n.

Since the determinant of a matrix is the product of its eigenvalues, the unit eigenvalue

dimensions of I + UT ΣUS can be ignored. We define S as the 2N × 2N submatrix

of S that is made up of the diagonal block with nonzero diagonal entries. Further

define U as the corresponding 2N eigenvectors. Then, since the other dimensions of
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UT ΣUS contribute nothing to the determinant, we have

log|I + ΣΛ∗| = log|I + UT ΣUS|
= log|I + U

T
ΣU S|

= log|I + Σ S|, (3.17)

where I is now the 2N × 2N identity, and we have further defined Σ = U
T
ΣU .

Computationally, Σ is formed by multiplying Σ with the columns of U . Since Λ∗

is block rank 2, both matrices S and U can be found in closed form (N rank 2

eigendecompositions, one decomposition per block). This calculation of Eq. 3.17

requires 2N matrix multiplications which each have a run time cost of O(n log n).

We can make a small approximation that simplifies this problem even further.

Typically, N of these 2N eigenvalues are substantially larger than the other N . Each

block of Λ∗ contributes two nonzero eigenvalues. The larger is due to the diagonal

entry x−2
yi

(from the matrix D) and is nearly axis aligned. The smaller eigenvalue is

due to the outer product vector from block B̂i. Examination of the denominators in

the definition of B̂i and D in Eqs. 3.5 and 3.6 explains the difference in magnitude,

since x2
yi

is much smaller than the square of sums denominator in B̂i. We approximate

the eigenvector as the yi axis and approximate its eigenvalue as the corresponding

value in Λ∗. Then S is size N × N . This savings is small, but importantly we can

form Σ = U
T
ΣU simply by picking out the N rows and columns of Σ corresponding

to the event times yi.

In this formulation, we are left with matrices of size N ×N only, so we have some

modest number of O(N 3) operations; this approach is considerably faster and scales

better than the exact method above. We have also reduced O(n2) storage to O(N 2).

The following section elucidates the quality of this approximation.

To calculate the gradients with respect to this log determinant term, we also use

the approximation of Eq.3.17. We call our approximate gradient of this term the

gradient of the approximation in Eq. 3.17. This approximation can readily be differ-

entiated with respect to the hyperparameters (again, typical for GP; see Rasmussen

and Williams (2006)). Since these approximations are matrices in the event space N

(not time space n), these gradients are quickly calculated with a handful of O(N 3)

operations and with storage of O(N 2).
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3.6 Results and Discussion

The methods developed here maintain computational accuracy while achieving mas-

sive speed-up and the elimination of memory burden. First, we have shown a fast

method that achieves an accurate approximation of the MAP estimate x∗ in much

less time than a naive method. We have made all matrix multiplications implicit,

thereby eliminating the memory burden of representing full matrices. We call this

piece the “MAP Estimation.” Second, we found the approximate model evidence,

as well as its gradients, so as to perform model selection on the hyperparameters

θ. These calculations, which involved the calculation of a log determinant and its

gradients (Eq. 3.17), were achieved with matrices of significantly reduced dimension,

again removing the storage demands of the naive method. We call this piece the “log

determinant approximation.” These two pieces must be iterated (as described before

Eq. 3.2) to find both the optimal model θ̂ and the optimal intensity x∗. We call this

iterative method (combining the two pieces above) the “full GP intensity estimation.”

We show here that each piece is fast and accurate, and finally that they combine to

make an overall method that is considerably faster than a standard implementation,

with minimal sacrifice to accuracy.

To demonstrate results, we pick six representative intensity functions, consisting of

sinusoids of various amplitudes (5-100 events/second), means (15-150 events/second),

frequencies (1-2 Hz), and lengths (0.5-10 seconds of millisecond resolution data, im-

plying data sizes n of 500 to 10000). This set is by no means exhaustive, but it does

indicate how this method outperforms a naive implementation in a range of scenarios.

Our testing over many different intensity functions (including those in Cunningham

et al. (2008c)) agrees with the results shown here. We simulate point process data

y from these intensities, and we implement both the naive and the fast method on

these process realizations.

All results are given for 2006era Linux (FC4) 64 bit workstations with 2-4GB of

RAM running MATLAB (R14sp3, BLAS ATLAS 3.2.1 on AMD processors). The

naive method was implemented in MATLAB. The fast method was similarly imple-

mented in MATLAB with some use of the C-MEX interface for linear operations such

as multiplication of a vector by the (implicitly represented) matrix R.

First we demonstrate the utility of our fast MAP estimation method on problems

of several different sizes and with different x. We compare the fast MAP estimation



CHAPTER 3. FAST RATE ESTIMATION 38

Table 3.1: Runtime performance for fast and naive GP inference methods. Results
averaged over 10 independent trials.

Data Set

1 2 3 4 5 6

Data Size(n) 500 1000 1000 2000 4000 10000
Num. Events (N)1 20-30 30-40 140-160 55-70 55-70 140-160

MAP Estimation

Fast Solve Time(s) 0.12 0.17 0.46 0.32 7.6 37.9
Naive Solve Time(s) 7.04 40.5 39.5 333 3704 1day3

Speed Up 58× 232× 86× 1043× 493× 2000×3

MS Error (Fast vs. Naive)2 4.3e-4 4.2e-4 2.1e-4 5.2e-6 6.1e-6 -
Avg. CG Iters. 6.4 5.5 16.2 8.1 29.9 49.7

Log Determinant Approximation

Fast Solve Time(s) 6.5e-4 1.8e-3 1.9e-2 2.8e-3 2.8e-3 2.5e-2
Naive Solve Time(s) 0.24 1.02 0.97 5.7 34.7 5403

Speed Up 375× 566× 52× 2058× 1.3e4× 2.2e4×3

Avg. Acc. of Fast Approx. 99.1% 98.8% 99.8% 98.9% 99.7% -
Avg. Model Selection Iters. 54.3 54.6 89.1 68.1 39.4 40.7

Full GP Intensity Estimation (Iterative Model Selection and MAP Estimation)

Fast Solve Time(s) 4.4 7.1 30.3 18.7 128 423
Naive Solve Time(s) 443 3094 4548 2.4e4 1.5e5 1month3

Speed Up 105× 451× 150× 1512× 1166× 1e4×3

MS Error (Fast vs. Naive)2 0.10 0.03 10.8 0.01 0.01 -
1 Entries show a range of data used.
2 Squared norm of x(t) is roughly 103 to 105, so these errors are insignificant.
3 Unable to complete naive method; numbers estimated from cubic scaling.

to a naive implementation, demonstrating the average mean squared (MS) error (be-

tween the fast and naive estimates) and the average solve time. These results are

found in the first part of Table 3.1. The squared norm of x is roughly 103 to 105, so

the errors shown (the difference between the naive and fast methods) are vanishingly

small. Thus, the fast MAP estimation gives an extremely accurate approximation of

the naive MAP estimate. For all practical purposes, the fast MAP estimation method

is exact.

The naive method scales in run time as the cube of data size n, as expected. The

fast method and the speed-up factor do not appear to scale linearly in the data size.

Indeed, run time depends heavily on the number of CG iterations required to solve

the MAP estimation. This number of CG steps depends on problem size n, number

of events N , and hyperparameters such as the lengthscale of the covariance matrix.

Even so, major gains are achieved.

Second, we demonstrate our model selection accuracy and speed-up (the log de-

terminant approximation). We run the full iterative fast method with both MAP

estimation and evidence model selection. At each iterate of θ, we calculate evidence
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and its gradients using both the fast and naive methods. In the second section of

Table 3.1, we show average solution times for calculating the log determinant in both

naive and fast methods, and we compare their accuracy. For the sake of brevity, we

demonstrate only the calculation of log|I + ΣΛ∗|, not its gradients with respect to

the hyperparameters. Those calculations show very similar speed-ups and are as well

approximated. Thus, the log determinant is calculated to 99-100% accuracy with the

naive method, and we have a highly accurate approximation.

Finally, the full intensity estimation problem requires iterative evidence calcula-

tions and MAP estimations, so we must also demonstrate the accuracy of the full fast

method versus the full naive method. The last part of Table 3.1 shows this result

(Full GP Intensity Estimation). We see that all data sets converge to quite similar

results in both the fast and the naive methods, and the fast method enjoys significant

speed-up. The MS errors shown compare the result of the fast method to the result

of the naive method and are very small compared to the squared norm of x (103 to

105).

We have demonstrated a method for inferring optimal intensity estimates from

an observation of renewal process data, and we have exploited problem structure to

make this method computationally attractive. As an extension, we also developed

this fast GP technique for multiple observations y(i) of the same underlying x. It uses

the same approach with comparable performance improvements. As such, we do not

report it here.

Since we avoid all explicit representations of n× n matrices, our memory require-

ments are very minor for a problem of this size. The major run time improvements

in Table 3.1 require effectively no loss of accuracy from an exact naive approach, and

thus the additional technical complexity of this approach is well justified. Having

fast, scalable methods for point process intensity estimation problems may mean the

difference between theoretically interesting approaches and methods that become well

used in practice.
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Chapter 4

Calculating Multivariate Gaussian

Probabilities

In the previous chapter, we saw that careful analysis of the firing rate estimation

problem results in orders of magnitude of runtime improvement and the elimination

of the associated memory burden. We also saw that the computational methods

introduced in Chapter 3 are generally useful in a number of application areas out-

side of neuroscience. In this vein, this work also pointed to another finding of broad

statistical interest. In the description of the rate estimation problem (Section 3.2),

we pointed to the implementation specifics of the Expectation Propagation algo-

rithm (Rasmussen and Williams, 2006) detailed in Appendix B. In particular, this

implementation looks very much like the important and unsolved problem of calcu-

lating Gaussian probabilities. The Gaussian is the most fundamental and widely used

probability distribution in existence. Univariate and multivariate Gaussians appear

throughout nature, science, and engineering. Calculating Gaussian densities (evalu-

ating the probability density function) is straightforward, but no closed-form formula

exists for the cumulative distribution function. Extremely fast and accurate methods

have been developed for univariate Gaussians, but a similar algorithm for multivariate

Gaussians has not been found. To date, calculating multivariate Gaussian probabili-

ties has required sophisticated numerical integration techniques, and there is a body

of literature addressing this important and challenging problem. Here, we turn to the

seemingly unrelated field of Bayesian inference - specifically Expectation Propagation

- to develop a much simpler, more principled, and computationally faster method for

41
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calculating multivariate probabilities with high accuracy. This method is also the

first to produce an analytical solution, which is largely important in many applied

settings. This chapter, which at the time of this thesis is being revised for resub-

mission to a machine learning journal, is sole author work. As a note to the reader,

because this chapter is entirely statistical, it can be safely skipped without loss to

the overall theme of understanding motor cortical processing. However, this chapter

does represent a finding of broad interest that highlights again the broader impact

that applied biomedical research can have to more general technical fields.

4.1 Introduction

The Gaussian (or normal) probability distribution is likely the most important prob-

ability distribution to science, engineering, and the natural world. Its ubiquity is due

largely to the Central Limit Theorem (Papoulis and Pillai, 2002), which proves the

tendency of many random events such as thermal noise, repeated flips of a coin, or

student examination scores (to name a few) to be well described by a Gaussian distri-

bution. The probability density of a Gaussian at any point can be readily calculated

as

p(x) =
1

(2π)
n
2 |K| 12

exp
{
−1

2
(x−m)T K−1(x−m)

}
, (4.1)

where x ∈ IR
n is a vector with n real valued elements, m ∈ IR

n is the mean vector, and

K ∈ IR
n×n is the symmetric, positive semidefinite covariance matrix (in the univariate

case, K = σ2, the familiar variance term)1. In addition to the Central Limit The-

orem, the Gaussian receives much attention because of its attractive mathematical

properties - for example, unlike many probability distributions, adding and scaling

Gaussians yields again a Gaussian. The moment generating function (and character-

istic function) of a Gaussian is also a convenient closed-form expression. However,

despite all its advantages, the Gaussian presents difficulty in that its cumulative dis-

tribution function (cdf) has no closed-form expression and is difficult to calculate.

More generally, we are interested in Gaussian probabilities; that is, the probability

that a random draw falls in a particular region A ∈ IR
n.

Fig. 4.1 illustrates the probabilitiy of a Gaussian. Fig. 4.1A shows a heatmap of a

1Also, Gaussian processes extend the Gaussian to infinitely many random variables (Papoulis
and Pillai, 2002), but we will not discuss that here.
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A B C

Figure 4.1: Gaussian probabilities. (A) heatmap of a two-dimensional Gaussian
distribution and a rectangle corresponding to the region A. (B) the same Gaussian
in three dimensions, where the height of the curve corresponds to the probability
density p(x) as in Eq. 4.1. (C) The probability F (A) is just the total mass captured
above that region A.

two-dimensional Gaussian distribution, and a rectangle corresponding to the region

A. Fig. 4.1B shows that same Gaussian in three dimensions, where the height of the

curve corresponds to the probability density p(x) as in Eq. 4.1. Isolating just that

region A of probability mass, we see in Fig. 4.1C that the probability is just the total

mass captured above that region A. Mathematically, we write

F (A) = Prob
{
x ∈ A

}
=

∫

A
p(x)dx =

∫ u1

l1

. . .

∫ un

ln

p(x)dxn. . .dx1, (4.2)

where l1, . . ., ln and u1, . . ., un denote the upper and lower bounds of the region

A. This probability F (A) generalizes the cdf, as the cdf can be recovered by setting

l1 = . . . = ln = −∞ (the region A is unbounded to the left).2 Gaussian proba-

bilities are as fundamentally important as the distribution itself, and the applica-

tions are equally widespread. Applications for multivariate Gaussian probabilities

include statistics (Genz, 1992; Joe, 1995; Hothorn et al., 2005), economics (Boyle

et al., 2005), mathematics (Hickernell and Hong, 1999), biostatistics (Thiebaut and

Jacqmin-Gadda, 2004; Zhao et al., 2005), environmental science (Buccianti et al.,

1998), computer science (de Klerk et al., 2000), neuroscience (Pillow et al., 2004),

2We note that generally the upper and lower bounds may be functions of each other, thereby
defining any region of interest A (such as an ellipsoid or a polyhedron). In this report, we deal with
hyper-rectangular regions (boxes with arbitrary position in high-dimensional space). By this choice,
the bounds l1, . . ., ln, u1, . . ., un are simply numbers and not functions of each other.
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machine learning (Liao et al., 2007), and more.

The vast importance of Gaussian probabilities has compelled a well-labored body

of work investigating methods for calculating these quantities. The univariate cdf

can be very quickly and accurately calculated using a number of techniques (e.g.,

see (Cody, 1969)). These methods are so fast and accurate that the univariate cdf

(often denoted φ(·) or a scaled version of the complementary error function erfc(·))
is available with machine-level precision (as precise as a digital computer can repre-

sent any number) in many statistical computing packages (e.g, normcdf in MATLAB,

CDFNORM in SPSS, pnorm in R, to name a few). Unfortunately, no similarly power-

ful algorithm exists for multivariate Gaussians. Previous research from math and

statistics (principally due to Genz; see (Genz, 1992; Drezner and Wesolowsky, 1989;

Drezner, 1994; Genz and Kwong, 2000; Genz and Brentz, 1999, 2002; Genz, 2004)) has

produced advanced numerical integration methods that calculate probabilities with

high accuracy (but not machine-level precision, as in the univariate case). These

algorithms make a series of transformations to the Gaussian and to the region A,

using the Cholesky factor of the covariance K, the univariate Gaussian cdf and its

inverse, and randomly generated points. These transformations restate the probabil-

ity as a problem that can be well handled by quasi-random or lattice point numerical

integration (see Appendix C.2 for more details and references). Though many impor-

tant studies across many fields (Joe, 1995; Hothorn et al., 2005; Boyle et al., 2005;

Hickernell and Hong, 1999; Thiebaut and Jacqmin-Gadda, 2004; Zhao et al., 2005;

Buccianti et al., 1998; de Klerk et al., 2000; Pillow et al., 2004; Liao et al., 2007) have

been critically enabled by this algorithm, there remains ample need across science

and engineering for a simple algorithm that calculates cumulative densities and cdf

values quickly and accurately for Gaussians up to large dimension. It is also essential

that an algorithm produces an analytical form for F (A), such that derivatives can

be taken to optimize the probability with respect to the parameters (m, K) of the

Gaussian. Current numerical methods do not have this important feature. In this

paper, we turn to Bayesian inference, specifically the well-known Expectation Prop-

agation (EP) framework (Minka, 2001b,a, 2005), and we develop a simple algorithm

that calculates, with high accuracy, cumulative densities of low- or high-dimensional

Gaussian probability distributions. This algorithm’s simplicity also affords very low
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computational overhead (fast run-time) and an analytical expression that can be read-

ily manipulated. The following section (Sec. 4.2) details the algorithm, and then we

provide results showing how this algorithm matches the correct probability, and that

with little computational effort (Sec. 4.3).

4.2 EP-based Gaussian Probability Algorithm

Here we describe the probability algorithm, both intuitively (Sec. 4.2.1) and mathe-

matically (Sec. 4.2.2). We also provide simple algorithm pseudocode to promote the

use of this method across many fields.

4.2.1 Algorithm Intuition

All approximate Bayesian inference methods seek to approximate an intractable dis-

tribution p(·) (e.g., a posterior distribution p(x | y) in some inference problem) with

a tractable, convenient distribution q(·), where q(·) is, by some definition, a “good”

approximation of p(·) (Minka, 2001b; MacKay, 2003; Bishop, 2006; Rasmussen and

Williams, 2006). A “good” approximation, for example (and our case of interest in

this study), might be a Gaussian distribution q(·) that matches its moments (zeroth

- total mass, first - mean, and second - covariance) to the intractable p(·). Though

the two distributions may not be the same at every point, their important summary

statistics are indeed the same. One recent inference algorithm - Expectation Propa-

gation (EP) (Minka, 2001b,a, 2005) - endeavors to make exactly this approximation.

EP has achieved excellent results on a variety of problems and has received much

attention in literature (e.g., (Heskes and Zoeter, 2002; Lawrence et al., 2003; Kuss

and Rasmussen, 2005; Rasmussen and Williams, 2006), to name but a few).

A key contribution of the present paper is to cast the problem of Gaussian proba-

bilities in terms of the above-mentioned inference framework. To do so, we introduce

a related distribution, the truncated multivariate normal pA(x) (Horrace, 2005). This

distribution has the same shape as p(x) in Eq. 4.1 on the region A, but it is zero
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elsewhere (i.e., it looks like Fig. 4.1C). Mathematically, we write:

pA(x) =





p(x) x ∈ A
0 otherwise

(4.3)

Since pA(x) is a truncated distribution, it normalizes to
∫

pA(x)dx =
∫
A p(x)dx (note

that this is an unnormalized probability distribution, as it does not normalize to 1).

We note that this normalizer is the probability of p(x) over the region A (F (A) as in

Eq. 4.2). This is the zeroth moment (total mass) of p(x) on the regionA. Accordingly,

we can apply this distribution to the EP moment-matching method described above.

EP aims to produce a distribution q(x) with different shape but identical moments

and a tractable analytical form. An appropriate choice for q(x) is again a Gaussian

(but not truncated toA). To be clear, this method tries to approximate the truncated

distribution pA(x) with a different Gaussian q(x) that, though not truncated, shares

its zeroth (total mass), first (mean), and second (covariance) moments with pA(x).

Critically, since q(x) has a tractable form, we can calculate its moments easily and

exactly. And it is the calculation of this zeroth moment that yields the probability of

interest F (A). We call the method solving this moment-matching problem EP-based

Gaussian Cumulative Distribution (EPGCD).

EPGCD proceeds iteratively in four simple steps, which we detail in Fig. 4.2

(Sec. 4.2.2 gives more mathematical description, simple pseudocode, and a link to

our implementation). To begin (“START” in Fig. 4.2), we have a current Gaussian

distribution q(x) (“Current Global” in Fig. 4.2, whose moments we seek to match

with the moments of pA(x)). First, recognizing the difficulty of calculating high-

dimensional moments, we form local one-dimensional distributions, from q(x), whose

moments can be calculated. This simple calculation produces univariate Gaussians

(“Cavity Locals” in Fig. 4.2, to correspond with EP literature). We want to update

these cavity locals and aggregate them into a new global distribution. Ideally, we

would truncate the cavity locals with each dimension of regionA (the intervals [li, ui]),

but this would make global aggregation impossible. Instead of this hard truncation,

we use a soft truncation, namely a univariate Gaussian producing the same moments

as the hard truncation (univariate truncated moments are exact, using the error

function erf(·) (Jawitz, 2004)). Thus, the second step chooses the univariate Gaussians
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EPGCD

START

New

Global
ENDCurrent

Global

..
.

(1)Form

Cavity

Cavity

Locals

(2)Match Truncated Moments

Site

Locals

(3)Update

Global

(4)Iterate

Converged

..
.

..
.

..
.

Figure 4.2: Intuition of EPGCD. The algorithm (1) projects to single dimensions,
(2) matches the truncated moments to local Gaussians, (3) aggregates these matched
moments to multiple dimensions, and (4) iterates, resulting in the EPGCD calculation
of probability: the total mass of the untruncated EPGCD Gaussian matches F (A),
as shown by the balanced scales. See text for full description.

(“Site Locals” in Fig. 4.2) such that the product of the site locals with the cavity

locals (i.e., this product is the soft-truncated cavity locals) have moments that match

the hard truncation of the cavity locals. Third, since we have chosen Gaussian locals,

we aggregate this local information into a new global q(x) using standard properties

of the Gaussian (“New Global” in Fig. 4.2). Though the cavity and site distributions

are local, this step couples all the local updates and makes our new q(x) a global

estimate of the high-dimensional moments of pA(x). The final (fourth) step checks

the new global distribution against the previous global. If the two do not match, the

algorithm iterates. If the two do match, the algorithm has converged to a global q(x)

with the same (or quite similar) moments of pA(x). Balanced scales in Fig. 4.2 show

that EPGCD produces q(x) with its total mass accurately estimating that of the

truncated pA(x). As the total mass of pA(x) is by definition the probability F (A),

finding the mass of q(x) also calculates F (A) with high accuracy. Since q(x) is a

regular Gaussian, its mass can calculated easily and exactly. In summary, EPGCD

calculates probabilities by iteratively projecting locally, matching moments locally,

and aggregating that information globally, resulting in the EPGCD calculation of the

desired F (A). The following section describes the algorithm in mathematical detail.
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4.2.2 EPGCD Algorithm Details

To detail EPGCD, we first describe Expectation Propagation (EP) (Minka, 2001b,a,

2005) and why it is a sensible choice for calculating probabilities. As noted in the

text, EP aims to replace an intractable p(·) with a tractable q(·) that approximates

p(·) well. A natural measure for the quality of the approximation is Kullback-Leibler

(KL) divergence (Cover and Thomas, 1991). Specifically, if we choose q(·) to be a

high-dimensional Gaussian, then the choice of q(·) that minimizes KL(p ‖ q) (i.e.,

the best approximation) is the q(·) with the same zeroth (total mass), first (mean),

and second (covariance) moments as p(·).3 If we are trying to calculate a probability

F (A), then we equivalently seek the zeroth moment of pA(x) as defined in Eq. 4.3. As

such, minimizing this global KL divergence is an appropriate and sensible method to

calculate a probability. The proof that minimizing KL divergence results in moment

matching (for this problem) can be found in Appendix C.1. Unfortunately, minimizing

global KL divergence directly is in many cases intractable. This fact motivated the

creation of the EP algorithm, which seeks to do this KL minimization (or at least

approximately do it) by iteratively minimizing the KL divergence of local, single

dimensions of q(·) with respect to p(·).
In the following, We use standard EP notation (as in (Rasmussen and Williams,

2006)) to describe the EPGCD algorithm. We also use the standard notationN (µ, Σ)

to denote a Gaussian (that normalizes to 1) with mean µ and covariance Σ (in any

dimension n, thus N (µ, σ2) denotes a univariate Gaussian). First, let us define the

region A as the hyperrectangle bounded at each dimension i by lower and upper

bounds li and ui. We are interested in finding the probability on this region A of the

high-dimensional Gaussian p(x) = N (m, K). We can define m = 0 with no loss of

generality, as the region A can be shifted by m if m 6= 0 (having m = 0 will slightly

simplify the presentation below). Then, we define sites ti(xi) = δ(xi ∈ [li, ui]); that is,

a function on the ith dimension that is 1 inside the interval [li, ui], and 0 otherwise.

Then, by this definition, we can rewrite the definition of probability (Eq. 4.2) as:

3Note that minimizing KL(p ‖ q) is different than minimizing KL(q ‖ p), and the latter is another
potential choice which results in variational approximation methods (Rasmussen and Williams, 2006;
Bishop, 2006; MacKay, 2003). However, minimizing KL(q ‖ p) does not result in moment matching
and is thus inappropriate for probability calculation.
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F (A) =

∫

A
p(x)dx =

∫
pA(x)dx =

∫
p(x)

n∏

i=1

ti(xi)dx, (4.4)

and we see that pA(x) = p(x)
∏n

i=1ti(xi). These hard truncations ti(xi), which we call

the sites, make this integral intractable, so we replace the ti(xi) with soft truncations

t̃i(xi) (site local approximations). We choose t̃i(xi) to be scaled univariate Gaussians:

t̃i(xi) = Z̃iN (µ̃i, σ̃
2
i ) (note these t̃i(xi) normalize to Z̃i). Then, our global approxi-

mation is q(x) = p(x)
∏n

i=1t̃i(xi) ≈ pA(x). Because q(x) is a Gaussian (the product

of Gaussians is another scaled Gaussian (Rasmussen and Williams, 2006)), we can

easily find its zeroth, first, and second moments (we are primarily interested in the

zeroth moment F (A)). Choosing the parameters of these soft truncations t̃i(xi) to

minimize KL divergence is the purpose of EPGCD.

Many of the subsequent EPGCD equations are standard for EP, so we will not

rederive them, for the sake of brevity. We assume we already have the Gaussian

approximation q(x) = ZN (µ, Σ), and now we want to refine our site approximations

t̃i(xi). The key idea is to project q(x) onto the ith dimension so we can consider what

t̃i(xi) should be included to minimize KL divergence in that dimension. To do this,

we form the cavity local distribution for the ith dimension (labelled (1) in Fig. 4.2):

q−i(xi) =

∫
p(x)

∏

j 6=i

t̃j(xj)dx = N (µ−i, σ
2
−i), (4.5)

where µ−i = σ2
−i(σ

−2
i µi − σ̃−2

i µ̃i), and σ2
−i = (σ−2

i − σ̃−2
i )−1,

(as in (Rasmussen and Williams, 2006), Eq. 3.56). This univariate Gaussian is the

projection of all of q(x) except for the ith site approximation (soft truncation) t̃i(xi),

which we want to update. Including this site approximation, the full projection of

q(x) onto the ith dimension (the marginal) is q−i(xi)t̃i(xi). Since we want to match

the global moments of q(x) to those of pA(x), the moments of the projection must

also match. We consider the true site (the hard truncation) ti(xi), which would result

in the projection of the ith dimension q−i(xi)ti(xi). We then minimize this univariate

KL divergence resulting in matching the moments of q−i(xi)t̃i(xi) to the moments of

q−i(xi)ti(xi). The product q−i(xi)ti(xi) is simply a univariate truncated Gaussian (see

upper right picture in Fig. 4.2), and the moments of this product can be calculated
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exactly (Jawitz, 2004) using the error function erf(·):

q−i(xi)ti(xi) ≈ q̂(xi) = ẐiN (µ̂i, σ̂
2
i ), (4.6)

where Ẑi =
1

2

(
erf(α)− erf(β)

)
,

µ̂i = µ−i +
1

Ẑi

( σ−i√
2π

(
exp{−α2} − exp{−β2}

))
, and

σ̂2
i = µ2

−i + σ2
−i +

σ−i√
2π

(
(li + µ−i)exp{−α2} − (ui + µ−i)exp{−β2}

)
− µ̂2

i ,

where we have everywhere above used the shorthand α = li−µ−i√
2σ−i

and β = ui−µ−i√
2σ−i

. These

moments will match the moments of q−i(xi)t̃i(xi) (our desired KL minimization) if

t̃i(xi) is chosen as:

t̃i(xi) = Z̃iN (µ̃i, σ̃
2
i ), (4.7)

where µ̃i = σ̃2
i (σ̂

−2
i µ̂i − σ−2

−i µ−i), σ̃2
i = (σ̃−2

i − σ−2
−i )

−1,

Z̃i = Ẑi

√
2π
√

σ2
−i + σ̃2

i exp
{1

2
(µ−i − µ̃i)

2/(σ2
−i + σ̃2

i )
}
.

(as in (Rasmussen and Williams, 2006), Eq. 3.59). While these equations may look

complicated, they are all simple outcomes of standard manipulations on Gaussian

random variables. This local site update (and the local updates from all other di-

mensions j 6= i) is then aggregated globally (labelled (3) in Fig. 4.2) to form a new

global Gaussian approximation q(x) = p(x)
∏n

i=1t̃i(xi), which will have the updated

form:

q(x) = ZN (µ, Σ), (4.8)

where µ = ΣΣ̃−1µ̃, Σ = (K−1 + Σ̃−1)−1,

and log Z = −1

2
log|K + Σ̃| − 1

2
µ̃(K + Σ̃)−1µ̃ +

n∑

i=1

log Z̃i −
n

2
log(2π)

(as in (Rasmussen and Williams, 2006), Eqs. 3.53 and 3.65), where we have used µ̃ to

denote the vector of site means µ̃i, and Σ̃ to denote the diagonal matrix with diagonal

elements of the site variances σ̃2
i . Again, these equations follow from standard nor-

malization when considering a product of Gaussian distributions. Note that Z is the
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zeroth moment of q(x), which is the EPGCD result for the probability F (A). Criti-

cally, the form of Z can be readily differentiated (we refer the reader to (Rasmussen

and Williams, 2006), section 5.5.2, and (Seeger, 2003) for specific details).4

Importantly, we now have an updated q(x) = ZN (µ, Σ) that has minimized the

KL divergence of the ith dimension and has updated the global q(x) to hopefully

reduce KL
(
pA(x) ‖ q(x)

)
as well. Though there is no proof for when EP methods

converge to this global KL minimizer, our results (Sec. 4.3, to follow) suggest that

EPGCD does converge very close to this minimizer (99.8% to 100% accuracy). We

iterate this update procedure (labelled (4) in Fig. 4.2) until the algorithm converges

(that is, when the parameters of q(x) stop changing). One can choose to update the

global q(x) after every site update, or, as we do, after a full sweep of all n sites. In

our experience, EPGCD always converges quickly (less than 10 steps through all n

sites typically, even for high n) to the same result, regardless of this choice of when to

update the global q(x). Accordingly, we present Fig. 4.2 as doing all the site updates

in parallel, and then aggregating this information globally. The steps above lead to

the following simple EPGCD pseudocode:

Algorithm 1 EPGCD: Calculate F (A), the probability of p(x) on region A.

1: Initialize with any q(x) defined by Z, µ, Σ.
2: while q(x) has not converged do
3: for i← 1 : n do
4: form cavity local q−i(xi) by Eq. 4.5.
5: calculate moments of q−i(xi)ti(xi) by Eq. 4.6.
6: choose t̃i(xi) so q−i(xi)t̃i(xi) matches above moments by Eq. 4.7.
7: end for
8: update global Z, µ, Σ with new site approximations t̃i(xi) using Eq. 4.8.
9: end while

10: return Z, the total mass of q(x).

In practice, researchers have found that it helps to reparameterize the EP steps to

ensure numerical stability (for example, as simple as considering 1
σ2

−i

instead of σ2
−i).

In our code, we followed the implementation details of (Rasmussen and Williams,

2006), section 3.6.3 (which aligns with several of the equations given above - only the

moment calculations µ̂, σ̂2, Ẑ are different; see Eq. 4.6).

4It has been proven that the derivatives of the cavity and site parameters (with respect to the
parameters of the Gaussian) are 0, so only the explicit dependencies need to be considered (Seeger,
2003; Rasmussen and Williams, 2006).
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4.3 Results

For all the studies that use EP and consider its theoretical backing, no formal proof

has emerged for when EP will converge and, if it converges, when EP will match

all the global moments of the distribution q(x) to those moments of p(x). Experts

have conjectured that EP converges (Rasmussen and Williams, 2006) for the class of

log-concave probability distributions (our problem is also log-concave). Also, EP is

known to converge correctly in some cases (an outcome of its connection to Loopy Be-

lief Propagation - see (Pearl, 1988; Weiss and Freeman, 2001; Minka, 2001b,a; Yedidia

et al., 2002; Minka, 2005); interesting connections have also been made to statisti-

cal physics and free-energy formulations (Csato et al., 2002; Opper and Winther,

2001, 2000)). There are trivial cases where EP (and, as a result, EPGCD) converges

correctly, such as any diagonal covariance K (isotropic or uncorrelated covariance).

Indeed, calculating a cumulative density for a diagonal K is simply a product of uni-

variate probabilities, so this case is uninteresting. Here we focus only on the more

interesting (and common) case of full (correlated) covariances K. In lieu of a proof of

the correctness of EPGCD, we turn to empirical results to demonstrate the quality

of this method. Though there are infinite possible Gaussians (choices of n, m, and

K) and infinite possible probability regions A, we applied the algorithm to many

different distributions across many different regions and many different dimensions

(our specific method for selecting these regions and distributions is described in Ap-

pendix C.3). In all cases we have tested, EPGCD converges very quickly. Further,

EPGCD, when started from many different initializations, always converged to the

same solution, strongly suggesting the optimization is unimodal. As the ground truth

for any probability test case is unknown (hence the motivation for this algorithm),

evaluating the accuracy of EPGCD results is tricky. The aforementioned numerical

integration method (we call this the “Genz” method, and we describe this further in

Appendix C.2) of (Genz, 1992; Genz and Kwong, 2000; Genz and Brentz, 1999, 2002;

Genz, 2004) can be run at different numbers of integration points, which produces dif-

ferent levels of accuracy and very different computational run-times. Running Genz

for a very long time (5 × 105 integration points) produces a result that claims high

accuracy. Though this estimate is not guaranteed to be correct, we believe it to be

highly accurate (it claims over 99.99% accuracy, and indeed we have found it more ac-

curate than much more time-consuming Monte-Carlo (MC) methods (Bishop, 2006)).
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Table 4.1: Average performance of probability estimators. We used 1000 cases per
dimension n (100 for n = 500 and n = 1000).

Avg. Run Times(s) Avg. % Err. vs. High Acc. Est.1 Speedup3

Gaussian Genz Genz EPGCD vs.

Dimension EPGCD Fast2 Acc.3 EPGCD Fast Acc. Fast Acc.

n = 2 0.001 0.005 0.01 0.02% 0.05% 0.00% 4× 8×
n = 3 0.006 0.02 0.06 0.07% 0.20% 0.00% 4× 11×
n = 4 0.007 0.03 0.10 0.14% 0.43% 0.00% 5× 14×
n = 5 0.005 0.02 0.07 0.17% 0.79% 0.01% 5× 15×
n = 10 0.006 0.03 0.11 0.23% 1.40% 0.02% 6× 19×
n = 20 0.003 0.04 0.13 0.14% 1.25% 0.02% 16× 46×
n = 50 0.011 0.13 0.35 0.05% 0.75% 0.01% 12× 32×
n = 100 0.066 0.30 0.75 0.02% 0.54% 0.01% 5× 11×
n = 500 8.43 19.0 48.0 0.00% 0.25% 0.00% 2× 6×
n = 1000 41.0 28.5 119 0.00% 0.16% 0.00% 1× 3×
1 A very slow, very accurate Genz method (5×105 points, 5 × 104 for n = 500, 1000) for comparison.
2 Genz method run with 50 points (very fast, but less accurate); see Appendix C.2.
3 Genz method run with 5000 points (slower, but accurate); see Appendix C.2.

We call this result in all cases the “high accuracy estimate.”

One might also wonder how EPGCD performs compared to the Genz method run

at more reasonable numbers of integration points. We compare EPGCD to: (1)“Fast

Genz,” a very fast but less accurate method (Genz method with 50 integration points),

and (2)“Accurate Genz,” a slower but accurate method (Genz method with 5000

integration points). Average run-times and errors vs. the high accuracy estimation

are shown in Table 4.1.

In Table 4.1, each row of the table corresponds to normal distributions of increas-

ing dimension (number of jointly Gaussian random variables). At a given dimension

n, we chose 1000 different regions A and Gaussians (100 for n = 500 and n = 1000,

see Appendix C.3). The first group of columns shows run-times for EPGCD and

the Genz methods (Fast and Accurate). The second group of columns indicates the

average error (in %) between each method and the high accuracy estimate. Finally,

the last column indicates the speed-up of EPGCD vs. the Fast and Accurate Genz

methods. Table 4.1 shows, across a diverse set of Gaussians and probability regions,

that EPGCD calculates F (A) with high (between 99.8% and 100%) accuracy. It

calculates these quantities much more quickly and accurately than the Fast Genz

method. Comparing to the Accurate Genz method, EPGCD is more than an order of

magnitude faster, at the price of some decreased accuracy. We note here a potential

bias in these results. Since we use the Genz method for our high accuracy estimate
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of ground truth, errors inherent in the Genz algorithm may not be shown in the

Fast and Accurate Genz methods, artificially penalizing EPGCD. Even still, these

results demonstrate that EPGCD calculates probabilities very quickly and with high

accuracy.

4.4 Discussion

As EPGCD and Genz both calculate multivariate probabilities quite accurately, some

comparison should be made between other features of the algorithms. First, EPGCD

involves four simple iterative steps that do nothing more than moment match and

exploit properties of the Gaussian distribution, whereas the Genz method requires

several problem transformations and sophisticated numerical integration. Accord-

ingly, we claim EPGCD is a simpler algorithm, which in turn leads to simpler imple-

mentations in software and generally much faster running time (see final columns of

Table 4.1). We show roughly an order of magnitude speed up on average when using

EPGCD, depending on the problem size and the number of integration points used in

the Genz method. We caution that these speed up numbers can vary depending on

the computing platform (we used Linux Fedora Core 4 with 64 bit, 2.2-2.4GHz AMD

processors and 2-4GB of RAM), coding language (we used MATLAB R2007), and

choices made in implementation. For example, increasing the number of integration

points in the Genz method can slow its run-time by orders of magnitude without

changing the result (when going from, for example 5 × 103 to 5 × 104 integration

points), or will do little for the run time but quite increase the error (when going

from 50 to fewer integration points).

In addition to its simplicity, EPGCD is a well-principled approach. We cast the

probability problem as a calculation of the zeroth moment of a truncated distribution.

EPGCD then logically proceeds by projecting a distribution q(·) to each dimension,

matching local moments, and then aggregating that information globally to form a

new q(·). The Genz method, on the other hand, makes several intelligent choices in

its transformation of the problem, but eventually it resorts to brute-force numerical

integration. Because of its principled approach, EPGCD also naturally produces the

mean and covariance of the truncated distribution5, which the Genz method does

5our testing indicates that EPGCD finds these values as accurately as the total mass F (A).
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not. These quantities are of critical importance in Bayesian inference, and should

be valuable to many of the studies across many fields that require calculating prob-

abilities (Joe, 1995; Hothorn et al., 2005; Boyle et al., 2005; Hickernell and Hong,

1999; Thiebaut and Jacqmin-Gadda, 2004; Zhao et al., 2005; Buccianti et al., 1998;

de Klerk et al., 2000; Pillow et al., 2004; Liao et al., 2007). Finally, since EPGCD

produces an analytical result, the probability result F (A) can be readily differentiated

with respect to the Gaussian parameters (m, K). This feature is hugely important

in many circumstances: for example, if F (A) is a probability of classification error

that we want to minimize, we may want to optimize the position of the Gaussian

with respect to that error (and any other constraints). Thus, the principled founda-

tion for EPGCD allows deeper insight and more opportunities for manipulation than

numerical methods.

In some ways also, however, EPGCD is not as developed as numerical methods.

Future studies should focus on generalizing the region A to non-hyperrectangular

regions, and future theoretical work should focus on proving the convergence and

accuracy of EPGCD and EP-based methods in general. Our tested cases always

converged quickly to a highly accurate result. We tried to find any pattern to the

discrepancies between EPGCD and the Genz methods to indicate potential strengths

or weaknesses of EPGCD. Of all the features we tested, condition number of the

covariance matrix K tended to correlate positively with the error between EPGCD

and Genz. This suggests that either EPGCD or the Genz method may be less robust

to poorly conditioned matrices. We also considered angular offset of the principle

covariance axes (i.e., the extent to which the covariance is not axis-aligned), the

volume of the region A, and the eccentricity of the region A, but these factors seem

to have little effect on the difference between the results produced by these methods.

4.5 Conclusion

To summarize, we have adapted a popular method from Bayesian inference to pro-

duce EPGCD: a method for calculating Gaussian probabilities with high accuracy.

EPGCD distinguishes itself from previous methods in its simplicity and principled

However, as those calculations are not relevant to the present study, we do not further discuss this
aspect of EPGCD.
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construction, which allow simple implementation, very fast run-time, and the flexi-

bility for probability to be optimized based on problem parameters. These features

should allow a broad adoption of this method to a range of Gaussian probability

problems. probabilities of Gaussian distributions are as fundamental as the Gaus-

sian probabilities themselves. Thus, increasing our understanding of and ability to

calculate these quantities is of prominent importance to science and engineering as a

whole.
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Chapter 5

Low-dimensional Single-trial

Analysis of Neural Population

Activity

We here return to the central problem of understanding motor cortical processing.

In Chapter 2, we developed a method to process a spike train, recorded on a single

experimental trial, into a smooth, denoised signal that is more amenable to analytical

efforts. However, single spike trains are fundamentally quite noisy and only a single

view of a highly complex system, so it is likely that no algorithm will be able to an-

swer all interesting scientific questions with a single neuron alone. In this chapter, we

extend this signal processing approach (and use some of the computational develop-

ments of Chapters 3 and 4) across many simultaneously-recorded neurons to extract

a population-level signature of neural activity. We consider the problem of extract-

ing smooth, low-dimensional neural trajectories that summarize the activity recorded

simultaneously from many neurons on individual experimental trials. Beyond the

benefit of visualizing the high-dimensional, noisy spiking activity in a compact form,

such trajectories can offer insight into the dynamics of the neural circuitry underlying

the recorded activity. Current methods for extracting neural trajectories involve a

two-stage process: the spike trains are first smoothed over time, then a static dimen-

sionality reduction technique is applied. We first describe extensions of the two-stage

methods that allow the degree of smoothing to be chosen in a principled way, and that

account for spiking variability which may vary both across neurons and across time.

57
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We then present a novel method for extracting neural trajectories, Gaussian-process

factor analysis (GPFA), which unifies the smoothing and dimensionality reduction

operations in a common probabilistic framework. We applied these methods to the

activity of 61 neurons recorded simultaneously in macaque premotor and motor cor-

tices during reach planning and execution. By adopting a goodness-of-fit metric that

measures how well the activity of each neuron can be predicted by all other recorded

neurons, we found that the proposed extensions improved the predictive ability of the

two-stage methods. The predictive ability was further improved by going to GPFA.

From the extracted trajectories, we directly observed a convergence in neural state

during motor planning, an effect that was shown indirectly by previous studies. We

then show how such methods can be a powerful tool for relating the spiking activity

across a neural population to the subject’s behavior on a single-trial basis. Finally, to

assess how well the proposed methods characterize neural population activity when

the underlying timecourse is known, we performed simulations which revealed that

GPFA performed tens of percent better than the best two-stage method. This work,

which has been published as Yu et al. (2009a), was done jointly with Byron Yu,

Gopal Santhanam, Stephen Ryu, Krishna Shenoy, and Maneesh Sahani. Byron led

this project effort, and I was involved heavily in algorithm design, algorithm imple-

mentation, data analysis, and construction of the manuscript.

5.1 Introduction

5.1.1 Motivation for Single-trial Analysis of Neural Popula-

tion Activity

Neural responses are typically studied by averaging noisy spiking activity across mul-

tiple experimental trials to obtain firing rates that vary smoothly over time. However,

if the neural responses are more a reflection of internal processing rather than exter-

nal stimulus drive, the timecourse of the neural responses may differ on nominally

identical trials. This is particularly true of behavioral tasks involving perception,

decision making, attention, or motor planning. In such settings, it is critical that the

neural data not be averaged across trials, but instead be analyzed on a trial-by-trial

basis (Arieli et al., 1996; Nawrot et al., 1999; Horwitz and Newsome, 2001; Ventura
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et al., 2005; Briggman et al., 2006; Yu et al., 2006; Churchland et al., 2007; Jones

et al., 2007; Czanner et al., 2008).

The importance of single-trial analyses can be simply illustrated by considering

a classic perceptual decision-making study by Newsome and colleagues (Horwitz and

Newsome, 2001). In this study, they trained monkeys to report the direction of coher-

ent motion in a stochastic random-dot display. Especially in low coherence conditions,

they observed that neurons in the superior colliculus appeared to jump between low

and high firing rate states, suggesting that the subject may have vascillated between

the two possible directional choices. For the same random-dot stimulus, the times

at which the firing rates jumped appeared to differ from one trial to the next. Such

vascillations may also underlie other perceptual and decision-making tasks, includ-

ing binocular rivalry (Leopold and Logothetis, 1996), structure-from-motion (Bradley

et al., 1998; Dodd et al., 2001), somatosensory discrimination (de Lafuente and Romo,

2005), and action selection (Cisek and Kalaska, 2005). Most of these studies provide

indirect evidence that the timecourse of the subject’s percept or decision differed

on nominally identical trials. Such trial-to-trial differences cannot be eliminated by

additional monkey training, since the stimuli are designed to be ambiguous and/or

operate near the subject’s perceptual threshold.

In the dot-discrimination (Horwitz and Newsome, 2001) and binocular rivalry

(Leopold and Logothetis, 1996) studies, the authors attempted to segment single

spike trains based on periods of high and low firing rates. In general, it is very diffi-

cult to accurately estimate the time or rate at which the firing rate changes based on

a single spike train. If one is able to record from multiple neurons simultaneously and

the activity of these neurons all reflect a common neural process (e.g., the subject’s

percept or choice), then one might be able to more accurately estimate the timecourse

of the subject’s percept or choice on a single trial. Indeed, developments in multi-

electrode (Kipke et al., 2008) and optical imaging (Kerr and Denk, 2008) technologies

are making this a real possibility. However, it is currently unclear how to best lever-

age the statistical power afforded by simultaneously-recorded neurons (Brown et al.,

2004) to extract behaviorally-relevant quantities of interest (e.g., the timecourse of

the subject’s percept or internal decision variable) on a single-trial basis.

In this work, we develop analytical techniques for extracting single-trial neu-

ral timecourses by leveraging the simultaneous monitoring of large populations of
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neurons. The approach adopted by recent studies is to consider each neuron being

recorded as a noisy sensor reflecting the time-evolution of an underlying neural pro-

cess (Smith and Brown, 2003; Stopfer et al., 2003; Brown et al., 2005; Levi et al.,

2005; Mazor and Laurent, 2005; Briggman et al., 2005; Broome et al., 2006; Yu et al.,

2006; Sasaki et al., 2007; Carrillo-Reid et al., 2008; Bathellier et al., 2008). The goal

is to uncover this underlying process by extracting a smooth, low-dimensional neural

trajectory from the noisy, high-dimensional recorded activity. The activity of each

neuron tends to vary significantly between trials, even when experimental conditions

are held constant. Some of this variability is due to processes internal to the neuron,

such as channel noise in membranes and biochemical noise at synapses (Faisal et al.,

2008). But some portion of the variability reflects trial-to-trial differences in the time-

evolution of the network state, which may in turn represent different computational

paths and may lead to different behavioral outcomes. As it reflects the network state,

we expect this component of the variability to be shared amongst many (or all) of the

neurons that make up the network. The techniques that we develop here seek to em-

body this shared activity in a neural trajectory, which represents our best estimate of

the time-evolution of the neural state. The neural trajectory provides a compact rep-

resentation of the high-dimensional recorded activity as it evolves over time, thereby

facilitating data visualization and studies of neural dynamics under different exper-

imental conditions. In principle, relative to the high-dimensional recorded activity,

such a parsimonious description should bear clearer and stronger relationships with

other experimentally-imposed or measurable quantities (e.g., the presented stimulus

or the subject’s behavior; see the “bouncing ball analogy” in Yu et al., 2006).

Fig. 5.1 illustrates how such an approach may provide insights into the neural

mechanisms underlying perception, decision making, attention, and motor planning.

Fig. 5.1A considers the perceptual and decision tasks described above, in which there

are two possible percepts or choices. Applying the analytical methods developed

in this work to the activity of multiple neurons recorded simultaneously may reveal

different switching timecourses on different trials. In this example (Fig. 5.1A, lower

left), on trial 1, the subject’s percept switched from one choice to another, then back

to the first. On trial 2, the percept began to switch, stopped between the two choices,

then completed its switch. These switching timecourses can be viewed in terms of

single-neuron firing rates (Fig. 5.1A, lower right), where the two neurons are shown to
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Figure 5.1: Conceptual illustration showing how the analytical methods presented
in this work can be applied to different behavioral tasks, including those involving
perception, decision making, attention, and motor planning. The neural mechanisms
underlying these behavioral tasks may involve A: switching between two possible
percepts or decisions, B : rising to threshold, C : decaying along a single slow mode,
or D : converging to an attractor. Each panel includes icons of the relevant behavioral
tasks and brain areas (top), single-trial neural trajectories in the firing rate space of
two neurons (lower left), and corresponding firing rate profiles (both single-trial and
trial-averaged) for each neuron (lower right).

have anti-correlated firing rates. Note that these firing rate profiles are estimated by

leveraging the simultaneously-recorded spike trains across a neural population on a

single-trial basis. In this case, the timecourse obtained by averaging neural responses

across trials (gray) is not representative of the timecourse on any individual trial (red

and green traces). Beyond relating the extracted trajectory (Fig. 5.1A, lower left) to

the subject’s perceptual report or decision on a trial-by-trial basis, such trajectories

allow us to ask questions about the dynamics of switching percepts across the neural

population. For example, how long does it take to switch between one percept and

another? Does it take longer to switch in one direction than the other? Does switching

in one direction follow the same path as switching in the other direction? Can regions

in firing rate space be defined corresponding to each percept or choice? If so, what is
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the shape of these regions?

Fig. 5.1B considers a different class of dynamics: rise-to-threshold. Shadlen and

colleagues have shown that single neurons in lateral intraparietal (LIP) cortex appear

to integrate sensory evidence until a threshold is reached, at which time a decision

is made (Roitman and Shadlen, 2002). By grouping trials based on reaction time,

they found that the firing rates approached threshold more quickly on trials with

short reaction times than on trials with long reaction times. Similar effects were

found in frontal eye field prior to saccade initiation (Hanes and Schall, 1996), and

middle temporal and ventral intraparietal areas during motion detection (Cook and

Maunsell, 2002). In other words, the timecourse of the neural response differed on

nominally identical trials in all of these studies. To investigate trial-to-trial differences,

correlations were identified between single-trial estimates of firing rate and reaction

time (Roitman and Shadlen, 2002; Cook and Maunsell, 2002). However, due to the

limited statistical power in a single spike train, most analyses in these previous studies

relied on grouping trials with similar reaction times. If one is able to record from

multiple neurons simultaneously, one can then leverage the statistical power across

the neural population to more accurately estimate single-trial response timecourses.

This could potentially uncover even stronger relationships between neural activity and

behavioral measurements, such as reaction time. Fig. 5.1B shows two trials in which

the decision variable crosses threshold at similar times; thus, the subject would be

expected to show similar reaction times on these two trials. However, the timecourse

of the decision variable was quite different on each trial. On trial 1, the decision

variable rose quickly toward threshold, then headed back towards baseline (perhaps

due to contrary evidence) before finally rising to threshold. On trial 2, the decision

variable rose slowly, but steadily, toward threshold. Such subtle differences between

trials would be difficult to see based on single spike trains and would be washed out

had the neural activity been averaged across trials (Fig. 5.1B lower right, gray trace).

By leveraging simultaneous recordings across a neural population, we may be able to

uncover such effects on a single-trial basis and gain further insight into the dynamics

of decision processes1.

1While the concept of a threshold is well-defined for a single neuron, it is unclear how it generalizes
for a population of neurons. Is the decision made when any one of the neurons in the population
reaches threshold (i.e., when the neural trajectory first hits a dotted line in Fig. 5.1B, lower left)?
Or, is it the sum of the activity across the population that matters (i.e., when the neural trajectory
first hits the thick gray bar in Fig. 5.1B, lower left)? It may be possible to address such questions
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Another potential application of the methods developed in this work is to behav-

ioral tasks that involve attention, which is typically not tied to observable quantities

in the outside world. Using a GO/NOGO memory saccade task with visual dis-

tractors, Goldberg and colleagues showed that neural activity (averaged across trials

and neurons) in LIP indicates the attentionally advantaged part of the visual field

(Bisley and Goldberg, 2003). For the same stimulus (target, distractor, and probe),

the subject showed different behavioral responses (GO or NOGO) on different trials,

where the proportion of correct responses depended on the time, location, and con-

trast of the probe. If multiple neurons could be monitored simultaneously in LIP,

the methods developed in this work could be used to track the instantaneous state

of the subject’s attention on a single-trial basis, which in turn could be related to

the subject’s behavioral response. For example, it may be that the same distractor

kicks the neural state out farther on some trials (Fig. 5.1C, lower left, red trace) than

others (green trace), thereby conferring a longer-lasting attentional advantage at the

distractor (see Fig. 2 in Ganguli et al., 2008, for a detailed explanation of the state

space trajectories shown in Fig. 5.1C, lower left). Might it be possible to map out

the probability of a correct behavioral response (GO or NOGO) for different neural

states at the time of the probe? Such an approach could shed light on the dynamics

of attentional shifts between different visual locations and how it impacts behavior.

Finally, we consider the arm movement system, which serves as our experimental

testbed for exploring analytical methods for extracting single-trial neural timecourses.

We have previously shown that the across-trial variability of neural responses in

premotor cortex drops during motor preparation (Churchland et al., 2006b). This

finding suggested that single-trial neural trajectories might converge during motor

preparation, in attractor-like fashion, as illustrated in Fig. 5.1D (lower left). Although

we have previously hypothesized such a convergence of trajectories (see Fig. 1 in

Churchland et al., 2006b), we have not been able to directly view this effect due to

a lack of appropriate analytical methods for extracting trajectories on a single-trial

basis. By studying how the neural state evolves from an initially variable baseline

state toward a consistent planning state, and relating aspects of the trajectory to

the subject’s behavior, we can gain insight into how movements are prepared and

executed. While the analytical methods developed here are potentially applicable to

using the methods developed here.



CHAPTER 5. POPULATION-LEVEL ANALYSIS 64

S2

S1

N1

S2

N3

S1

N2

N1

N3

N2

Neuron 3

Neuron 2

Neuron 1

time

Noisy time series Denoised time series
Low-dimensional

time series

time

Spike trains

A DCB

Figure 5.2: Extracting a neural trajectory from multiple spike trains. A: Spike trains
recorded simultaneously from three neurons. B : The time-evolution of the recorded
neural activity plotted in a three-dimensional space, where each axis measures the
instantaneous firing rate of a neuron (e.g., N1 refers to neuron 1). C : The neural
trajectory (a “denoised” version of the trajectory in B) is shown to lie within a
two-dimensional space with coordinates S1 and S2. D : The neural trajectory can
be directly visualized in the low-dimensional space and be referred to using its low-
dimensional coordinates (S1, S2).

many different experimental settings, as exemplified in Fig. 5.1, we demonstrate the

utility of the developed methods in the context of motor preparation and execution

in this work.

For each of the examples shown in Fig. 5.1, there are ways to detect (or indirectly

view) trial-to-trial differences in the neural responses, including computing streak

indices (Horwitz and Newsome, 2001), estimating firing rates from a single spike

train (Roitman and Shadlen, 2002; Cook and Maunsell, 2002), and measuring the

across-trial variability of neural responses (Churchland et al., 2006b). In all of these

cases, however, what one really wants is a direct view of the time-evolution of the

neural response on single trials. In this report, we present analytical methods that

can extract such single-trial timecourses from neural population activity.

5.1.2 Existing Methods for Extracting Neural Trajectories

Fig. 5.2 shows conceptually how a neural trajectory relates to a set of simultaneously-

recorded spike trains. Suppose that we are recording simultaneously from three neu-

rons, whose spike trains are shown in Fig. 5.2A. Although the following ideas hold for

larger numbers of neurons, we use only three neurons here for illustrative purposes.

We define a high-dimensional space, where each axis measures the instantaneous fir-

ing rate of a neuron being monitored (Fig. 5.2B). At any given time, the activity of
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the neural population is characterized by a single point in this space. As the activity

of the neural population evolves over time, a noisy trajectory is traced out. The

goal is to extract a corresponding smooth neural trajectory that embodies only the

shared fluctuations (termed shared variability) in firing rate across the neural pop-

ulation (Fig. 5.2C ). What is discarded in this process are fluctuations particular to

individual neurons (termed independent variability), which presumably reflect noise

processes involved in spike generation that are internal to the neuron2. Due to the

correlated activity across the neural population, the neural trajectory may not ex-

plore the entire high-dimensional space; in other words, the neural system may be

using fewer degrees of freedom than the number of neurons at play. If this is true,

then we would like to identify a lower dimensional space (shown as a two-dimensional

plane denoted by grid lines in Fig. 5.2C ) within which the neural trajectory lies. The

neural trajectory can then be directly visualized in the low-dimensional space, and

be referred to equivalently using its high-dimensional (N1, N2, N3) or low-dimensional

(S1, S2) coordinates (Fig. 5.2D).

A simple way to extract neural trajectories is to first estimate a smooth firing rate

profile for each neuron on a single trial (e.g., by convolving each spike train with a

Gaussian kernel), then apply a static dimensionality reduction technique (e.g., prin-

cipal components analysis, PCA) (Nicolelis et al., 1995; Levi et al., 2005). The signal

flow diagram for these so-called two-stage methods is shown in Fig. 5.3A. Smooth

firing rate profiles may also be obtained by averaging across a small number of trials

(if the neural timecourses are believed to be similar on different trials) (Stopfer et al.,

2003; Brown et al., 2005; Mazor and Laurent, 2005; Broome et al., 2006), or by apply-

ing more advanced statistical methods for estimating firing rate profiles from single

spike trains (DiMatteo et al., 2001; Ventura et al., 2005; Cunningham et al., 2008c).

Numerous linear and non-linear dimensionality reduction techniques exist, but to our

knowledge only PCA (Levi et al., 2005; Mazor and Laurent, 2005; Nicolelis et al.,

1995) and locally linear embedding (LLE) (Stopfer et al., 2003; Brown et al., 2005;

Broome et al., 2006; Roweis and Saul, 2000) have been used to extract neural tra-

jectories. Smoothed firing rate trajectories based on pairs of simultaneously-recorded

neurons without dimensionality reduction have also been studied (Aksay et al., 2003).

2While the independent variability indeed feeds back into the network and can affect the aggregate
network state, we assume that such effects are small.
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Figure 5.3: Signal flow diagram of how neural trajectories are extracted from spike
trains using A: two-stage methods and B : Gaussian-process factor analysis (GPFA).
Whereas the smoothing and dimensionality reduction operations are performed se-
quentially with the two-stage methods (dotted box), they are performed simultane-
ously using GPFA. For the two-stage methods, smoothing can either be performed
directly on spike trains or on binned spike counts.

The two-stage methods have been fruitfully applied in studies of the olfactory sys-

tem, where the presentation of an odor sets off a timecourse of neural activity across

the recorded population. To understand how the population response varies under dif-

ferent experimental conditions (e.g., different presented odors), one could attempt to

directly compare the recorded spike trains. However, this quickly becomes unmanage-

able as the number of neurons and the number of experimental conditions increases.

Instead, a neural trajectory can be extracted for each trial condition (typically aver-

aged across a small number of trials) and compared in a low-dimensional space. This

approach has been adopted to study the population response across different odor

identities (e.g., Brown et al., 2005), concentrations (Stopfer et al., 2003), durations

(Mazor and Laurent, 2005), and sequences (Broome et al., 2006). Dynamical behav-

iors resembling fixed points (Mazor and Laurent, 2005) and limit cycles (Bathellier

et al., 2008) have also been identified. In these studies, hypotheses were generated

based on the visualized trajectories, then tested using the high-dimensional recorded

activity. Without the low-dimensional visualizations, many of these hypotheses would

have remained unposed and, therefore, untested.
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5.1.3 Methodological Advances Proposed Here

While two-stage methods have provided informative low-dimensional views of neural

population activity, there are several aspects that can be improved. (i) Because the

smoothing and dimensionality reduction are performed sequentially, there is no way

for the dimensionality reduction algorithm to influence the degree or form of smooth-

ing used. This is relevant both to the identification of the low-dimensional space, as

well as to the extraction of single-trial neural trajectories. (ii) PCA and LLE have

no explicit noise model and, therefore, have difficulty distinguishing between changes

in the underlying neural state (i.e., shared variability) and spiking noise (i.e., inde-

pendent variability). (iii) For kernel smoothing, the degree of smoothness is often

arbitrarily chosen. We would instead like to learn the appropriate degree of smooth-

ness from the data. With probabilistic methods, a principled approach would be to

ask what is the degree of smoothness that maximizes the probability of having ob-

served the data at hand. Unfortunately, kernel smoothing, PCA, and LLE are all

non-probabilistic methods, so such standard parameter-learning techniques are not

applicable. One may try to get around this problem by applying kernel smoothing, fol-

lowed by a probabilistic dimensionality reduction technique (e.g., probabilistic PCA;

Roweis and Ghahramani, 1999; Tipping and Bishop, 1999), which does assign prob-

abilities to data. However, the problem with this scheme is that these probabilities

correspond to the smoothed data (the input to the probabilistic dimensionality reduc-

tion technique), rather than the unsmoothed data (the input to the kernel smoother).

Because the smoothed data change depending on the degree of smoothness chosen,

the resulting probabilities are not comparable. (iv) The same kernel width is typi-

cally used for all spike trains across the neural population, which implicitly assumes

that the population activity evolves with a single timescale. Because we don’t know

a priori how many timescales are needed to best characterize the data at hand, we

would like to allow for multiple timescales.

In this work, we first propose extensions of the two-stage methods that can help

to address issues (ii) and (iii) above. We summarize these extensions here; details

can be found in Methods. For (ii), we explore dimensionality reduction algorithms

possessing different explicit noise models and consider the implications of the different

noise assumptions. We find that an effective way to combat spiking noise (whose
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variance may vary both across neurons and across time) is to employ the square-

root transform (Kihlberg et al., 1972) in tandem with factor analysis (FA) (Everitt,

1984). Taking the square root of the spike counts serves to approximately stabilize

the spiking noise variance. FA is a dimensionality reduction technique related to PCA

that, importantly, allows different neurons to have different noise variances. Although

non-linear dimensionality reduction techniques with explicit noise models have been

developed (for a probabilistic LLE-inspired algorithm, see Teh and Roweis, 2003),

we consider only linear mappings between the low-dimensional neural state space

and the high-dimensional space of recorded activity in this work for mathematical

tractability. For (iii), we adopt a goodness-of-fit metric that measures how well the

activity of each neuron can be predicted by the activity of all other recorded neurons,

based on data not used for model fitting. This metric can be used to compare different

smoothing kernels and allows for the degree of smoothness to be chosen in a principled

way. An advantage of this metric is that it can be applied in both probabilistic and

non-probabilistic settings. In Results, we will use this as a common metric by which

different methods for extracting neural trajectories are compared.

Next, we develop Gaussian-process factor analysis (GPFA), which unifies the

smoothing and dimensionality reduction operations in a common probabilistic frame-

work. GPFA takes steps toward addressing all of the issues (i)–(iv) described above,

and is shown in Results to provide a better characterization of the recorded popu-

lation activity than the two-stage methods. Because GPFA performs the smoothing

and dimensionality reduction operations simultaneously (Fig. 5.3B) rather than se-

quentially (Fig. 5.3A), the degree of smoothness and the relationship between the

low-dimensional neural trajectory and the high-dimensional recorded activity can be

jointly optimized. GPFA allows for multiple timescales, whose optimal values can

be found automatically by fitting the GPFA model to the recorded activity. Unlike

the two-stage methods, GPFA assigns probabilities to the unsmoothed data, which

allows the timescale parameters to be optimized using standard maximum likelihood

techniques. As with FA, GPFA specifies an explicit noise model that allows different

neurons to have different noise variances. The time series model involves Gaussian

processes (GP), which only require the specification of a parameterized correlation

structure of the neural state over time.
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A critical assumption when attempting to extract a low-dimensional neural trajec-

tory is that the recorded activity evolves within a low-dimensional manifold. Previous

studies have typically assumed that the neural trajectories lie in a three-dimensional

space for ease of visualization. In this work, we will investigate whether this low-

dimensional assumption is justified in the context of reach planning and execution. If

so, we will attempt to identify the appropriate dimensionality. Furthermore, we will

systematically compare different analytical methods for extracting neural trajectories.

We first detail the two-stage methods, GPFA, and dynamical system approaches

to extracting neural trajectories. Next, the behavioral task and the neural recordings

in premotor and motor cortices are described. We then apply the different extraction

techniques to study the dimensionality and timecourse of the recorded activity during

reach planning and execution.

Preliminary versions of this work have previously appeared (Yu et al., 2008,

2009b).

5.2 Methods

5.2.1 Two-stage Methods

The two-stage methods involve first estimating a smooth firing rate profile for each

neuron on a single trial, then applying a static dimensionality reduction technique.

For the simplest two-stage method, the firing rate estimates are obtained by convolv-

ing each spike train with a Gaussian kernel. These firing rate estimates, taken across

all simultaneously-recorded neurons, defines a trajectory in the high-dimensional

space of recorded activity (Fig. 5.2B). This trajectory is represented by a series of

datapoints (red dots in Fig. 5.2B). In the simplest case, the datapoints of many

such trajectories are then passed to PCA, which identifies the directions of greatest

variance in the high-dimensional space. The high-dimensional datapoints are then

projected into the low-dimensional space defined by the principal component axes

(conceptualized by the S1S2 plane shown in Fig. 5.2C ). The projected datapoints can

then be strung back together over time to obtain a low-dimensional neural trajectory

(Fig. 5.2D).

Although PCA is widely used and simple to apply, it is problematic when applied

to neural data because neurons with higher firing rates are known to show higher count
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Figure 5.4: Simulation comparing PCA, PPCA, and FA in the two-neuron case.
A: FA (green line) is better able to uncover the true firing rate relationship (black
line) between the two neurons than PCA / PPCA (red line). The noise-corrupted
observations (blue dots) and two SD covariance ellipse (dashed blue) are shown. B :
Leave-neuron-out model prediction for PCA (red dot labeled ‘PCA’), PPCA (red dot
labeled ‘PPCA’), and FA (green dot). Each model predicts the activity of neuron 1,
given the activity of neuron 2 (blue dot).

variability (i.e., their Poisson-like behavior) (Dayan and Abbott, 2001). Because PCA

finds directions in the high-dimensional space of greatest variance, these directions

tend to be dominated by the neurons with the highest firing rates. This is illustrated

in Fig. 5.4A using two neurons. In this simulation, the underlying firing rates of

the two neurons are perfectly correlated (black line), representing the ground truth.

What we are able to observe, however, are noise-corrupted versions (blue dots) of the

underlying firing rates, where the noise is assumed to be independent for each neuron.

These blue dots are analogous to the red dots in Fig. 5.2B. The goal is to recover the

true relationship between the activity of the two neurons (black line) using only the

noise-corrupted datapoints (blue dots). Once this relationship is identified (i.e., an

estimate of the black line), the datapoints are then projected onto the estimated line,

yielding “denoised” firing rate estimates for the two neurons. In this case, identifying

the true one-dimensional relationship between the two neurons provides a succinct

account of the noisy recorded activity.

Compared with neuron 2, neuron 1 has a higher mean firing rate and correspond-

ingly higher firing rate variability in Fig. 5.4A. The higher variability leads to an elon-

gation of the covariance ellipse (dashed blue) along the horizontal direction. When
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PCA is applied to the datapoints, the direction of highest variance (red line) is iden-

tified. Comparing the red and black lines, it is apparent that PCA provides a poor

estimate of the true firing rate relationship between the two neurons. The reason for

the mismatch is that PCA implicitly assumes that the noise variance is isotropic (i.e.,

the same for all neurons regardless of mean firing rate). PCA erroneously identifies

a direction that is biased in the direction of high noise variance, in this case along

horizontal axis corresponding to neuron 1. The same incorrect direction would be

found by probabilistic PCA (PPCA) (Roweis and Ghahramani, 1999; Tipping and

Bishop, 1999), which explicitly assumes isotropic noise3.

Here we propose to relax the assumption of isotropic noise by applying factor

analysis (FA) (Everitt, 1984) instead of PCA / PPCA. The only difference between

FA and PPCA is that FA allows for each neuron to have a different noise variance

that is learned from the data. Fig. 5.4A shows that the direction recovered by FA

(green line) is much closer to the true relationship (black line) than that recovered

by PCA / PPCA (red line). The reason is that FA does not simply seek directions

of greatest variance; rather, it seeks directions of greatest covariance while allowing

for different noise variances along the different observed dimensions.

Although FA better estimates the true firing rate relationship compared to PCA /

PPCA, there remains a problem that is common to all three techniques. In Fig. 5.4A,

the underlying firing rates (black bar) of the two neurons lie within a relatively small

range of 10 spikes per second. However, neurons can change their firing rate by many

tens of spikes per second, for example, in response to a stimulus or during movement

preparation and execution. As described above, the noise variance can therefore also

change drastically over time for a given neuron. This is problematic because PCA,

PPCA, and FA all assume that the noise variance of each neuron is fixed over time,

regardless of how the neuron’s underlying firing rate fluctuates. A possible solution is

to replace the Gaussian observation noise model of PPCA and FA with a point-process

(Smith and Brown, 2003; Truccolo et al., 2005; Yu et al., 2006) likelihood model. Such

an extension is challenging due to issues of mathematical tractability and computa-

tional complexity (Cunningham et al., 2008c). In this work, we consider a simpler

approach based on discrete time steps. The square-root transform is known to stabi-

lize the variance of Poisson-distributed counts (Kihlberg et al., 1972). By stabilizing

3PCA is the limiting case of PPCA as the noise variance goes to zero.
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the noise variance, dimensionality-reduction techniques that assume stationary noise

variance (such as PCA, PPCA, and FA) can then be applied. Because the square-root

transform only operates on count data, we propose performing the following sequence

of preprocessing operations in lieu of kernel-smoothing the spike trains directly: (i)

spike counts are taken in non-overlapping time bins, (ii) the counts are square-root

tranformed4, and (iii) the transformed counts are kernel-smoothed over time. The

resulting datapoints are then passed to PCA, PPCA, or FA.

If the spike counts were indeed Poisson-distributed and if the square-root trans-

form were able to perfectly stabilize the variance of Poisson-distributed counts, then

the use of PCA / PPCA would be justified, since the spiking noise (in the space of

smoothed, square-rooted counts) would be isotropic across different neurons and time-

points. However, spike counts of real neurons are known to deviate from a Poisson

distribution (e.g., Tolhurst et al., 1983; Churchland et al., 2006b), and the square-root

transform only approximately stabilizes the variance of Poisson-distributed counts

(Kihlberg et al., 1972). This is the case both across neurons and across timepoints.

To compensate for unequal variances across neurons, we apply FA rather than PCA

/ PPCA. In Results, we show that two-stage methods based on FA outperform those

based on PCA / PPCA.

5.2.2 Leave-neuron-out Prediction Error

There are several modeling choices to be made when extracting neural trajectories.

First, for the two-stage methods involving kernel smoothing, we would like to find the

appropriate degree of smoothness by comparing different smoothing kernel widths.

Second, for the two-stage methods, we would like to compare different dimensionality

reduction techniques (in this work, PCA, PPCA, and FA). Third, we would like to

compare the two-stage methods with GPFA. Fourth, for all two-stage methods and

GPFA, we would like to compare different dimensionalities of the low-dimensional

state space. Such a comparison would help to determine whether the high-dimensional

recorded activity can indeed be succinctly summarized by a low-dimensional neural

4Our datasets include multi-unit activity, comprising the activity of single neurons whose spike
waveforms could not be discriminated through spike sorting. We consider a multi-unit spike count to
be the summed spike counts of its constituent single neurons. Because the sum of Poisson random
variables is Poisson, we apply the square-root transform to both single- and multi-units in our
datasets.
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trajectory, and help to select the appropriate dimensionality of the low-dimensional

space.

Such modeling choices are typically made by comparing cross-validated prediction

errors (Hastie et al., 2001) or likelihoods, or by comparing Bayesian marginal likeli-

hoods (MacKay, 2003), which are often approximated using the Akaike information

criterion (AIC) or the Bayesian information criterion (BIC). There are two reasons

why the likelihood approaches are not applicable here. First, most of the two-stage

methods are partially or entirely non-probabilistic. In particular, kernel smoothing

and PCA are non-probabilistic operations. Second, even if a probabilistic dimension-

ality reduction technique (e.g., PPCA or FA) is used, the likelihoods obtained are

based on the smoothed data. When the data are altered by different pre-smoothing

operations (or not, in the case of GPFA), the likelihoods are no longer comparable.

Here, we introduce a goodness-of-fit metric by which all of the comparisons listed

above can be made.

We describe the basic idea of the metric in this section; the mathematical details

are given in Appendix D. First, we select a particular method for extracting neural

trajectories for which we want to evaluate goodness-of-fit. For the two-stage methods

using kernel smoothing, this involves specifying the smoothing kernel width and the

dimensionality reduction technique (e.g., PCA, PPCA, or FA) to be used. Next,

the model parameters are fit to the training data. For example, for the PCA-based

two-stage method, the model parameters are the principal directions and data mean

found by applying PCA to the smoothed square-rooted spike counts. Then, based on

data not used for model fitting, we leave out one neuron at a time and ask how well

the fitted model is able to predict the activity of that neuron, given the activity of

all other recorded neurons.

This leave-neuron-out model prediction is illustrated in Fig. 5.4B. Consider the

same situation with two neurons as in Fig. 5.4A. Here, we leave out neuron 1 and ask

each dimensionality reduction technique (PCA, PPCA, FA) to predict the activity

of neuron 1 based only on the activity of neuron 2 (blue dot). For PCA, this is

a simple geometric projection, yielding the red dot labeled ‘PCA’. Although PPCA

finds the same principal direction as PCA (as shown in Fig. 5.4A), it yields a different

model prediction (red dot labeled ‘PPCA’). The reason is that PPCA has an explicit

noise model, which allows deviations of neuron 2’s activity away from its mean to be
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attributed partially to noise, rather than entirely to changes in the low-dimensional

state (i.e., movement along the red line). Thus, the PPCA model prediction is more

robust to observation noise than the PCA model prediction. One can use the PPCA

intuition to understand the FA model prediction (green dot). The only difference is

that FA allows different neurons to have different noise variances. Although PPCA

and FA are shown to give nearly identical model predictions in the two-neuron case in

Fig. 5.4B, their model predictions are generally different for larger numbers of neurons

(cf. Fig. 5.5A). The same ideas can be applied to compute the model prediction for

GPFA, which incorporates the concept of time.

For all methods considered in this work, the model prediction can be computed

analytically because all variables involved are jointly Gaussian, as detailed in Ap-

pendix D. We compute a prediction error, defined as the sum-of-squared differences

between the model prediction and the observed square-rooted spike counts across all

neurons and timepoints. This prediction error can be computed for the two stage

methods (using various smoothing kernel widths and dimensionality reduction tech-

niques) and GPFA, across different choices of the state space dimensionality. The

comparisons listed at the beginning of this section can then be made by comparing

the prediction errors.

5.3 Gaussian-process Factor Analysis

In this section, we provide motivation for GPFA before describing it mathematically.

Then, we detail how to fit the GPFA model to neural data. Finally, we show how

the extracted trajectories can be intuitively visualized using an orthonormalization

procedure, and describe how this gives rise to a “reduced” GPFA model with fewer

state dimensions than timescales.

Motivation for GPFA. PCA, PPCA, and FA are all static dimensionality reduc-

tion techniques. In other words, none of them take into account time labels when

applied to time series data; the measurements are simply treated as a collection of

datapoints. In the two-stage methods, the temporal relationships among the data-

points are taken into account during kernel smoothing. There is then no explicit use

of time label information during dimensionality reduction.
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Here we propose an extension of FA that performs smoothing and dimensionality

reduction in a common probabilistic framework, which we term Gaussian-process

factor analysis (GPFA). Unlike FA, GPFA leverages the time label information to

provide more powerful dimensionality reduction for time series data. The GPFA

model is simply a set of factor analyzers (one per timepoint, each with identical

parameters) that are linked together in the low-dimensional state space by a Gaussian

process (GP) (Rasmussen and Williams, 2006) prior. Introducing the GP allows

for the specification of a correlation structure across the low-dimensional states at

different timepoints. For example, if the system underlying the time series data is

believed to evolve smoothly over time, we can specify that the system’s state should be

more similar between nearby timepoints than between faraway timepoints. Extracting

a smooth low-dimensional neural trajectory can therefore be viewed as a compromise

between the low-dimensional projection of each datapoint found by FA and the desire

to string them together using a smooth function over time.

Mathematical Description of GPFA. As with the two-stage methods, spike

counts are first taken in non-overlapping time bins and square-rooted. However,

unlike the two-stage methods, there is no pre-smoothing of the square-rooted spike

counts for GPFA, since the smoothing and dimensionality reduction are performed

together. Let y:,t ∈ IR
q×1 be the high-dimensional vector of square-rooted spike counts

recorded at timepoint t = 1, . . . , T , where q is the number of neurons being recorded

simultaneously. We seek to extract a corresponding low-dimensional latent neural

state x:,t ∈ IR
p×1 at each timepoint, where p is the dimensionality of the state space

(p < q). For notational convenience5, we group the neural states from all timepoints

into a neural trajectory denoted by the matrix X = [x:,1, . . . ,x:,T ] ∈ IR
p×T . Similarly,

the observations can be grouped into a matrix Y = [y:,1, . . . ,y:,T ] ∈ IR
q×T . We define

a linear-Gaussian relationship between the observations y:,t and neural states x:,t

y:,t | x:,t ∼ N (Cx:,t + d, R) , (5.1)

where C ∈ IR
q×p, d ∈ IR

q×1, and R ∈ IR
q×q are model parameters to be learned. As in

FA, we constrain the covariance matrix R to be diagonal, where the diagonal elements

5A colon in the subscript denotes all elements in a particular row or column. For example, x:,t

specifies all elements in the tth column of X , whereas xi,: specifies all elements in the ith row of X .
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are the independent noise variances of each neuron. In general, different neurons

can have different independent noise variances. Although a Gaussian is not strictly

a distribution on square-rooted counts, its use in Eq. 5.1 preserves computational

tractability (e.g., Wu et al., 2006).

The neural states x:,t at different timepoints are related through Gaussian pro-

cesses, which embody the notion that the neural trajectories should be smooth. We

define a separate GP for each dimension of the state space indexed by i = 1, . . . , p

xi,: ∼ N (0, Ki) , (5.2)

where xi,: ∈ IR
1×T is the ith row of X and Ki ∈ IR

T×T is the covariance matrix for the

ith GP. The form of the GP covariance can be chosen to provide different smoothing

properties on the neural trajectories. In this work, we chose the commonly-used

squared exponential (SE) covariance function

Ki(t1, t2) = σ2
f,i · exp

(
−(t1 − t2)

2

2 · τ 2
i

)
+ σ2

n,i · δt1,t2 , (5.3)

where Ki(t1, t2) denotes the (t1, t2)th entry of Ki and t1, t2 = 1, . . . , T . The SE

covariance is defined by its signal variance σ2
f,i ∈ IR+, characteristic timescale τi ∈ IR+,

and GP noise variance σ2
n,i ∈ IR+. The Kroneker delta δt1,t2 equals 1 if t1 = t2 and

0 otherwise. The SE is an example of a stationary covariance; other stationary and

non-stationary GP covariances (Rasmussen and Williams, 2006) can be applied in a

seamless way.

Because the neural trajectories X are hidden and must be inferred from the

recorded activity Y , the scale of X (defined by the Ki in Eq. 5.2) is arbitrary. In

other words, any scaling of X can be compensated by appropriately scaling C (which

maps the neural trajectory into the space of recorded activity) such that the scale

of Y remains unchanged6. To remove this model redundancy without changing the

expressive power of the model, we fix the scale of X and allow C to be learned without

constraints. By direct analogy to FA, we set the prior distribution of the neural state

x:,t at each timepoint t to be N (0, I) by fixing Ki(t, t) = 1 (however, note that the x:,t

6This can be seen mathematically in Eq. D.7, where K̄ defines the scale of X . The scale of
Y depends on the product C̄K̄C̄ ′, not on K̄ and C̄ individually. Thus, any scaling on K̄ can be
compensated by appropriately scaling C̄.
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are still correlated across different t). This can be achieved by setting σ2
f,i = 1− σ2

n,i,

where 0 < σ2
n,i ≤ 17. Because we seek to extract smooth neural trajectories, we fixed

σ2
n,i to a small value (10−3), as is often done for GPs (Rasmussen and Williams, 2006).

In Appendix D, we consider learning σ2
n,i from the data. For all analyses described in

Results, the timescale τi is the only parameter of the SE covariance that is learned.

Fitting the GPFA Model. The parameters of the GPFA model (Eqs. 5.1 and

5.2) can be fit using the commonly-used expectation-maximization (EM) algorithm

(Dempster et al., 1977). The EM algorithm seeks to fit the model parameters θ =

{C,d, R, τ1, . . . , τp} to maximize the probability of the observed data Y . In Appendix

D, we derive the EM update equations for the GPFA model. Because the neural

trajectories and model parameters are both unknown, the EM algorithm iteratively

updates the neural trajectories (in the E-step) and the model parameters (in the

M-step) while the other remains fixed. This algorithm is guaranteed to converge to

a local optimum. The E-step involves using the most recent parameter updates to

evaluate the relative probabilites of all possible neural trajectories given the observed

spikes. This Gaussian posterior distribution P (X | Y ) can be computed exactly

because the x:,t and y:,t across all timepoints are jointly Gaussian, by definition. In

the M-step, the model parameters are updated using the distribution P (X | Y ) over

neural trajectories found in the E-step. The updates for C, d, and R can be expressed

in closed form and are analogous to the parameter updates in FA. The characteristic

timescales τi can be updated using any gradient optimization technique. Note that

the degree of smoothness (defined by the timescales) and the relationship between the

low-dimensional neural trajectory and the high-dimensional recorded activity (defined

by C) are jointly optimized. Furthermore, a different timescale is learned for each

state dimension indexed by i.

Visualizing Trajectories via Orthonormalization. Once the GPFA model is

learned, we can use it to extract neural trajectories E[X | Y ] (Eq. D.6) from the

observed activity Y . These low-dimensional neural trajectories can be related to the

high-dimensional observed activity using Eq. 5.1, which defines a linear mapping C

between the two spaces. The following is one way to understand this mapping. Each

7The GP noise variance σ2

n,i must be non-zero to ensure that Ki is invertible. If σ2

n,i = 1, there
is no correlation across time and GPFA becomes FA.
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column of C defines an axis in the high-dimensional space. The ith element of x:,t

(i = 1, . . . , p) specifies “how far to go” along the axis defined by the ith column of

C. The location in the high-dimensional space corresponding to the neural state x:,t

is given by the summed contributions along each of the p aforementioned axes, plus

a constant offset d.

While the relationship between the low- and high-dimensional spaces is mathe-

matically well-defined, it is difficult to picture this relationship without knowing the

direction and scale of the axes defined by the columns of C. For example, any point

in two-dimensional space can be represented as a linear combination of arbitrary

two-dimensional vectors w1 and w2, provided that the two vectors are not scaled

versions of each other. If w1 and w2 are neither orthogonal nor of unit length, under-

standing how the two vectors are linearly combined to form different points can be

non-intuitive. Hence, points in two-dimensional space are typically referred to using

their (x, y) Cartesian coordinates. These coordinates specify how unit vectors point-

ing along the x and y axes (i.e., orthonormal vectors) should be linearly combined

to obtain different points in the two-dimensional space. This provides an intuitive

specification of points in the two-dimensional space. In GPFA, the columns of C are

not orthonormal, akin to the arbitrary w1 and w2. The following paragraphs de-

scribe how to orthonormalize the columns of C in GPFA to make visualization more

intuitive. This is akin to expressing two-dimensional points in terms of their (x, y)

Cartesian coordinates.

In the case of PCA, the identified principal directions are orthonormal, by def-

inition. It is this orthonormal property that yields the intuitive low-dimensional

visualization – i.e., the intuitive mapping between the low-dimensional principal com-

ponents space and high-dimensional data space. Although the columns of C are not

constrained to be orthonormal for GPFA, we can still obtain an intuitive “PCA-like”

mapping between the two spaces for ease of visualization. The basic idea is to find a

set of orthonormal basis vectors spanning the same space as the columns of C. This

is akin to finding the unit vectors that point along the two Cartesian axes from the

arbitrary w1 and w2, in the example above. This orthonormalization procedure does

not alter the GPFA model-fitting procedure, nor the extracted neural trajectories; it

simply offers a more intuitive way of visualizing the extracted trajectories.
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The orthornormalization procedure involves applying the singular value decompo-

sition (Strang, 1988) to the learned C. This yields C = UDV ′, where U ∈ IR
q×p and

V ∈ IR
p×p each have orthonormal columns and D ∈ IR

p×p is diagonal. Thus, we can

write Cx:,t = U (DV ′x:,t) = U x̃:,t, where x̃:,t = DV ′x:,t ∈ IR
p×1 is the orthonormalized

neural state at timepoint t. Note that x̃:,t is a linear transformation of x:,t. The or-

thonormalized neural trajectory extracted from the observed activity Y is, therefore,

DV ′ E[X | Y ]. Since U has orthonormal columns, we can now intuitively visualize

the trajectories extracted by GPFA, in much the same spirit as for PCA.

There is one other important advantage of the orthonormalization procedure.

Whereas the elements of x:,t (and the corresponding columns of C) have no par-

ticular order, the elements of x̃:,t (and the corresponding columns of U) are ordered

by the amount of data covariance explained, analogous to PCA. Especially when the

number of state dimensions p is large, the ordering facilitates the identification and

visualization of the dimensions of the orthonormalized neural trajectory that are most

important for explaining the recorded activity. The ordering is made possible by the

singular value decomposition, which specifies the scaling of each of the columns of

U in the diagonal entries of D (i.e., the singular values). If these diagonal entries

are arranged in decreasing order, then the columns of U specify directions in the

high-dimensional space in order of decreasing data covariance explained. Overall, the

orthonormalization procedure allows us to view the neural trajectories extracted by

GPFA using PCA-like intuition8. In particular, the low-dimensional axes are ordered

and can be easily pictured in the high-dimensional space. These concepts are illus-

trated in Fig. 5.2C and D, where S1 and S2 correspond to the first two dimensions

of the orthonormalized neural state x̃:,t.

Reduced GPFA. According to Eq. 5.2, each neural state dimension indexed by

i has its own characteristic timescale τi. This implies that a GPFA model with a

p-dimensional neural state possesses a total of p timescales. However, there may be

cases where the number of timescales needed to describe the data exceeds the number

of state dimensions. For example, it may be that a system only utilizes two degrees

8This orthonormalization procedure is also applicable to PPCA and FA. In fact, it is through this
orthnormalization procedure that the principal directions found by PPCA are equated with those
found by PCA. In general, the solutions found by PPCA and FA are unique up to an arbitrary
rotation of the low-dimensional space. The orthonormalization procedure resolves this ambiguity.
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of freedom (i.e., two state dimensions), but evolves over time with a wide range of

different speeds that cannot be well-captured using only two timescales. Here, we

describe a way to obtain a GPFA model whose number of timescales p exceeds the

effective state dimensionality p̃. First, a GPFA model with state dimensionality p is

fit using the EM algorithm. Next, the orthonormalization procedure described above

is applied, yielding the orthonormalized neural state x̃:,t ∈ IR
p×1. Note that, while

each dimension of x:,t possesses a single characteristic timescale, each dimension of

x̃:,t represents a mixture of p timescales. Because the dimensions of x̃:,t are ordered

by the amount of data covariance explained, we can choose to retain only the top

p̃ dimensions of x̃:,t (p̃ = 1, . . . , p) and to discard the remaining lowest dimensions.

This yields a p̃-dimensional neural trajectory for the reduced GPFA model.

5.3.1 Dynamical Systems Approaches

Another way to extract neural trajectories is by defining a parametric dynamical

model that describes how the low-dimensional neural state evolves over time. A

hidden Markov model (HMM) is a dynamical model in which the state jumps among

a set of discrete values. HMMs have been applied fruitfully to study single-trial neural

population activity in monkey frontal cortex (Seidemann et al., 1996; Abeles et al.,

1995; Gat et al., 1997), rat gustatory cortex (Jones et al., 2007), monkey premotor

cortex (Kemere et al., 2008), and songbird premotor areas (Danóczy and Hahnloser,

2006; Weber and Hahnloser, 2007). In many experimental contexts, it is desirable

to allow for a continuous-valued state, rather than one that jumps among a set of

discrete values. Even in settings where the experimental paradigm defines discrete

states (e.g., Fig. 5.1A, one state per percept or decision), there are advantages to

using continuous-valued states. Whereas a HMM would indicate when the switches

occur in Fig. 5.1A, a dynamical model with continuous-valued states would allow one

to study the details of how the switching is carried out; in particular, along what path

and how quickly. While it is always possible to define a HMM with a larger number

of discrete states to approximate a model with continuous-valued states, such an

approach is prone to overfitting and requires appropriate regularization (Beal et al.,

2002).

A commonly-used dynamical model with continuous-valued state is a first-order

linear auto-regressive (AR) model (Smith and Brown, 2003; Kulkarni and Paninski,
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2007), which captures linear Markovian dynamics. Such a model can be expressed

as a Gaussian process, since the state variables are jointly Gaussian. This can be

shown by defining a separate first-order AR model for each state dimension indexed

by i ∈ {1, . . . , p}

xi,t+1 | xi,t ∼ N
(
aixi,t, σ

2
i

)
. (5.4)

Given enough time (t→∞) and |ai| < 1, the model will settle into a stationary state

that is equivalent to Eq. 5.2 with

Ki(t1, t2) =
σ2

i

1− a2
i

a
|t1−t2|
i , (5.5)

as derived elsewhere (Turner and Sahani, 2007). The first-order AR model described

by Eqs. 5.2 and 5.5, coupled with the linear-Gaussian observation model Eq. 5.1, will

be henceforth be referred to as “LDS” (linear dynamical system). Different covariance

structures Ki can be obtained by going from a first-order to an nth-order AR model.

One drawback of this approach is that it is usually not easy to construct an nth-

order AR model with a specified covariance structure. In contrast, the GP approach

requires only the specification of the covariance structure, thus allowing different

smoothing properties to be applied in a seamless way. AR models are generally less

computationally demanding than those based on GP, but this advantage shrinks as

the order of the AR model grows. Another difference is that Eq. 5.5 does not contain

an independent noise term σ2
n,i ·δt1,t2 as in Eq. 5.3. The innovations noise σ2

i in Eq. 5.4

is involved in setting the smoothness of the time series, as shown in Eq. 5.5. Thus,

Eq. 5.4 would need to be augmented to explicitly capture departures from the AR

model.

One may also consider defining a non-linear dynamical model (Yu et al., 2006),

which typically has a richer set of dynamical behaviors than linear models. The iden-

tification of the model parameters provides insight into the dynamical rules governing

the time-evolution of the system under study. However, especially in exploratory data

analyses, it may be unclear what form this model should take. Even if an appropri-

ate non-linear model can be identified, using it to extract neural trajectories may

require computationally-intensive approximations and yield unstable model-fitting

algorithms (Yu et al., 2006). In contrast, the model-fitting algorithm for GPFA is
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stable, approximation-free, and straightforward to implement. The use of GPFA can

be viewed as a practical way of going beyond a first-order linear AR model without

having to commit to a particular non-linear system, while retaining computational

tractability.

Relative to previously proposed models in the machine learning literature, GPFA

is most similar to the semiparametric latent factor model (Teh et al., 2005), where

the GPFA model can be obtained by letting time indices play the role of inputs.

Although GPFA involves Gaussian processes and latent variables, it is quite different

from the Gaussian process latent variable model (GP-LVM) (Lawrence, 2005). The

GP-LVM uses Gaussian processes to define a non-linear relationship between the

latent and the observed variables. In that case, the GP smoothing is defined by

how close two points are in the latent space. In contrast, GPFA defines a linear

mapping between the latent and observed variables; the GP smoothing is defined

by how close two points are in time (Lawrence and Moore, 2007). GPFA is also

quite different from Gaussian process dynamical models (GPDM) (Wang et al., 2006).

Whereas GPDM extends Markovian linear AR models to the non-linear regime (while

remaining Markovian), GPFA extends to the non-Markovian regime (while remaining

linear) with arbitrary temporal covariance structures. As with GP-LVM, GPDM

defines a non-linear relationship between the latent and observed variables.

5.3.2 Delayed-reach Task and Neural Recordings

Animal protocols were approved by the Stanford University Institutional Animal Care

and Use Committee. We trained an adult male monkey (Macaca mulatta, monkey

G) to perform delayed center-out reaches for juice rewards. Visual targets were back-

projected onto a fronto-parallel screen ∼30 cm in front of the monkey. The monkey

touched a central target and fixated his eyes on a crosshair at the upper right corner of

the central target. After a center hold period of 1000 ms, a pseudo-randomly-chosen

peripheral reach target was presented at one of 14 possible locations (directions: 0, 45,

90, 135, 180, 225, 315 � ; distances: 60, 100 mm)9. After a randomly-chosen instructed

delay period, the “go” cue (signaled by both the enlargement of the reach target and

the disappearance of the central target) was given and the monkey reached to the

9Reach targets were not presented directly below the central target (i.e., direction: 270 � ) since
they would be occluded by the monkey’s hand while he is touching the central target.
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target. In the present work, we analyzed data from two experiments which differ only

in the distribution of delay periods used. Whereas experiment G20040123 used delay

periods in the range 200–700 ms, experiment G20040124 used three discrete delay

periods of 30, 130, and 230 ms. Eye fixation at the crosshair was enforced throughout

the delay period. After a hold time of 200 ms at the reach target, the monkey received

a liquid reward.

During experiments, monkeys sat in a custom chair (Crist Instruments, Hager-

stown, MD) with the head braced and the non-reaching arm strapped to the chair.

The presentation of the visual targets was controlled using the Tempo software pack-

age (Reflective Computing, St. Louis, MO). A custom photo-detector recorded the

timing of the video frames with 1 ms resolution. The position of the hand was mea-

sured in three dimensions using the Polaris optical tracking system (Northern Digital,

Waterloo, Ontario, Canada; 60 Hz, 0.35 mm accuracy), whereby a passive marker

taped to the monkey’s fingertip reflected infrared light back to the position sensor.

Eye position was tracked using an overhead infrared camera (Iscan, Burlington, MA;

240 Hz, estimated accuracy of 1 � ).
A 96-channel silicon electrode array (Cyberkinetics, Foxborough, MA) was im-

planted straddling dorsal premotor (PMd) and motor (M1) cortex in the right hemi-

sphere, contralateral to the reaching arm. Surgical procedures have been described

previously (Churchland et al., 2006b). An intra-operative photo showing the exact

location of array implantation can be found in (Batista et al., 2007). We manually

discriminated spike waveforms at the start of each session using two time-amplitude

window discriminators on each channel. Isolations were tagged as either single-unit

or multi-unit based on visual inspection of their quality during the experiment. On

this particular electrode array, we found several groups of electrodes that yielded

nearly identical (or highly similar) spike trains. While the source of this electrode

“crosstalk” is currently unclear, we speculate that it may be due to faulty electri-

cal isolation among the channels either in the pedestal connectorization, in the wire

bundle leading out of the array, or in the array iself. It is unlikely that two adjacent

electrodes recorded from the same neuron(s), given the distance between adjacent

electrodes (400 µm). We have observed such crosstalk on a few different electrode

arrays. For prosthetic decoding (e.g., of arm trajectories), this is typically not a

major concern, since it simply gives the repeated unit(s) a greater influence on the
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decoded result. For extracting neural trajectories, this is a major problem, since the

goal is to identify structure in the correlated activity across the neural population.

If two units have identical (or near identical) activity, one of the dimensions of the

neural trajectory is likely to be dedicated to describing this spurious, strong correla-

tion between the pair of units. Thus, before analyzing the data, we checked all pairs

of the 96 electrodes for crosstalk by computing the percentage of coincident spikes

(allowing for ±1 ms jitter) for each pair. Across all pairs, this yielded a clear, bimodal

distribution. On this electrode array, we found crosstalk in three electrode pairs, two

triplets, and one quadruplet. We, therefore, removed 10 of the 96 channels before any

of the analyses described in this paper were performed.

The analyses in the present work are concerned primarily with the neural activity

during the delay period. However, many of our isolations showed the strongest mod-

ulation during the movement period and/or showed weakly-modulated delay-period

activity. A single- or multi-unit was therefore only included in our analyses if (i) it

possessed tuned (p < 0.1) delay-period activity with reasonable modulation (at least

five spikes per second difference between the most and least responsive conditions),

and (ii) the delay-period firing rate averaged across all conditions was at least 20% of

the movement-period firing rate averaged across all conditions. For these assessments,

the delay-period firing rate was computed in a 200 ms window starting 150 ms after

reach target presentation, whereas the movement-period firing rate was computed in

a 300 ms window starting 100 ms before movement onset.

In total, we analyzed 784 (910) trials for experiment G20040123 (G20040124),

comprising 18 (18) single-units and 43 (44) multi-units. The distribution of re-

action times, defined as the time between the go cue and movement onset, had

mean±SD of 293±48 ms (329±54 ms). The arm movement durations were 269±40 ms

(280±44 ms). Both datasets have previously appeared (Churchland et al., 2006b).

We have explicitly chosen to analyze the same datasets here to uncover the single-trial

substrates of the trial-averaged effects reported in our previous studies.



CHAPTER 5. POPULATION-LEVEL ANALYSIS 85

5.4 Results

We considered neural data for one reach target at a time, ranging from 200 ms

before reach target onset to movement end. This period comprised the randomly-

chosen delay period following reach target onset, the monkey’s reaction time, and

the duration of the arm reach. Spike counts were taken in non-overlapping 20 ms

bins, then square-rooted10. For the two-stage methods, these square-rooted counts

were first smoothed over time using a Gaussian kernel before being passed to a static

dimensionality reduction technique: PCA, PPCA, or FA. LDS and GPFA were given

the square-rooted spike counts with no kernel pre-smoothing.

Using the goodness-of-fit metric described in Methods, we can compare different

degrees of smoothness, dimensionality reduction techniques (PCA, PPCA, and FA),

and state dimensionalities for the two-stage methods. Fig. 5.5A shows the prediction

error for PCA (dashed red), PPCA (solid red), and FA (green) across different state

dimensionalities (p =3, 5, 10, 15) with a kernel width of 50 ms. Alternatively, we can

fix the state dimensionality (p = 10 in Fig. 5.5B, p = 15 in Fig. 5.5C ) and vary the

kernel width. There are two primary findings for the two-stage methods. First, PCA,

PPCA, and FA yielded progressively lower prediction error (Wilcoxon paired-sample

test, P < 0.001). Statistical significance was assessed by looking across the 14 reach

targets; for each reach target, we obtained the prediction error for each method at

its optimal state dimensionality and kernel width. FA outperforms PCA and PPCA

because it allows different neurons to have different noise variances. Recall that

prediction errors were evaluated based on data not used for model-fitting (i.e., cross-

validated), so this result cannot simply be due to FA having more parameters. PCA

has the worst performance because it has no explicit noise model and is, therefore,

unable to distinguish between changes in the underlying neural state and spiking

noise. Second, for these data, the optimal smoothing kernel width was approximately

40 ms for both PPCA and FA, as indicated by Fig. 5.5B and C.

The same metric can be used to compare the two-stage methods with LDS and

GPFA. As indicated in Fig. 5.5, LDS (blue) yielded lower prediction error than the

two-stage methods (Wilcoxon paired-sample test, P < 0.001). Furthermore, GPFA

10All major trends in Fig. 5.5 were preserved without the square-root transform. We also consid-
ered smoothing spike trains directly (i.e., without binning) for the two-stage methods, which yielded
nearly identical results as smoothing (non-square-rooted) spike counts. In the present work, the
spikes are binned because it allows the square-root transform to be used, as described in Methods.
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Figure 5.5: Prediction errors of two-stage methods (PCA, dotted red; PPCA, solid
red; FA, green), LDS (blue), GPFA (dashed black), and reduced GPFA (solid black),
computed using 4-fold cross-validation. A: Prediction errors for different state dimen-
sionalities. For two-stage methods, prediction errors shown for 50 ms kernel width
(s.d. of Gaussian kernel). For reduced GPFA, the horizontal axis corresponds to p̃
rather than p, where the prediction error is computed using only the top p̃ orthonor-
malized dimensions of a GPFA model fit with p = 15. Star indicates minimum of
solid black curve. Denser sampling of kernel widths shown for B : p = 10 and C :
p = 15. Note that the dashed and solid black lines are overlaid in C, by definition.
Analyses in this figure are based on 56 trials and q = 61 units for the reach target at
distance 100 mm and direction 45 � . Experiment G20040123.

(dashed black) outperformed LDS and the two-stage methods (Wilcoxon paired-

sample test, P < 0.001). As above, statistical significance was assessed by looking

across the 14 reach targets; for each reach target, we obtained minimum prediction

error for each method (LDS and GPFA) at its optimal state dimensionality. The

prediction error was further reduced by taking only the top p̃ orthonormalized state

dimensions of a GPFA model fit with p = 15 (reduced GPFA, solid black). Among the

methods for extracting neural trajectories compared in this work11, reduced GPFA

produced the lowest prediction error (Wilcoxon paired-sample test, P < 0.001). Fur-

ther insight regarding the performance of the reduced GPFA model is provided below.

Based only on Fig. 5.5, it is difficult to assess the benefit of GPFA relative to

11For comparison, one may also consider computing the prediction error using the trial-averaged
neural responses from the training data. However, trial-averaging is only possible if the experimental
timing is identical on different trials. For the data being analyzed here, across-trial averaging is not
possible because different trials have different delay periods, reaction times, and arm movement
durations.
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Figure 5.6: Neural trajectories for GPFA with p = 15. Each panel corresponds to
one of the 15 dimensions of the neural state, which is plotted versus time. The neural
trajectory for one trial comprises one black trace from each panel. Dots indicate
time of reach target onset (red), go cue (green), and movement onset (blue). Due to
differing trial lengths, the traces on the left/right half of each panel are aligned on
target/movement onset for clarity. However, the GPFA model was fit using entire
trials with no gaps. Note that the polarity of these traces is arbitrary, as long as it
is consistent with the polarity of C. Each trajectory corresponds to planning and
executing a reach to the target at distance 100 mm and direction 45 � . For clarity,
only 10 randomly-chosen trials with delay periods longer than 400 ms are plotted.
Experiment G20040123, q = 61 units.

competing methods in terms of percent improvement in prediction error. The reason

is that we don’t know what the theoretical lower limit on the prediction error is

for real neural data. It would be incorrect to compute the percent improvement in

terms of distance from zero error. Thus, we performed a simulation (described in

Appendix D and Fig. D.2) in which the error floor can be computed. Based on this

error floor (which was far above zero), we found that GPFA provided tens of percent

improvement in prediction error relative to the best two-stage method. This suggests

that GPFA may have a similar percent improvement for the real neural data shown

in Fig. 5.5.

Fig. 5.6 shows the neural trajectories E[X | Y ] (Eq. D.5) extracted by GPFA

with p = 15. Each panel corresponds to a different neural state dimension, which

evolves over time according to its own characteristic timescale τi that is learned from

the data. For example, the timescales for the first five dimensions in Fig. 5.6 are
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Figure 5.7: Orthonormalized neural trajectories for GPFA with p = 15. These are the
same 10 trials shown in Fig. 5.6. Each panel corresponds to one of the 15 dimensions of
the orthonormalized neural state, which is plotted versus time. The orthonormalized
neural trajectory for one trial comprises one black trace from each panel. Note that
the polarity of these traces is arbitrary, as long as it is consistent with the polarity of
U . Figure conventions identical to those in Fig. 5.6.

54, 160, 293, 173, and 111 ms. Although we’ve obtained a substantial reduction

in dimensionality in going from the 61-dimensional recorded neural responses to the

15-dimensional neural trajectories, it is still difficult to gain intuition about how

the neural responses are evolving over time based solely on Fig. 5.6, for two reasons.

First, the dimensions of the neural state are not ordered; thus, we don’t know whether

certain state dimensions are more important than others for explaining the activity

across the neural population. Second, although each state dimension corresponds to a

column of C, one cannot readily picture how the low-dimensional neural trajectories

would appear if mapped out into the high-dimensional space using Eq. 5.1. The

reason is that the columns of the learned C may have different scalings and are not

guaranteed to be mutually orthogonal.

These difficulties can be overcome by applying the orthonormalization procedure

described in Methods based on the singular value decomposition of C. The resulting

orthonormalized neural trajectories are shown in Fig. 5.7, where each panel corre-

sponds to an orthonormalized state dimension and involves a mixture of timescales.

Importantly, the panels are arranged in decreasing order of data covariance explained.

This ordering is apparent in Fig. 5.7 if one considers range of values explored by the
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orthonormalized neural trajectory along each of its dimensions. The top orthonor-

malized dimensions indicate fluctuations in the recorded population activity shortly

after target onset (red dots) and again after the go cue (green dots). Furthermore, the

neural trajectories around the time of the arm movement are well-aligned on move-

ment onset. These observations are consistent with previous analyses of the same

data (Churchland et al., 2006b), as well as other studies of neural activity collected

during similar tasks in the same cortical areas. Note that the neural trajectories in

Fig. 5.7 are remarkably similar (but not identical) on different trials, even though (i)

the spike timing differs across repeated trials, and (ii) there is no constraint built into

GPFA requiring that neural trajectories should trace out similar paths on different

trials. The orthonormalized dimensions x̃1,: and x̃2,: are analogous to S1 and S2, re-

spectively, in Fig. 5.2. Unlike in Fig. 5.2D where the trajectory is plotted in the space

of S1 versus S2, each orthonormalized dimension is plotted versus time in Fig. 5.7 to

show more than just the top two (or three) dimensions.

The range of values explored by the trajectories in each orthonormalized dimen-

sion is analogous to the variance explained by each principal component in PCA.

A common way to estimate the data dimensionality with PCA is to look for an

“elbow” in the residual variance curve. Such an “elbow”, if it exists, is typically

considered to separate the signal dimensions from the noise dimensions. Similarly,

we can obtain a rough estimate of the data dimensionality with GPFA by counting

the number of top orthonormalized dimensions showing “meaningful” time-varying

structure in Fig. 5.7. While the top six dimensions show strong temporal structure, it

is unclear by eye whether the lower dimensions are needed to describe the population

response. The number of “meaningful” dimensions can be rigorously quantified by

computing the prediction error based only on the top p̃ orthonormalized dimensions

(reduced GPFA), as described in Methods. In Fig. 5.5A (solid black), we found that

the prediction error continued to decrease as more orthonormalized dimensions (x̃1,:,

x̃2,:, . . . ) were included, up to x̃10,:. This indicates that dimensions x̃1,: to x̃10,: contain

meaningful structure for explaining the population reponse. Beyond x̃10,:, adding ad-

ditional dimensions increased the prediction error, indicating that the weak temporal

structure seen in these lowest orthonormalized dimensions is primarily “noise”. Thus,

the solid black line reaches its minimum at p̃ = 10 (referred to as p∗). By definition,

the solid and dashed black lines coincide at p̃ = 15.
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Fig. 5.5A also shows that prediction error using only the top 10 orthonormalized

dimensions (solid black, p̃ = 10) is lower than that obtained by directly fitting a

GPFA model with a 10-dimensional neural state (dashed black, p = 10). This can

be understood by recalling that each panel in Fig. 5.7 represents a mixture of 15

characteristic timescales. Thus, the top 10 orthonormalized dimensions can make use

of up to 15 timescales. In contrast, a GPFA model fit with p = 10 can have at most 10

timescales. By fitting a GPFA model with a large number of state dimensions p (each

with its own timescale) and taking only the top p̃ = p∗ orthonormalized dimensions,

we can obtain neural trajectories whose effective dimensionality is smaller than the

number of timescales at play.

Based on the solid black line in Fig. 5.5A we consider the effective dimensionality

of the recorded population activity to be p∗ = 10. In other words, the linear subspace

within which the recorded activity evolved during reach planning and execution for

this particular target was 10-dimensional. Across the 14 reach targets, each considered

separately, the effective dimensionality ranged from 8 to 12, with a mode of 10. All

major trends seen in Fig. 5.5 were preserved across all reach targets.

Having developed a method for extracting low-dimensional neural trajectories

that yields lower prediction error than existing methods, we would like to apply it

to study neural population activity on a trial-by-trial basis. We previously showed

that the across-trial neural variability decreased during reach planning (Churchland

et al., 2006b), which led to the conception that the underlying neural trajectories

(indexing the process of motor planning) may be converging over time. However, this

effect could only be inferred indirectly by collapsing over many neurons and trials.

Using the methods described in the present work, we can now track the progress of

motor planning on single trials and directly view their convergence over time. Fig. 5.8

shows neural trajectories plotted in the space of the top three orthonormalized state

dimensions (corresponding to the first three panels of Fig. 5.7). The extent to which

these trajectories converged during reach planning can be quantified by comparing

the spread of neural states at target onset (red dots) to that at the go cue (green

dots). These spreads are described by the covariance ellipsoids about the scatter

of neural states at each of these timepoints, shown as shaded ellipses in Fig. 5.8.

Formally, we computed the volume of the covariance ellipsoid, defined by the square

root of the determinant of the covariance matrix. To compare the spreads at two



CHAPTER 5. POPULATION-LEVEL ANALYSIS 91

-1

0

1

0

1

-1

0

1

x̃1,t

x̃
3
,t

x̃2,t

time

Target onset

Go cue

Movement onset

Figure 5.8: Top three dimensions of orthonormalized neural trajectories for GPFA
with p = 15. Each gray trace corresponds to a single trial (same 10 trials as in
Figs. 5.6 and 5.7). Small gray dots are timepoints separated by 20 ms. Larger
dots indicate time of reach target onset (red), go cue (green), and movement onset
(blue). Ellipses (two SD around mean) indicate the across-trial variability of neural
state at reach target onset (red shading), go cue (green shading), and movement
onset (blue shading). These ellipses can be obtained equivalently in two ways. One
can either first project the neural states from the optimal 10-dimensional space into
the three-dimensional space shown, then compute the covariance ellipsoids in the
three-dimensional space; or, one can first compute the covariance ellipsoids in the 10-
dimensional space, then project the ellipsoids into the three-dimensional space. The
covariance ellipsoids were computed based on all 45 trials with delay periods longer
than 400 ms for this reach target.

different timepoints, we took the ratio of volumes of the two covariance ellipsoids.

We computed the ratio of volumes using the top p∗ orthonormalized dimensions (in

this case, 10), rather than just the top three orthonormalized dimensions shown in

Fig. 5.8. It is essential to compute volumes (and perform other analyses) in the space

of optimal dimensionality p∗, since important features of the trajectories can be lost

by using only a subset of its dimensions. To compare this result across different reach

targets which may have different p∗, we then took the p∗th root of this ratio to obtain

a “ratio per dimension”. Only trials with delay periods longer than 400 ms, for which

there is enough time for the motor planning process to come to completion, were

included in this analysis.

For the reach target considered in Figs. 5.7 and 5.8, the ratio per dimension from
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target onset to the go cue was 1.3412. Across the 14 reach targets, the ratio per dimen-

sion was 1.31±0.13 (mean±SD). The mean of this distribution was larger than unity

(one-sided t-test, P < 0.001), indicating that the neural state converged during reach

planning. From the go cue (green dots) to movement onset (blue dots), the neural

state further converged (one-sided t-test, P < 0.001), a finding that is also consistent

with (Churchland et al., 2006b). In this case, the ratio per dimension was 1.17±0.14

(mean±SD) across the 14 reach targets. Since the columns of U are orthonormal, the

same volumes can be obtained by first mapping the neural trajectories into the high-

dimensional space using U (yielding denoised high-dimensional data) and computing

the volumes there. Because firing rates and the associated spiking noise variances tend

to rise after target onset (Churchland et al., 2006b), the spread of raw spike counts

(with no smoothing or dimensionality reduction) in the high-dimensional space at the

time of the go cue would be larger than that at the time of target onset.

Previous reports have shown that reaction times tend to be shorter on trials with

longer delay periods, suggesting that some time-consuming motor preparatory pro-

cess is given a head-start during the delay (Riehle and Requin, 1989; Crammond and

Kalaska, 2000; Churchland et al., 2006b). In these studies, evidence is provided by

the trial-averaged response of single neurons, or a one-dimensional timecourse (e.g.,

the average firing rate or the Fano factor) collapsed across the neural population .

The methods presented in this work allow us view such effects in a multi-dimensional

neural state space on single trials. We applied GPFA to a dataset with three dis-

crete delay periods of 30, 130, and 230 ms. With these short delay periods, we can

visualize the effect of the go cue arriving at different times during the early stages

of motor preparation. The GPFA model with p = 15 was fit to trials of all delays

periods together. Fig. 5.9 shows the extracted orthonormalized neural trajectories

with trials grouped by delay period. Recall that the orthonormalized dimensions are

ordered; within each row, the panels are arranged in decreasing order of data covari-

ance explained. The panels in the first column (x̃1,:) appear to be largely capturing

the movement-related neural activity (the ramp to the right of the green dots). The

panels in the second column (x̃2,:, left dotted box) suggest that, prior to movement

12If computed improperly using only the top three orthonormalized dimensions rather than the
top p∗ orthonormalized dimensions, the ratio per dimension would be 1.01. In other words, there is
nearly no decrease in volume between the spread of the red dots and that of the green dots in the
top three orthonormalized dimensions shown in Fig. 5.8.
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Figure 5.9: Orthonormalized neural trajectories for trials with discrete delay periods
of 30 ms (top row), 130 ms (middle row), and 230 ms (bottom row). The red traces in
the top row correspond to a single trial with an outlying reaction time (reaction time:
844 ms, trial ID 68). The top five orthonormalized dimensions of a GPFA model
fit with p = 15 are shown for each delay period; the remaining orthonormalized
dimensions are qualitatively similar to dimensions 6 to 15 in Fig. 5.7. Dotted boxes
highlight the second and fourth orthonormalized dimensions, which are referred to in
Results. For clarity, only ten randomly-chosen trials of each delay period are plotted,
aligned on target onset. All trials shown correspond to the reach target located at
distance 100 mm and direction 45 � . Figure conventions are otherwise identical to
those in Fig. 5.6. There is a small amount of temporal jitter in the green points due
to the refresh rate of the visual display projector. Experiment G20040124, q = 62
units.

onset, the orthonormalized neural state must move from a baseline state (red dots)

to a state appropriate for movement (blue dots) along this dimension. With a 30 ms

delay period, nearly the entire traversal from baseline state to movement state occurs

after the go cue (green dots). In contrast, with a 230 ms delay, the neural state per-

forms part of the traversal during the delay period and appears to hold while waiting

for the go cue. When the go cue arrives, the remainder of the traversal is carried

out. If there is a limit on how quickly firing rates (and therefore the neural state) can

change over time, then one would expect the reaction times (i.e., the time between

the green and blue dots) to be longer for the 30 ms delays than the 230 ms delays.

Indeed, we found that the reaction times for the 30 ms delays were greater than those

for the 230 ms delays (p < 0.01, t test) (Churchland et al., 2006b). Comparing the
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panels in the fourth column (x̃4,:, right dotted box), the neural state appears to trace

out a similar path along that orthonormalized dimension following target onset, re-

gardless of when the go cue arrives. Kalaska and colleagues (Crammond and Kalaska,

2000) have previously reported single PMd neurons with similar response properties,

whereby a phasic response was only emitted after the first signal with instructional

value in reaction-time (analogous to 30 ms delay) and instructed-delay (analogous

to 230 ms delay) reach trials. The phasic response was interpreted as information

processing that would not need to occur after the go cue if given enough time to be

carried out during the delay period. Although we cannot rule out that the “phasic

response” seen in the fourth column of Fig. 5.9 is primarily a sensory response (to the

appearance of the reach target) rather than motor processing, such visualizations pro-

vide invaluable intuition for the recorded activity and suggest tantalizing hypotheses

that can be further investigated in future studies.

The methods developed here provide a concise summary of the activity recorded

across a neural population on a single trial. By extracting such a summary (i.e.,

the neural trajectory) for each trial, we can readily compare how the neural activity

observed on one trial differs from that observed on other trials, and possibly link

such differences to the subject’s behavior. Such a comparison would be onerous

based solely on the raw spike trains recorded simultaneously from tens to hundreds

of neurons. The power of this approach is illustrated in Fig. 5.9. Among the trials

with 30 ms delay, one particular trial was readily identified as an outlier, whose whose

neural trajectory (red traces) appeared very different from the trajectories on other

trials. Note that the visualization is extracted from neural activity alone, with no

experimental timing or behavioral information provided. Can we relate this outlying

trajectory to the subject’s behavior? Indeed, when we labeled the neural trajectories

with experimental timing markers (red, green, and blue dots), it became clear that

the reaction time (i.e., the time between the green and blue dots) on the outlying trial

was much longer than on the other trials. However, the neural activity around the

time of the arm movement on the outlying trial matched well with that on the other

trials (seen by aligning the trajectories in time based on the blue dots). This neural

activity is presumably related to generating the arm movement and it is, therefore,

sensible that it is time-locked to movement onset (blue dots). Such visualizations are

invaluable when screening large volumes of neural data and during exploratory data
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analyses. While this outlying trial provides a particularly illustrative example of how

differences in the neural trajectories can be indicative of differences in single-trial

behavior, we hope to relate more subtle properties of the neural trajectories to the

subject’s behavior in future studies.

5.5 Discussion

In this work, we have extended existing two-stage methods and developed a new

method (GPFA) for extracting single-trial neural trajectories from neural population

activity. For the two-stage methods, we introduced (i) dimensionality reduction tech-

niques PPCA and FA, which explicitly account for spiking noise, (ii) the square-root

transform, which approximately stabilizes the spiking noise variance across neurons

and across time, and (iii) a goodness-of-fit metric, which allows for the degree of

smoothing to be chosen in a principled way and for different extraction methods to

be objectively compared. We then presented GPFA, which unifies the smoothing and

dimensionality reduction operations in a common probabilistic framework without

any loss in predictive power compared to the best two-stage method. We applied

these methods to neural activity recorded during a delayed-reach task in premotor

and motor cortices. We found that (i) the 61-dimensional recorded activity could be

succinctly captured by neural trajectories that evolve within a far lower dimensional

(8 to 12-dimensional) space, (ii) the single-trial trajectories converged over time dur-

ing motor planning, an effect which was shown indirectly by previous studies, and

(iii) properties of the trajectories could be related to the subject’s behavior on a

single-trial basis.

One of the advantages of GPFA over the two-stage methods is that the degree of

smoothing (defined by the characteristic timescales τi) and the relationship between

the low-dimensional neural trajectory and the high-dimensional recorded activity (de-

fined by C in Eq. 5.1) can be jointly optimized. For the two-stage methods, the

relationship between the low- and high-dimensional spaces is optimized given that

the neural data have already been pre-smoothed in some way (e.g., using a Gaussian

kernel with a pre-determined kernel width). This suggests a “brute force” approach

to joint optimization by pre-smoothing the neural data in different ways, then op-

timizing the relationship between the two spaces in each case. However, the brute
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force approach can only be carried out if the search space of different ways to pre-

smooth the neural data is not too large. For example, allowing each neuron to have

its own smoothing kernel width would only be tractable for small numbers of neu-

rons. In Fig. 5.5B and C (red and green lines), we were able to carry out this brute

force search for the two-stage methods by assuming that all neurons have the same

smoothing kernel width, effectively collapsing 61 parameters down to one parameter.

Despite this brute force approach to joint optimization and restricting all neurons

to the same smoothing kernel width, the best two-stage method (FA with a 40 ms

smoothing kernel width) was able to extract neural trajectories that look qualitatively

similar to those extracted by GPFA, shown in Figs. 5.7–5.9. It is reassuring that dif-

ferent methods produce similar trajectories when applied to the same data. However,

when compared quantitatively, the best two-stage method still yielded higher predic-

tion error than GPFA (Fig. 5.5). It remains to be seen how important this difference

in prediction error is in terms of one’s ability to relate features of the neural trajec-

tories to the subject’s behavior. The leave-neuron-out prediction error is a general

and fundamental criterion for measuring how well a neural trajectory captures the

correlated firing rates across a neural population. Depending on the goals of the visu-

alization and scientific questions being asked, there may be other reasonable criteria

for comparing different methods for extracting neural trajectories.

It is tempting to try to relate the smoothing kernel width (40 ms) of the best

two-stage method to the timescales τi learned by GPFA, since the SE covariance has

the same shape as the Gaussian smoothing kernel. However, as shown in Fig. D.1,

nearly all of the timescales learned by GPFA are greater than 40 ms. This apparent

mismatch can be understood by considering the equivalent kernel of the SE covariance

(Sollich and Williams, 2005), which takes on a sinc-like13 shape whose main lobe is

generally far narrower than a Gaussian kernel with the same width parameter. It is

therefore reasonable that the timescales learned by GPFA are larger than the optimal

smoothing kernel width.

Because only the GP covariance structure needs to be specified, GPFA is particu-

larly attractive for exploratory data analyses, where the rules governing the dynamics

of the system under study are unknown. Based on the trajectories obtained by GPFA,

one can then attempt to define an appropriate dynamical model that describes how

13The sinc function is defined as sinc(x) = sin(x)/x.
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the neural state evolves over time. Such an approach will allow us to reexamine,

and potentially advance, the dynamical systems approach we have previously pro-

posed (Yu et al., 2006). Compared with the two-stage methods, the choice of GP

covariance allows for more explicit specification of the smoothing properties of the

low-dimensional trajectories. This is important when investigating (possibly subtle)

properties of the system dynamics. For example, one may wish to ask whether the

system exhibits second-order dynamics by examining the extracted trajectories. In

this case, it is critical that second-order effects not be built-in by the smoothness

assumptions used to extract the trajectories. With GPFA, it is possible to select a

triangular GP covariance that assumes smoothness in position, but not in velocity.

In contrast, it is unclear how to choose the shape of the smoothing kernel to achieve

this in the two-stage methods.

Whether a two-stage method or GPFA is used to extract neural trajectories, one

should critically evaluate the assumptions made by the extraction method before using

it to answer scientific questions. No method is assumption-free and one must verify

that the assumptions made by the method are not trivially producing the observed

effect (e.g., when studying second-order dynamics). This often requires looking at

the same data with related methods that apply different assumptions to see if the

observed effect holds up. Even with the same data, different scientific questions

may call for the use of different methods. Examples of such assumptions include the

choice of smoothing kernel or GP covariance, the use of the square-root transform, the

observation noise model, the linear mapping between the low- and high-dimensional

spaces14, and edge effects when estimating finite-duration neural trajectories. To

avoid possible artifacts introduced by the extraction method, one may consider first

generating hypotheses by visualizing the low-dimensional neural trajectories, then

testing the hypotheses using the raw high-dimensional recorded activity (e.g., Mazor

and Laurent, 2005). While this approach is in principle “safer”, the high-dimensional

recorded activity is noisy and may mask subtle relationships that are only revealed

in the (denoised) low-dimensional neural trajectories.

While being mindful of these caveats, based on our findings described in this

14PCA, PPCA, FA, and GPFA all assume a linear relationship between the low-dimensional
state space and the high-dimensional space of square-rooted spike counts. However, because the
square-root transform is a non-linear operation, the identified manifold is non-linear in the original
high-dimensional space of firing rates (or raw spike counts).
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report, we believe that the GPFA framework offers better single-trial characterization

of population activity and greater flexibility for testing different scientific hypotheses

relative to competing methods. Given a new dataset with neural activity recorded

simultaneously across a neural population, we suggest taking the following steps to

extract and visualize single-trial neural trajectories:

1. Signal conditioning: identify and remove electrode channels with crosstalk (see

Methods), then spike sort remaining channels.

2. Apply square-root transform to binned spike counts.

3. Fit the parameters of the GPFA model using the EM algorithm, as detailed in

Appendix D.

4. Using these parameters, extract neural trajectories E[X | Y ] (Eq. D.6) from the

observed activity Y .

5. Apply the orthonormalization procedure described in Methods to the neural

trajectories. This step is critical for visualization, as it orders the dimensions

of the low-dimensional trajectory by the amount of data covariance explained.

6. Plot each dimension of the orthonormalized neural trajectory versus time, as in

Fig. 5.7. These timecourses should be inspected for qualitative agreement with

prior analyses of the same or related datasets. For example, one may expect

firing rates, and therefore the neural state, to change shortly after stimulus

presentation. A rough estimate of the data dimensionality can be obtained

by counting the number of orthonormalized dimensions showing time-varying

structure; the data dimensionality can be formally computed using the leave-

neuron-out prediction error described in Methods.

7. Plot the top three (or any three) dimensions of the orthonormalized neural

trajectories in a three-dimensional state space, as in Fig. 5.8.

Taken together, we consider steps 2 through 7 to be part of the GPFA framework

for extracting and visualizing neural trajectories. Step 1 is necessary “best practices”

when asking scientific questions about electrode array data.

For visualization in three dimensions, Fig. 5.5 shows that it is still better to fit a

GPFA model with a large number of state dimensions (in this case, p = 15) and take
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the top three orthonormalized dimensions, rather than to fit a GPFA model directly

with p = 3. This allows the neural trajectories to make use of a large number of

timescales, rather than just three timescales. While such a visualization is intuitively

appealing, it is only able to show three selected dimensions and, therefore, may be

missing important structure contained in the dimensions not plotted. This can be

partially overcome by plotting different sets of three dimensions, but we are seeking

better ways to visualize higher-dimensional trajectories.

The ability of the methods developed here to concisely summarize the neural

events on a single trial offers a powerful tool for studying the timecourse of neural

population activity. We intend to apply these methods to data recorded during other

behavioral tasks and in other brain areas, as schematized in Fig. 5.1. This is enabled

by the development and increasing adoption of large-scale neural recording technolo-

gies, including multi-electrode arrays and optical imaging techniques. Such analyses

should provide insights into the neural mechanisms underlying cognitive processes

(such as perception, decision making, attention, and motor planning), which are not

directly yoked to observable quantities in the outside world and whose timecourse may

differ substantially from trial to trial. More generally, these methods can be applied in

experimental settings with no trial structure, for example in freely behaving animals

(Jackson et al., 2007; Santhanam et al., 2007; Eliades and Wang, 2008; Chestek et al.,

2009). In such settings, traditional data analysis methods relying on trial-averaging

are not applicable. Instead, if large-scale neural recordings are available, the meth-

ods presented here can be applied to track the subject’s instantaneous neural state

during a recording session15. Another potential application of the developed methods

is in studies of learning. While analyzing the activity of single neurons can detect

the presence of learning in neural activity, it is often unclear how the activity across

a neural population is changing during the learning process and why such changes

might be advantageous. By tracking the subject’s instantaneous neural state using

the methods developed here, we may be able to further our understanding of the

neural mechanisms underlying learning.

15Due to computational considerations (cf. Appendix D), it may be desirable to segment a record-
ing session into multiple non-overlapping intervals before applying GPFA. The methods presented
here can then be applied unchanged, even though the segments are not multiple realizations of an
experimental trial.
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Several extensions to the GPFA methodology can be envisaged. It may be pos-

sible to (i) couple the covariance structure of the one-dimensional GPs, which would

provide for a richer description of the multidimensional neural state x:,t evolving

over time, (ii) apply non-stationary GP covariances, since the neural activity can

be non-stationary, (iii) allow for non-linear relationships between the low- and high-

dimensional spaces, and (iv) incorporate point-process likelihood models (Truccolo

et al., 2005; Cunningham et al., 2008c) with appropriate stimulus and spike history

dependence.
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Connecting Part I to Part II

At a high level, the reader can take away three messages from this first part. First,

from Chapter 2 we saw that algorithmic developments can improve neural signal pro-

cessing both in terms of performance and in terms of offering features unavailable in

classic methods. We applied this method to motor cortical data. Second, we saw in

Chapters 3 and 4 that this algorithmic research can compel computational research,

and further this computational research can lead to nonneuroscientific findings of

significant interest. Thirdly, Chapter 5 advanced from these developments to create

a new method, GPFA, that allows visualization and analysis of populations of mo-

tor cortical neurons on single experimental trials. We used this method to uncover

features of motor cortical processing that had only been seen indirectly in previous

studies (convergence of across-trial variability during motor planning), and we showed

that these single trial trajectories can be related to physical behavior on single trials.

There remains an important question about what new features of the brain we

have discovered based on these methods. While this question is of critical scientific

importance, I defer that discussion to the final concluding chapter - Chapter 9. What

has certainly been accomplished in this part is that algorithms have been carefully

and tractably designed that allow better processing of neural signals and the ability

to look more deeply into population-level neural signals on single experimental trials.

In the coming part - Part II - we turn to the applied question of neural prosthetic

system design. As described in Chapter 1, neural prosthetic systems are engineered

to extract signals from the brain and process those signals to provide useful control

signals for a prosthetic device. Preliminary work has shown exciting proofs of con-

cept, but the field has not yet delivered a clinically viable system. Thus, it is of

critical biomedical importance to investigate opportunities for improving the ability

of these systems to decode useful control signals from cortex. Chapter 6 introduces
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an algorithm that delivers significant performance improvement in a communications

prosthesis. Chapter 7 then turns back to the question of estimating neural firing rates

and asks whether or not these signal processing methods are relevant for neural pros-

thetic system design. Several methods are reviewed and then tested on experimental

data to show that firing rate estimation is likely not a source of major performance

improvement for prosthetic system design. This somewhat surprising finding natu-

rally raises the question: what is important for prosthetic system design? Chapter 8

discusses several features of prosthetic system design and argues that additional re-

search in some features will, and in some features will not, produce meaningful future

performance improvements.

Taken together, Part II develops an algorithm that improves prosthetic perfor-

mance, finds an aspect of system design that, despite a preponderance of research in

this area, does not offer significant improvements, and finally points to features of sys-

tem design that may result in future performance improvements. Following this part,

Chapter 9 concludes and points to exciting opportunities for the future directions of

this work.
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Neural Prosthetic Systems
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Chapter 6

Toward Optimal Target Placement

for Neural Prosthetic Devices

Moving prosthetic systems towards clinical viability requires performance improve-

ments in a number of domains. We first describe here an algorithm that offers im-

provement in design of particular types of neural prosthetic systems. Neural prosthe-

ses have been designed to estimate continuous reach trajectories (motor prostheses)

and to predict discrete reach targets (communication prostheses). In the latter case,

reach targets are typically decoded from neural spiking activity during an instructed

delay period, before the reach begins. Such systems use targets placed in radially

symmetric geometries, independent of the tuning properties of the neurons available.

Here we seek to automate the target placement process and increase decode accu-

racy in communication prostheses by selecting target locations based on the neural

population at hand. Motor prostheses that incorporate intended target information

could also benefit from this consideration. We present an optimal target placement

algorithm that approximately maximizes decode accuracy with respect to target lo-

cations. In simulated neural spiking data fit from two monkeys, the optimal target

placement algorithm yielded statistically significant improvements up to 8 and 9%

for two and sixteen targets, respectively. For four and eight targets, gains were more

modest, as the target layouts found by the algorithm closely resembled the canonical

layouts. We trained a monkey in this paradigm and tested the algorithm with exper-

imental neural data to confirm some of the results found in simulation. In all, the

algorithm can serve not only to create new target layouts that outperform canonical
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layouts, but it can also confirm or help select among multiple canonical layouts. The

optimal target placement algorithm developed here is the first algorithm of its kind,

and it should both improve decode accuracy and help automate target placement

for neural prostheses. This work, which has been published as Cunningham et al.

(2008b), was done jointly with Byron Yu, Vikash Gilja, Stephen Ryu, and Krishna

Shenoy.

6.1 Introduction

Most neural prostheses (motor prostheses) decode neural activity into commands

which guide a smoothly moving on-screen cursor or robotic arm (Serruya et al., 2002;

Taylor et al., 2002; Carmena et al., 2003; Hochberg et al., 2006; Srinivasan et al.,

2007; Velliste et al., 2008). Some neural prostheses (communication prostheses) es-

timate just the intended reach target. These communications prostheses could allow

severely diabled patients to communicate messages or perform simple tasks by mak-

ing a series of discrete choices such as selecting keys on a keyboard (Shenoy et al.,

2003; Hatsopoulos et al., 2004; Musallam et al., 2004; Santhanam et al., 2006). Motor

prostheses can also incorporate neural information about the reach target into their

models (Kemere et al., 2004; Yu et al., 2007; Srinivasan et al., 2007). For commu-

nication prostheses or motor prostheses with discrete reach targets, it is critical to

decode the intended target accurately. There is a great deal of interest in improving

the decode performance of these prosthetic systems, as increased performance will en-

hance usability and therefore clinical viability. There are many factors which should

be considered for improving prosthetic performance, including decoding algorithms

(Georgopoulos et al., 1986; Brown et al., 1998; Wu et al., 2004; Brockwell et al., 2004;

Wu et al., 2006), incorporating multiple signal modalities (e.g., EEG, ECoG, LFP,

and spiking activity), improving recording technology, and improving design of pros-

thetic end effectors, be that a robotic arm or computer cursor (Lebedev and Nicolelis,

2006; Schwartz, 2004). Here we address the problem of target placement in a com-

munication prosthetic system (or a motor prosthesis using reach target information)

that uses intracortical neural spiking activity.

In the behavioral paradigm employed in communication prosthesis studies, a mon-

key is trained to make center-out, delayed reaches to one of a discrete number of visual
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Figure 6.1: A communication prosthesis paradigm with sixteen targets. Yellow
squares show placement of targets in a canonical ring topology, evenly spaced around
two rings of eight targets each. Dotted line indicates the workspace bound.

targets presented on a fronto-parallel screen (Fig. 6.1). Using neural spiking activity

recorded from dorsal pre-motor (PMd) cortex before the onset of movement, during

the instructed delay period, maximum likelihood (ML) decoding algorithms can pre-

dict the intended reach target with high speed and accuracy (Santhanam et al., 2006).

Since a neural prosthesis often consists of a keyboard or some other user interface,

the key or target layout can be physically configured as the system designer sees fit.

These prostheses (Kennedy and Bakay, 1998; Kennedy et al., 2000; Wolpaw and Mc-

Farland, 2004; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006)

commonly place a number of targets (typically two to sixteen) evenly spaced around

one or two rings, the radius of which is determined by the subject’s maximum reach

extent (Fig. 6.1, see also Fig. 2, panel B of (Santhanam et al., 2006) and Fig. 5,

panel C of (Hochberg et al., 2006)). This canonical target layout, known as the ring

topology, reflects the observation that neural activity is more strongly modulated by

reach direction than reach extent (Riehle and Requin, 1989; Fu et al., 1993; Moran

and Schwartz, 1999a; Messier and Kalaska, 2000; Churchland et al., 2006a). Ad hoc

attempts at improving decode performance by altering target configurations were

made previously (see target configurations in Fig. 2, panel B of (Santhanam et al.,

2006)). However, if we understand the tuning properties of the particular neurons

from which we are recording, we can quantitatively exploit this prior knowledge to

place targets in a configuration that will yield lower decode error. Thus, our goal

here is both to increase decode accuracy by placing targets optimally, and to do so

in an automated fashion.
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Figure 6.2: Intuition of optimal target placement problem, where we consider pro-
gressively (panels A through E) more neurons (each neuron’s tuning direction and
strength being represented by one arrow) and targets (black, grey, or white squares).
See Introduction (Problem Intuition) for a full description.

6.1.1 Problem Intuition

To motivate our approach, we provide here an illustration of the target placement

problem. We first consider a hypothetical case where we record from only one neuron,

and further we suppose that this neuron’s firing rate is cosine tuned with a rightwards

preferred direction (Georgopoulos et al., 1982). We show this case in Fig. 6.2, panel A,

where we represent this neuron with an arrow pointing right (the preferred direction).

Let the length of the arrow correspond to the depth of tuning. As in Fig. 6.1, we have

a dotted line corresponding to the workspace bound, which may be the monkey’s reach

extent or the extent of the visual field (targets must be placed within this workspace).

Given this one neuron, where should we place two targets, T1 and T2, to maximize our

decode accuracy? In Fig. 6.2, panel A, we show two possible target configurations.

In the left subpanel, we place the targets T1 and T2 at the far right and at the

far left of the workspace (targets shown in black). In this configuration, a reach to
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target T1 will elicit maximal neural spiking activity, while a reach to T2 will elicit

minimal activity, thereby maximizing our decode accuracy (the neural responses are

most distinguishable). In contrast, we consider the right subpanel of Fig. 6.2, panel

A, where we have placed the targets (shown in grey) at the top and bottom of the

workspace. While this configuration is geometrically similar to the left subpanel (the

targets are maximally separated on the workspace, to exploit distance tuning), we

can see that this cosine-tuned neuron will fire at the same rate (on average) to both

targets, and the decoder will perform at chance accuracy. Thus, we see that target

placement is important, and it should also consider the neural population at hand.

In other words, symmetric geometries alone are inadequate.

In Fig. 6.2, panel B, we add one neuron with identical tuning strength but different

preferred direction (shown in blue). In the left subpanel, with the neurons preferring

left and right (blue and red arrows), we intuit again that the horizontal target layout

(T1 and T2 in black) will have optimal decode accuracy, and the vertical target layout

(T1 and T2 in grey) will perform at chance. However, if we instead record from the

two neurons shown in the right subpanel of panel B (where the blue neuron has an

upwards preferred direction), the placement problem becomes more complicated. It

seems both the black and grey pairs of targets will decode reasonably, but is there a

better configuration? Perhaps, by a symmetry argument, the optimal layout is a pair

of diagonally oriented targets (white targets marked with a ‘?’), but this intuition can

not be verified without simulation or experimental testing.

Let us complicate the situation further. In Fig. 6.2, panel C, we add a third neuron

(green arrow). In the left subpanel, we again see that, if these neurons had symmetric

preferred directions of even tuning strength, either the pair of black targets or grey

targets should decode well. In the right subpanel, however, we now change the various

tuning strengths (as represented by the length of the arrows) and allow the preferred

directions to be less regular. In this case, our intuition breaks down. It is unclear

where to put a pair of targets to maximize decode accuracy. This loss of intuition

worsens in panel D, where we now consider the same neurons, but instead consider the

problem of placing four targets (T1 through T4), not the two target cases in panels

A-C. Again, in the left subpanel, ideal neurons should perhaps suggest a symmetrical

layout as are often used in experiments. A more realistic neural population, shown

at right, significantly increases the difficulty of the target placement problem.
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Finally, in Fig. 6.2, panel E, we show a case of placing eight targets when recording

from ten neurons. At left, an idealized, symmetric neural population might imply

a symmetric target configuration. However, the more realistic neural population

(right subpanel) makes impossible any reasonable guesses about target placements.

In prosthetic systems with more targets and more neurons (as in (Shenoy et al., 2003;

Hatsopoulos et al., 2004; Musallam et al., 2004; Santhanam et al., 2006)), the problem

of target placement only gets more difficult.

One might consider a few strategies for optimal target placement. First, as is

conventional, one might lay out targets in symmetrical geometric patterns. Indeed,

we see in Fig. 6.2, panel A, why this strategy can fail. Thus, the characteristics of

the neural population should be considered. One might then imagine a brute force

approach, choosing some two-dimensional grid (or three-dimensional, in the most

general case) of possible target locations, and then picking the best choices among all

target configurations on that grid. Each possible configuration has a decode accuracy

that must be found via simulating many reach trials, which takes a reasonable amount

of computational effort (depending on the number of targets and the number of sim-

ulated trials). Even with a coarse grid of 16 or 32 possible target locations, choosing

a layout of 8 targets and simulating decode accuracy would be computationally in-

tractable: there are over 105 (16C8, the number of combinations of 8 distinct items

chosen from 16 possible items, i.e. 16!
8!8!

) and 108 (32C8 or 32!
24!8!

) choices for these layouts

with grids of size 16 and 32, respectively. These difficulties with initial approaches

led us to consider the problem from a communications theory perspective.

To our knowledge, this problem has not yet been investigated. We present the

optimal target placement algorithm (OTP), which uses Kullback-Leibler divergence

to provide a constellation of optimal target placements. We describe the method and

then compare the decode performance of the optimal constellation with canonical

ring topologies, using both simulated and experimental neural data.

An introduction to this algorithm was previously published in preliminary form

(Cunningham et al., 2006).
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6.2 Methods

6.2.1 Overview

We want to construct an algorithm that places reach targets such that they are maxi-

mally distinguishable (to achieve optimal performance) in terms of the neural signals

we record. To do so, we must first define a model that relates the reach target posi-

tion to neural spiking during the delay period. We then consider a rule for decoding

a particular target, given an observation of spike data. These steps are detailed in

“Spike Count Model and Decoding” below. This rule implies a decode error (our mea-

sure of prosthetic performance) that is a function of the target locations. Ideally, we

could then minimize decode error by moving reach targets appropriately. This general

problem is intractable. However, by making standard, reasonable approximations to

put this error function (a function of the target locations) into a solvable form, we

can optimize the function to produce a set of target placements that approximately

minimizes decode error. These steps are detailed in “Optimal Target Placement Al-

gorithm” below. Finally, we test this method with data from two monkeys trained

to perform reaches to canonically placed targets. For both monkeys, we fit a neural

population (using real reaches) and evaluate decode performance on simulated neu-

ral data generated from canonically placed and optimally placed targets (hereafter,

simulated data). The second monkey also performed real reaches to both canonically

and optimally placed targets, and we compare decode accuracy (hereafter, experi-

mental data). These steps are detailed in “Reach Task and Neural Recordings” and

“Evaluating Decode Performance” below.

6.2.2 Spike Count Model and Decoding

We must first consider how target position is reflected in neural spiking. As described

above, we present a reach target on the screen during an instructed delay period. We

call this time period ∆ (e.g., ∆ = 200 ms, the window beginning 150ms after target

presentation and before the subject is given a movement cue, as used in (Santhanam

et al., 2006)). We collect spike counts from K neural units, and the frequency of each

unit’s spiking (that is, the number of spikes) is indicative of the intended reach target

to an extent that allows target location to be predicted (Santhanam et al., 2006;
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Hatsopoulos et al., 2004; Musallam et al., 2004; Shenoy et al., 2003). We choose a

simple firing rate model (as in (Smith and Brown, 2003; Yu et al., 2007)) and a simple

spiking model (as in (Zhang et al., 1998; Yu et al., 2007)). We will later discuss more

advanced models, but even these basic models help to simply illustrate the conceptual

advance that this method offers.

Let us consider M reach targets placed on a screen as in Fig. 6.1 (where M=16).

We define each target by its Cartesian position on the screen xm ∈ <2 (for all M

targets m ∈ {1, . . ., M}). We define the center of the screen as the origin, but

the Optimal Target Placement algorithm will be invariant to that choice. We call

the collection of all M targets a constellation of targets χ ∈ <2M , that is χ =

[xT
1 , . . .,xT

M ]T .

Having defined the target constellation, we must define a model that maps target

position to neural spiking. Let us assume we record from K neural units. Then we

map position xm to a neural firing rate for the kth neural unit (as in (Smith and

Brown, 2003; Yu et al., 2007)) using:

fk(xm) = ecT
k
xm+dk , (6.1)

where dk specifies a baseline firing rate, and ck specifies both the preferred direction

(Georgopoulos et al., 1982) and the depth of tuning modulation for unit k. The linear

mapping cT
k xm + dk implies a cosine tuning model (Georgopoulos et al., 1982; Moran

and Schwartz, 1999a,b). We group these parameters ck,dk (over all K neural units)

into C ∈ <2×K (the matrix with columns ck) and d ∈ <K×1 (the vector of elements

dk). Thus, fk(xm) calculates the delay period firing rate underlying the spiking of

unit k, when the target m is presented at position xm.

To relate this firing rate to spike counts, we use a simple Poisson count model

(Zhang et al., 1998; Yu et al., 2007). Specifically, we assume the delay period spiking

activity for one neural unit, when conditioned on the target m (at position xm), is

independent of other neural units and of its own spiking history. The probability of

all observed spike counts y (the vector y ∈ <K×1 is a vector of non-negative integer

spike counts), during the delay period ∆, is then
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p(y | m) =

K∏

k=1

Poisson(yk; fk(xm)∆) =

K∏

k=1

(fk(xm)∆)yk

yk!
e−(fk(xm)∆) (6.2)

According to this model, on a given trial, the presented target m∗ at position xm∗

is chosen by the experimenter, where m∗ ∈ {1, . . ., M}. The observed spike counts y,

conditioned on m∗, are assumed to be distributed according to Eq. 6.2. We record

y and want to decode the identity of the presented target m∗ from among the M

possible choices. We note that we only consider spike counts from the delay period

∆, during which we assume the reach target is fixed and the firing rate (Eq. 6.1) is

constant. Thus, all decodes are made from that time period alone (and accordingly,

error rates and all other values are calculated during that fixed window). To decode

a reach target, we use maximum a posteriori (MAP) decoding (Zhang et al., 1998):

m̂ = argmax
m

p(m | y) (6.3)

= argmax
m

p(y | m)p(m)

p(y)
(6.4)

= argmax
m

p(y | m) (6.5)

where m̂ is the index of the estimated reach target (at position x bm). Eq. 6.3 states

that we choose the decoded target as the most likely target, given the neural data.

Eq. 6.4 is obtained using Bayes’ rule; Eq. 6.5 is a result of all reach directions being

equally likely (since in our experiments all targets are presented an equal number of

times)1 and p(y) not being dependent on m. Thus, the decode rule (Eq. 6.3) reduces

to a maximum likelihood (ML) estimator (Eq. 6.5) (Papoulis and Pillai, 2002). If the

assumptions of the model are satisfied (i.e., Poisson spiking statistics, cosine tuning,

etc.), this decode rule will minimize the total error probability (at a given target

constellation χ) (Cover and Thomas, 1991):

1If the targets were not presented with equal frequency (for example, in a keyboard application,
one might know that certain targets/keys will be used more often than others), then Eq.6.5 would
still have p(m) (MAP estimation). The OTP algorithm can be extended to incorporate this change;
see Future Work in DISCUSSION.
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Perror =
M∑

m=1

P ({m̂ 6= m} | {m∗ = m}) , (6.6)

In words, Eq. 6.6 is the probability that, when any target m is presented (the pre-

sented target m∗ = m), some other target is erroneously decoded (the decoded target

m̂ 6= m). Thus, the goal of our optimal target placement algorithm is to choose the

constellation χ that will minimize the total probability of decode error of Eq. 6.6.

6.2.3 Optimal Target Placement Algorithm (OTP)

This general problem of minimizing total error probability of Eq. 6.6 (over the con-

stellation χ), well known in communications literature (see e.g., (Proakis and Salehi,

1994)), is often analytically intractable (i.e., there is no closed form solution, which

will be required so we can calculate how changes in target position effect decode er-

ror). Indeed, minimizing Eq. 6.6 is similarly difficult in our case. As a result, it is

common to instead minimize the worst pairwise error probability (we denote pair-

wise probabilities Ppair)(Gockenbach and Kearsley, 1999). Pairwise error probability

is simpler to calculate than total error probability because pairwise error does not

consider the influence of other targets. For example, a pair of targets might have a

certain error rate in isolation, but that may change with the presence of a third target,

since the correct target can now be mistaken for this third target as well. Minimizing

the worst pairwise error probability is equivalent to minimizing an upper bound to

Eq. 6.62. That is, instead of considering all the targets jointly, we consider all pairs

of targets. We then select the least distinguishable (“worst”) pair of targets (that is,

the pair with the highest error rate when trying to decode which of these two targets

is the intended reach goal), and we will try to minimize this error rate (make these

two targets more distinguishable). Doing this procedure jointly across all pairs of

targets should yield a lower global decode error (Eq. 6.6). Mathematically, we define

2This upper bound can be seen by expanding each term in the sum of Eq. 6.6 using the
union of events bound (Boole’s inequality), such that

∑M

m=1
P ({m̂ 6= m} | {m∗ = m}) ≤∑M

m=1

∑
m′ 6=m Ppair({m̂ = m′} | {m∗ = m}). This sum of pairwise errors is upper bounded by

M(M − 1) times the worst pair, and thus minimizing the worst pair is equivalent to minimizing an
upper bound on total error probability.
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the solution to this problem χotp (the optimal constellation) as:

χotp = argmin
χ

(
max
m′ 6=m

Ppair

(
{m̂ = m′} | {m∗ = m}

))
. (6.7)

The inner expression Ppair(·) is the pairwise probability of error between two

targets m (the correct, presented target m∗) and m′ (the erroneously decoded target

m̂). For M targets, there are M(M − 1) such probabilities of error (all target pairs).

The maximum of these probabilities of error is the worst pair in that it has highest

decode error. Finally, the outermost expression (argmin(·)) finds the constellation χ

(the collection of target positions) which minimizes this worst pairwise error. Thus,

Eq. 6.7 provides a constellation of targets that minimizes the worst pairwise error

over all targets.

To calculate the probability of decode error between any pair of targets, we must

consider the spiking noise introduced by the Poisson output distributions (Eq. 6.2).

Owing to the noisy Poisson model, particular spike counts will erroneously decode a

target m′ when in fact the presented target was m. There is no closed-form expression

for the probability of decode error between two Poisson noise distributions (Verdu,

1986). Kullback-Leibler (KL) divergence is often used as a close proxy to pairwise

error probability (Gockenbach and Kearsley, 1999; Johnson et al., 2001; Johnson and

Orsak, 1993). KL divergence measures how different two probability distributions

are. Pairwise error probability also measures how different two distributions are, in

that it quantifies how often a draw from one distribution will be incorrectly classified

as having been drawn from another distribution. The use of KL as a proxy to error

probability is intuitively sound, and our simulations have shown that increasing KL

divergence (making the two distributions more different) corresponds well to decreas-

ing error probability. KL is commonly used when error probability is not closed form

(Gockenbach and Kearsley, 1999; Johnson et al., 2001; Johnson and Orsak, 1993),

with the understanding that making distributions more distinguishable (increasing

the KL divergence) will generally reduce probability of error also. The relationship

between KL and error probability can be motivated mathematically by returning to
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the two-target case of the ML decode rule (Eq. 6.5) and writing it as

m̂ =





m if p(y|m)
p(y|m′)

≥ 1,

m′ otherwise,
(6.8)

(i.e., the decoder predicts m if p(y | m) is larger than p(y | m′), and m′ otherwise).

Assuming a trial has reach target m presented, we want to maximize the likelihood

ratio in Eq. 6.8 over all possible instances of y. Doing so will provide the maxi-

mum distinguishability between the distributions (p(y | m) and p(y | m′)) and will

miminize the chance that the likelihood ratio will be less than 1 (which implies an

error). We can equivalently maximize the logarithm of this likelihood ratio, and,

taking the expectation to consider all possible y, we have the KL divergence

KL(xm ‖ xm′) = Ey|m

[
log

p(y | m)

p(y | m′)

]
(6.9)

where the expectation is taken with respect to y given m. We write KL as a function

of the target positions xm and xm′ to emphasize that it calculates our proxy to error

probability in terms of the target positions. Thus, KL in Eq. 6.9 is a measure of

distinguishability between targets m and m′; to minimize the probability of decode

error, we want to maximize Eq. 6.9 by changing target locations xm and xm′ . Under

the Poisson output distribution we introduced in Eq. 6.2, KL divergence can be

calculated exactly (substitute Eq. 6.2 into Eq. 6.9; see Appendix E.1 for details):

KL(xm ‖ xm′) = ∆

K∑

k=1

(
fk(xm′)− fk(xm) + fk(xm)log

fk(xm)

fk(xm′)

)
. (6.10)

Note that this form is not constrained by the form of the firing rate fk(xm) in Eq. 6.1,

allowing OTP to easily generalize for other, more complex firing rate models (on the

other hand, changing the spiking model - Eq. 6.2 - will change the form of the KL;

see Future Work in DISCUSSION).

In summary, we have replaced the analytically intractable probability of error

between two Poisson distributions with the tractable form of Eq. 6.10. We have

done so with the understanding that finding a pair of target positions (xm, xm′) that

maximizes the KL divergence from xm to xm′ is nearly equivalent to finding that which
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minimizes the probability of decoding m′ when m was presented. Mathematically, we

write

argmax
xm,xm′

KL(xm ‖ xm′) ≈ argmin
xm,xm′

Ppair

(
{m̂ = m′} | {m∗ = m}

)
. (6.11)

For the Poisson distributions used here, as we have noted, our simulations show

that the relationship between error probability and KL divergence is nearly mono-

tonic. Thus, we believe maximizing KL divergence is a valuable proxy to minimizing

probability of error in this problem. One might also consider using the Chernoff

bound (Cover and Thomas, 1991), which proves an upper bound on error probability

with respect to KL divergence in hypothesis testing. However, this bound has been

found to be loose (Johnson et al., 2001). Though not a provable bound (upper or

lower) on error probability, KL divergence does provide a very close proxy; further

supporting arguments can be found in (Johnson et al., 2001; Johnson and Orsak,

1993).

Having made this approximation, we can return to our problem of interest, namely

finding the optimal target placement χotp as in Eq. 6.7. Using KL divergence, Eq. 6.7

becomes

χotp = argmax
χ

(
min
m6=m′

KL(xm ‖ xm′)

)
(6.12)

Note that the two targets with the smallest KL divergence (the inner expression in

Eq. 6.12) are the least distinguishable and thus should have the highest probability of

error (the worst pair, as in Eq. 6.7). Accordingly, improving the worst pair in Eq. 6.7

(minimizing the maximum error probability) is the same as improving the worst pair

in Eq. 6.12 (maximizing the minimum KL divergence). An algorithm solving this

problem will push the target positions xm as far apart as possible from each other in

terms of KL divergence. We impose a workspace limitation such as how far a subject’s

arm can reach, the extent of the subject’s visual field, or the bounds imposed by the

prosthesis (such as a computer screen). We capture this limitation with a constraint

γ on the Euclidean distance of xm from the center of the workspace screen (other

constraints, such as a rectalinear workspace, could be readily included as well). With

this contraint, our optimal target placement χotp is the solution to:
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maximize
χ

(
min
m6=m′

KL(xm ‖ xm′)

)

subject to ‖xm‖ ≤ γ ∀ m = 1. . .M

(6.13)

We call the algorithm that solves Eq. 6.13 the optimal target placement algo-

rithm (OTP). We applied sequential quadratic programming (SQP) (Gockenbach

and Kearsley, 1999; Boggs and Tolle, 1996) to solve Eq. 6.13. It is important to note

here that SQP is an established technology for optimizing nonlinear, constrained ob-

jectives such as Eq. 6.13. For example, the MATLAB (The MathWorks, Natick, MA)

function fmincon (nonlinear, contrained optimization solver) uses SQP. SQP finds an

optimum to this problem (Eq. 6.13 is not convex in χ), and this optimum depends

on the choice of seed constellation χ0. To find the global optimum, we solved the

SQP multiple times (eight to thirty-two, depending on the number of targets in the

constellation) starting at randomly chosen χ0. After these iterations, a “best” op-

tima (best in terms of having the largest objective, i.e. the minimum worst pair KL

divergence, as in Eq. 6.12) typically appeared several times, giving confidence that

we had indeed found the global optimum. This solution was designated the optimal

constellation χotp. We include notes on our use of SQP in Appendix E.2.

6.2.4 Reach Task and Neural Recordings

Animal protocols were approved by the Stanford University Institutional Animal Care

and Use Committee. We trained two adult male monkeys (Macaca mulatta, monkey H

and monkey L) to perform delayed center-out reaches for juice rewards. As illustrated

in Fig. 6.3, visual targets were back-projected onto a fronto-parallel screen 30 cm in

front of the monkey. The monkey touched a central target and fixated his eyes on a

crosshair adjacent to the central target. After a center hold period of 300 to 500 ms

for monkey L and 400 to 600 ms for monkey H, a pseudo-randomly chosen target was

presented at one of the target locations. For the canonical reach data sets, the sixteen

targets were placed in two rings of eight, as shown in Fig. 6.1, of radius 7 and 12 cm

for monkey H (4 and 8 cm for monkey L). After a pseudo-randomly chosen instructed

delay period (monkey H: uniformly distributed between 200 and 500 ms; monkey L:

exponentially distributed with a mean of 750, 850, or 950 ms, shifted to be no less
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Figure 6.3: Task timeline (top), simultaneously-recorded spike trains (middle), and
arm and eye position traces (bottom) are shown for a single trial. Red and blue
lines correspond to horizontal and vertical position, respectively. The range of move-
ment for the arm and eye position (on the screen) is ±15 cm from the center target.
Neural unit activity and physical behavior were taken from trial from experiment
H20041106.1.

than 50, 100, or 150 ms), the “go” cue (signaled by both the enlargement of the target

and the disappearance of the central target) was given, and the monkey reached to

the target. After a hold time of 200 or 300 ms at the reach target (depending on the

experimental day), the monkey received a liquid reward. The next trial started 100-

400 ms later (depending on the experimental day). Eye fixation at the crosshair was

enforced throughout the delay period. Reaction times (defined as the time between

the “go” cue and movement onset) were enforced to be greater than 80 or 100 ms and

less than 400 or 425 ms (depending on the experimental day).

During experiments, the monkey sat in a custom chair (Crist Instruments, Hager-

stown, MD) with the head braced. The presentation of the visual targets was con-

trolled using the Tempo software package (Reflective Computing, St. Louis, MO). A

custom photo-detector recorded the timing of the video frames with 1 ms resolution.

The position of the hand was measured in three dimensions using the Polaris optical

tracking system (Northern Digital, Waterloo, Ontario, Canada; 60 Hz, 0.35 mm ac-

curacy), whereby a passive marker taped to the monkey’s fingertip reflected infrared

light back to the position sensor. Eye position was tracked using an overhead infrared

camera (Iscan, Burlington, MA; 240 Hz, estimated accuracy of 1 � ).
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A 96-channel silicon electrode array (Cyberkinetics, Foxborough, MA) was im-

planted straddling dorsal pre-motor (PMd) and motor (M1) cortex (left hemisphere

for both monkey H and monkey L), as estimated visually from local landmarks, con-

tralateral to the reaching arm. Surgical procedures have been described previously

(Churchland et al., 2006b; Santhanam et al., 2006; Hatsopoulos et al., 2004). Spike

sorting was performed offline using techniques described in detail elsewhere (Sahani,

1999; Santhanam et al., 2004; Zumsteg et al., 2005). Briefly, neural signals were

monitored on each channel during a two minute period at the start of each record-

ing session while the monkey performed the behavioral task. Data were high-pass

filtered, and a threshold level of three times the RMS voltage was established for

each channel. The portions of the signals that did not exceed threshold were used to

characterize the noise on each channel. During experiments, snippets of the voltage

waveform containing threshold crossings (0.3 ms pre-crossing to 1.3 ms post-crossing)

were saved with 30 kHz sampling. After each experiment, the snippets were clus-

tered as follows. First, they were noise-whitened using the noise estimate made at

the start of the experiment. Second, the snippets were trough-aligned and projected

into a four-dimensional space using a modified principal components analysis. Next,

unsupervised techniques determined the optimal number and locations of the clusters

in the principal components space. Events assigned to each cluster are considered

spikes for a given neural unit.

Fig. 6.3 shows the delayed reach task timeline, along with neural and behavioral

data for a single trial with a lower-right reach target. We refer to the time between

reach target onset and the “go” cue as the delay period. It is the neural activity

during this delay period that will be used to predict the reach target.

The monkeys were trained over several months, and multiple data sets of the same

behavioral task were collected. Each data set was collected in one day’s recording

session. For monkey H, all reaches were made to canonically placed targets. For

monkey L, each data set was split into two segments, the first comprising reaches to

a canonical target topology, and the second to an OTP constellation. After collecting

700-2000 trials of the canonical topology, the task was stopped. Units isolated by the

spike sorting method were fit to the cosine tuning model of Eq. 6.1. We counted spikes

for the 200 ms period that started 150 ms after target onset (a 200 ms integration

window, i.e., Tskip = 150 ms and Tint = 200 ms, in the terminology of (Santhanam
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et al., 2006)). We fit C, d from the neural data by maximizing the data likelihood

(Eq. 6.2) taken across all trials. This fitting problem is convex (in C, d) and can

be readily solved using Newton’s Method (Boyd and Vandenberghe, 2004) (glmfit

in MATLAB will also readily solve this problem). This population of neural fits was

then given to the OTP algorithm, which then generated an optimal target topology.

This entire OTP process generally took less than ten minutes on 2006era workstations

(Linux Fedora Core 4 with 64 bit, 2.2-2.4GHz AMD processors and 2-4GB of RAM)

running MATLAB (R14). For monkey H, this neural population fitting was done

offline to provide neural tuning data for OTP simulation. For monkey L, the task

was begun again with reaches to the newly configured OTP target topology, typically

for 700-1500 more trials. For both the canonical and OTP trials, we only analyzed

successful trials (where the monkey obeyed the hold times, reached to the target with

a proper reaction time, etc.) that had delay periods long enough to allow Tskip and

Tint as just described. This screening typically left 300-800 valid OTP and 300-800

valid canonical trials for analysis (we used equal numbers of OTP and canonical trials

so performance comparisons could be meaningfully made). This segmentation allows

us to analyze and compare decode performance from the canonical and optimal target

topologies.

6.2.5 Evaluating Decode Performance in Experimental Data

Collecting experimental data allows us to verify the performance improvements we

see in simulation. In “Spike Count Model and Decoding” (above), we introduced a

maximum likelihood decoder that (when the model assumptions are satisfied) min-

imizes the probability of decode error (Eq. 6.5). For simulated trials, we know the

neural parameters C and d, and thus we calculate the firing rate fk(xm) exactly for

any target position xm (in simulation, the data fit the model of Eq. 6.1 and Eq. 6.2

exactly). In this case, we use the ML decoding rule of Eq. 6.5 directly. However, in

experimental reach trials, we do not have access to the neural parameters C and d,

and thus we do not have fk(xm). Instead, for each target xm, we must fit an estimate

f̂k(xm). Since each unit yk is modeled as Poisson (conditioned on the target xm), yk

has expected value of fk(xm)∆. With a set of training trials to a particular target,

our estimate f̂k(xm) is the empirical mean (normalized by ∆) of those training trials

(a ML estimator of fk(xm) (Papoulis and Pillai, 2002)).
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In an experimental data set, we have J blocks of trials, where a block consists

of one trial to each of the M reach targets. We define the neural data collected

during the delay period of each trial as y(j,m) for a block j ∈ {1, . . ., J} and a target

m ∈ {1, . . ., M}. To decode a single trial, we use J-fold cross validation (Duda

et al., 2001). For a given block j of reach trials, we exclude the block as a test data

set and use all other (J − 1) blocks as the training set to train the decoder (i.e.,

estimate f̂k(xm) for all k ∈ {1, . . ., K}) and m ∈ {1, . . ., M}). With these parameter

estimates, we can again use the ML decoder of Eq. 6.5, as in (Shenoy et al., 2003;

Hatsopoulos et al., 2004; Musallam et al., 2004; Santhanam et al., 2006). This J-fold

cross validation is repeated across all blocks of trials and produces a total decode

performance for a given data set.

We note that f̂k(xm) does not in general equal fk(xm) because the empirical mean

over the training trials we collected will not be exact (even if the firing rate model

holds). This factor may degrade decoder performance in experimental data, but such

performance reductions should be seen equally for OTP and canonical topologies. In

this study we are only interested in how the different target constellations compare

in decode accuracy, not their absolute values. We confirmed in simulation that using

the empirical mean resulted in similar performance reductions across both topologies,

thereby suggesting that OTP is no more susceptible to this source of error than is

the canonical topology. The accuracy of the target decoder also varies with the

duration and placement of the time window in which spikes are counted and the

spike count model P (y | xm) that is used (Hatsopoulos et al., 2004; Santhanam et al.,

2006). Optimizing these aspects of the target decoder (which we again expect to

affect performance equally across topologies) is beyond the scope of this work and is

treated in detail in (Santhanam et al., 2006).

6.3 Results

As we saw in Fig. 6.2, for small numbers of targets and neural units, we can make a

reasonable prediction about where the optimal targets should be placed, even without

the use of an optimization algorithm. In the simplest case, we seek to place two

targets optimally with only one neural unit (Fig. 6.2, panel A). Given the preferred

direction of the unit c1, the targets should be placed as far apart as possible (on
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Figure 6.4: Sixteen target placement examples from: A) data set H20041119, and
B) data set L20061030. Blue circles: OTP solution; red squares: a canonical ring
topology. Workspace bound shown as a dotted line (γ=120 mm in A, 80 mm in B).

the circular workspace bound, as firing rate is typically modulated by reach target

distance) along the axis defined by c1. In this configuration, the presentation of one

target elicits maximal firing, while the other target gives miminal firing. Indeed,

our SQP approach to optimal target placement yields this result. Extending beyond

this trivial case, the utility of OTP becomes apparent when looking at larger neural

populations and larger numbers of targets.

With a population of neural units that are fairly uniform in their preferred direc-

tions and tuning strength, we imagine that the placement of four or eight targets will

reduce effectively to a geometric problem, and placing the targets evenly around a

ring will produce a near optimal result. We will validate this intuition below. When

the number of targets grows larger, intuition breaks down: for example, with sixteen

targets, should they be placed evenly around the circular workspace bound? Should

they be placed in two rings; if so, how many targets in each ring? OTP gives answers

to these questions. Two examples are shown in Fig. 6.4, where OTP returns a con-

stellation (blue circles) with eleven targets spaced roughly evenly around the circular

workspace bound, and with five targets placed elsewhere in the workspace for monkey

H (in panel A). For monkey L (panel B), OTP finds a constellation with ten targets

on the workspace bound and six placed on the workspace interior. Despite the com-

plexity of this problem, there is some intuition to be gleaned from the constellations
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discovered by the OTP algorithm; see DISCUSSION (Intuition Gained from OTP).

6.3.1 Simulated Data Results

Having shown a few examples of optimal target placements, we now turn to systematic

performance comparisons of OTP vs. canonical ring topologies. We randomly drew a

set of K units from one of two collected data sets: one from monkey H (H20041119),

and one from monkey L (L20061030). We ran OTP to find the constellation χotp,

and then we generated simulated spike counts for 1000 trials to each of M optimally

placed targets according to Eq. 6.2 (i.e., M × 1000 total trials). We then computed

decode accuracy using the method described above in “Evaluating Decode Accuracy.”

We also simulated 1000 trials to each target of the canonical ring topology (again,

M × 1000 total trials).3 This whole procedure was repeated 100 times (10 times for

the sixteen target case, due to computational limitations) for each K.

These results are shown for monkey H in Fig. 6.5 for two, four, eight, and sixteen

targets, and similarly for monkey L in Fig. 6.6. In Fig. 6.5, panel A, for two targets,

OTP provides up to 8% improvement in decode accuracy (from 71% to 79% with

K=2, for example). OTP provides similar results for Monkey L, raising performance

6% (from 71% to 77% with K=4, for example). As K grows and decode accuracy

saturates to the performance ceiling of 100%, we expect the canonical topology to

approach the performance of OTP, and indeed we see this effect. In both the four

and eight target cases, there is less improvement above the ring topology for both

monkeys H and L, with performance improvements ranging from 0 to 3% (monkey

H) and 0 to 1% (monkey L). This is not surprising: the OTP layouts closely resemble

canonical ring topologies. For example, a four or eight target OTP layout is often

just a rotated version of a canonical layout, which does not look much different than

a canonical layout (i.e, a rotated version of the black targets Fig. 6.2, panels D and

E appears quite similar to an unrotated constellation). Contrast this to a two target

case, where a rotation of a pair of targets can look significantly different (i.e., in

3To get a true average performance for the canonical topology, we rotated the ring topology across
trials to prevent any possible bias in the results. For example, if we chose a vertical canonical layout
in the two target case (as in Fig. 6.2, panel A, right subpanel) and these particular neural populations
had more tuning strength in the horizontal axis, then canonical layouts would be artificially punished
in decode performance (so too, canonical performance could be artificially inflated if we instead
chose the layout of Fig. 6.2, panel A, left subpanel). Rotating the canonical targets ensures a fair
comparison between decode performances.
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Figure 6.5: Comparison of performance in simulated data: Optimal target placements
vs ring topologies. Monkey H (H20041119). A) Two Targets. B) Four Targets. C)
Eight Targets. D) Sixteen Targets. Blue and red lines show performance under
OTP and a single ring topology, respectively. In D), green and magenta lines show
performance under the aligned and staggered double ring topologies, respectively (red,
green, and magenta curves are highly overlapped). Error bars (vanishingly small, due
to hundreds of thousands of simulation trials) based on a binomial distribution with
95% confidence level (see Zar (1999)). Insets show different ring topologies tested.

Fig. 6.2, panel A, the black and gray pairs of targets are quite different). Thus, we

do not expect a substantial performance difference in the four and eight target cases.

At larger target constellations, we can again see substantial improvements offered

by OTP. Fig. 6.5, panel D illustrates the performance of the optimal configuration in

the sixteen target case with monkey H, and similarly in Fig. 6.6, panel D for mon-

key L. We compare OTP to three canonical ring topologies: sixteen targets evenly

spaced around the workspace bound, two radially aligned rings of eight targets each,

and two radially staggered rings of eight targets each. In our experience, most OTP

constellations seen in the sixteen target case for both monkeys (for different values of

K and different sets of units drawn at random) place four to six interior targets and

ten to twelve on the workspace bound; examples are shown in Fig. 6.4. See DISCUS-

SION (Intuition Gained from OTP) for comments about why these constellations

are sensible results of the algorithm. Over a range from 50-100 units, OTP target

topologies yield 8-9% average improvement over the canonical ring topologies in mon-

key H.4 For monkey L, more units are required to see substantial performance gains,
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Figure 6.6: Comparison of performance in simulated data: Optimal target placements
vs ring topologies. Monkey L (L20061030). A) Two Targets. B) Four Targets. C)
Eight Targets. D) Sixteen Targets. Blue and red lines show performance under
OTP and a single ring topology, respectively. In D), green and magenta lines show
performance under the aligned and staggered double ring topologies, respectively (red,
green, and magenta curves are highly overlapped). Error bars (vanishingly small, due
to hundreds of thousands of simulation trials) based on a binomial distribution with
95% confidence level (see Zar (1999)). Insets show different ring topologies tested.

achieving 4-5% improvement for 140-200 neural units.4 We discuss this difference be-

tween monkeys H and L in DISCUSSION (Comparing Results from Two Monkeys).

Again, in the sixteen target case, we see that the OTP and canonical layouts perform

comparably when either we have very many neural units (performances saturate),

or when we have very few neural units (there is insufficient neural information, and

thus many constellations will be indistinguishable in terms of performance). These

findings should ideally all be confirmed with real experimental data.

6.3.2 Experimental Data Results

Having developed some expectation of the improvements offered by OTP in simula-

tion, we wanted to verify the algorithm in real experiments, in at least some regime of

the data studied in simulation. Across the the four different constellation sizes tested

above, creating Fig. 6.5 and Fig. 6.6 required 100 full data sets (each with 1000 trials

4To put these results into the context of a few other prostheses studies, (Santhanam et al., 2006)
reported recording 80-130 units in a typical session, and (Hatsopoulos et al., 2004) reported recording
32-143 units in a typical session.
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Table 6.1: Decode performance in experimentally gathered neural data for canonical
and OTP methods on monkey L.

Data Set

L20061106 L200611113 L20061117 L20061122 Total

Neural Units (K)1 46 41 43 35 NA

Num. Targets(M) 16 16 16 16 16

Total OTP Reach Trials2 324 528 720 544 2116

Canonical Decode Perf. 13.0% 15.3% 14.2% 10.8% 13.4%

OTP Decode Perf. 15.9% 15.5% 20.6% 14.5% 17.0%

% Decode Improvement 2.9% 0.2% 6.5% 3.7% 3.6%

1 Units include all automatic spike sort isolations used to fit the OTP constellation.
This includes all units regardless of tuning strength or modulation significance.

2 We compared equal numbers of OTP and canonical reach trials.

per condition) for each choice of neural population size. This implies tens of thou-

sands of experimental days to replicate this result in experimental data; clearly this

is infeasible. Instead, we tested this algorithm with four full day data sets in mon-

key L, with the goal of providing some evidence that the proposed algorithm offers

improvements in a real experimental setting. Though many more experiments are

needed to fully validate the simulation results, finding similar improvements in these

experimental results should give confidence that, over a broader range of conditions,

the method could well perform as predicted by simulation.

As described in METHODS, monkey L first performed many reaches to sixteen

canonically placed targets, and a subset of these reaches were used to fit an OTP con-

stellation. In each of the four data sets (L20061106-L20061122), we used roughly 40

neural units (sorted by our automatic spike sorter), regardless of unit quality (single

unit, multi unit, or ‘noise’ unit (Wahnoun et al., 2006)) or tuning depth. The results

for these data sets are in Table 6.1. Note that, as Table 6.1 comes from a sixteen

target experiment with monkey L, Table 1 is comparable to Fig. 6.6D. Looking at

Fig. 6.6D at 35-45 neural units (the x-axis), simulation suggests OTP should realize

0-2% decode improvement, and we see in Table 6.1 that we achieved 3.6%, so the

results are comparable. Factors such as array lifetime and the quality of unit tuning

resulted in these experimental days having low decode performance, regardless of the

topology used. We see that in each data set OTP improved our decode accuracy.
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We want to ask, for the data we collected, if OTP shows a statistically significant

improvement over canonical placements in terms of decode performance. Using a

binomial significance test with 95% confidence level (Zar, 1999), we see across all our

data that indeed OTP does statistically outperform canonical placements (Table 6.1),

confirming what we saw in simulation to be a meaningful improvement.5 This im-

provement is captured in the final column of Table 6.1, where we see in this case that

the decode performance is raised from 13.4% to 17.0% on over two thousand trials.

The purpose of this data is to validate experimentally that the OTP algorithm is

giving us the improvements we anticipate. Though the absolute decode accuracy is

low, we nonetheless see that there is a meaningful improvement in decode accuracy.

Further, we see that in no case (of the four full data sets) is there a reduction in

decode accuracy. Thus, our experimental results serve to verify that OTP is indeed

making good use of the neural population available to find a nontrivial improvement

to decode performance.

6.4 Discussion

We have shown, for communication prosthetic systems using spiking activity, that

reach target decode accuracy can be improved by optimally placing the reach targets.

We have introduced this general problem, and we have created a first-of-its-kind al-

gorithm that finds an improved target constellation by approximating an intractable

problem with a tractable form. For four and eight targets, OTP layouts closely resem-

bled canonical layouts, thus validating the canonical topology used in (Santhanam

et al., 2006). Also, we realized substantial decode performance improvements in sim-

ulation for two and sixteen target configurations across a wide range of unit counts.

Our experiments in real data (Table 6.1) confirm the expected improvement offered

5Note that doing statistical tests on the data by day (or by any subdivision) will reduce the
statistical power (fewer trials) of the data and may lead to inconsistent results (some data sets
significant; others not). Thus the total number of trials should be used to show that OTP does
indeed outperform canonical topologies. One might also want to know whether or not, by using
OTP on a given experimental day, the performance will be improved over canonical placements.
Our results indicate that indeed an improvement will be seen, based on the two thousand trials we
collected. Note also that, had we run this experiment on a stronger array with more units, we would
expect statistically significant effects with much smaller numbers of trials, since the magnitude of
the performance improvement would be greater (cf. Fig 6.5, panel D, at 50-150 units, or Fig 6.6,
panel D, at 140-200 units).
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by OTP, at least in the limited regime tested, indicating that target placement is a

valuable consideration in the design of neural prostheses.

6.4.1 Intuition Gained from OTP

In Fig. 6.2 and Problem Intuition, we saw that intuition for how to place targets

quickly breaks down when faced with many neurons and many targets. The OTP

algorithm addresses this difficulty, and indeed it gives us reasonable solutions that out-

perform canonical layouts. Besides the performance improvements, is there anything

to be learned from the results of this algorithm? We have noted that ring topologies

have classically been chosen based on the observation that neural activity is more

strongly modulated by reach direction than reach distance (Riehle and Requin, 1989;

Fu et al., 1993; Moran and Schwartz, 1999a; Messier and Kalaska, 2000; Churchland

et al., 2006a). If direction were essentially the only source of discriminability, a single

sixteen target ring would presumably be optimal. If the opposite were true, perhaps

a line of targets at various distances from the origin would be chosen. When plac-

ing sixteen targets with OTP, we typically see four to six targets on the interior,

and ten to twelve on the workspace bound. The performance improvements seen in

these OTP results (Fig. 6.5, Fig. 6.6, and Table 6.1) support the mixtures of tuning

reported in previous studies (Riehle and Requin, 1989; Fu et al., 1993; Moran and

Schwartz, 1999a; Messier and Kalaska, 2000; Churchland et al., 2006a). However,

it is important to note that this observation depends on the choice of tuning model

(here the cosine model of Eq. 6.1). More tuning functions should be tried (recall that

OTP is general to the choice of tuning function; see Eq. 6.10) before this claim can

be formalized.

6.4.2 Approximations in OTP Algorithm

Across the range of unit and target counts tested in simulation, OTP outperforms

each canonical ring topology, with performance gains of up to 9%. The minimum

improvement was in all cases 0%, in the case of: i)very many neural units, where

performances saturate to 100%; or ii)very few neural units, where noise dominates and

many different layouts are indistinguishable. We speculate that this logical simulation

result would also hold in experimental data, but future experiments should confirm
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more points on these performance curves. The results shown here are subject to

three approximations, which we summarize here: i) in Eq. 6.7, we solve a minimax

problem (minimizing an upper bound) instead of a total probability of error problem;

ii) we use KL divergence as a proxy for pairwise error probability in Eq. 6.11; and

iii) we optimize a non-convex problem in Eq. E.6 via a sequence of local quadratic

approximations (SQP). Each of these approximations is necessary to put the problem

in a tractable form and enables us to address this previously unanswerable question.

Although the impact of these approximations has yet to be fully characterized, their

use allows us to achieve performance gains (cf. Fig. 6.5 and 6.6) that would not

otherwise be possible.

It is important also to note that, even when we bundle these approximations

together (as we do in the OTP algorithm), we still get consistent improvements in

decode accuracy vs. canonical target placements. It is possible in theory for OTP to

underperform canonical layouts, if, for example, one of the approximations was highly

inappropriate. Interestingly, OTP never underperforms canonical layouts in either the

simulated data or the experimental data. We anticipate performance improvements

beyond the 9% shown here, by using better approximations and improved algorithmic

techniques.

6.4.3 Comparing Results from Two Monkeys

Comparing the simulation results for monkeys H and L, there is an apparent difference

in the decode accuracies. We found in our experiments that monkey H had signifi-

cantly better tuned delay period activity than did monkey L. Factors such as electrode

array lifetime (Polikov et al., 2005), array positioning in M1/PMd (Crammond and

Kalaska, 2000), and behavioral training could all contribute to these differences. The

net result in monkey L is that a given number of neural units did not decode as well as

in monkey H. Hence, the performance curves in monkey L saturate less quickly than

in monkey H. It is encouraging nonetheless to see that OTP has similar performance

effects at similar regions of the performance curves for both monkeys, regardless of

the performance scaling introduced by different strengths of neural populations.
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6.4.4 Comparing Simulated Results to Experimental Results

For monkey L, comparing Table 6.1 results to Fig. 6.6, panel D, one sees a difference

between the predicted decode performances at given numbers of units and the actual

results found in experiments. In simulated data, while the parameters of the firing

rate model (Eq. 6.1) were fit to real neural data, the spike counts used to measure

performance in Fig. 6.5 and 6.6 were generated from the model in Eq. 6.2 (simulated

data). The performance improvements for real experimental data depend further

on how well the spiking model (firing rate - Eq. 6.1 - and output distribution -

Eq. 6.2) fits the neural data collected, how well the model generalizes to other target

locations for which we have no neural data, and a host of other factors (spike sort

instabilities, behavioral changes, etc.). These factors can reduce the performance of

both the canonical and OTP topologies (e.g., spiking model) or can reduce just the

performance of the OTP topology (e.g., generality of the firing rate model).

Regarding the spiking model approximation, in our simulation study, a unit fit

with a particular tuning model behaved according to that model, and its spiking was

Poisson. In real experiments, these assumptions do not hold for any target constel-

lation. Real units can be untuned to target position and/or tuned to some other

behavioral correlate; both possibilities can introduce a punitive source of noise to the

decoder with a limited number of training trials. The spiking model assumptions are

approximations that can only reduce performance for both topologies. This perfor-

mance reduction should be equivalent across topologies, and so we focus our results

on the performance differences between topologies, and not the absolute accuracies

of each decoder. Using a different output distribution (e.g. (Barbieri et al., 2001;

Truccolo et al., 2005; Cunningham et al., 2008c)) might improve decoding for both

OTP and the canonical topology. Nonetheless, the simple Poisson choice allows us to

readily demonstrate the improvements offered by OTP.

Our experiments also require an assumption about how different target locations

modulate neural firing. The cosine tuning model in Eq. 6.1 is a simple first approach.

The tractability of the OTP algorithm does not, however, rely on this specific firing

rate form, so any improved model (e.g. (Kaufman et al., 2005)) can be seamlessly

incorporated into OTP (as noted in Eq. 6.10; to be clear, this is the case with the

firing rate model of Eq. 6.1, not the spiking model of Eq. 6.2). As tuning models were

not the focus of this study, however, we chose a simple firing rate model to show the
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improvements offered by OTP even in this case. A more accurate firing rate model,

as it would improve the ability of OTP to find an optimal constellation, should only

increase the OTP performance gains from a canonical topology. Our presentation of

OTP is conservative in this regard.

6.4.5 Implementation Considerations

When considering implementing OTP in a neural prosthetic system, an investigator

may consider some factors regarding usage mode. In our experiments with monkey

L, we split our experimental days, using the first half for canonical topology reaches

and the second half for OTP topology reaches. In a real system, this training time

need not be spent daily. Realistically, the extent to which one records the same neural

units (with the same tuning properties) dictates how often one needs to reoptimize the

target constellation. We recently reported that neural tuning is stable at least during

an experimental day and potentially over multiple days (Chestek et al., 2007). If

this is the case, the target configuration would need only be trained infrequently and

possibly during an offline period (e.g., while the subject is sleeping). Anecdotally, we

find that OTP fits similar constellations across adjacent days, which further supports

this possibility. Furthermore, in our experiments we used neural units isolated by

our automatic spike sorting algorithm, regardless of the quality of these units. We

did this to focus on the difference in decode accuracy from canonical to OTP, but

this choice drags down absolute decode accuracy (due to untuned ‘noise’ units, for

example, see (Wahnoun et al., 2006)). In a real prosthetic system, better sorts and

unit isolations may be made and fed into the OTP algorithm. Doing so would likely

raise the decode accuracy of both canonical and OTP topologies. Again, this step

may be done offline to improve overall system performance without compromising the

availability of the prosthetic system. The OTP algorithm can also be run on data

collected from any target constellation, so one could also iteratively run OTP on a

previous OTP configuration (there is no need to revert the system to a canonical

topology).
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6.4.6 Future Work

As mentioned earlier in this chapter (e.g., “Comparing Simulated Results to Exper-

imental Results” above), future work should focus on extending OTP beyond the

cosine tuning and Poisson spiking models of Eq. 6.1 and Eq. 6.2. Future work could

also incorporate an iterative OTP algorithm that would monitor for new units appear-

ing, old units rolling off, and units changing tuning, all the while updating the target

constellation appropriately. Technology is being developed to allow this recording

capability (Santhanam et al., 2007; Chestek et al., 2009). The experiments in this

chapter presented targets with equal frequency, but future experiments should relax

this assumption and extend OTP to handle this case. Furthermore, we have shown

here an algorithm using spiking activity only. As multiple modalities (LFP, EEG,

ECoG, etc.) are incorporated into a prosthetic system, OTP could be extended to

place target constellations based on those sources of neural information as well.
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Chapter 7

Firing Rate Estimation and its

Relevance to Neural Prosthetic

Systems

The previous chapter investigated one particular aspect of neural prosthetic systems,

and it showed that algorithmic optimization can improve our ability to decode control

signals from motor cortex. This success raises the question: what other areas offer

significant performance improvements, and what areas do not? In this chapter, we

return to the problem of firing rate estimation and investigate the relevance of this sig-

nal processing effort to neural prosthetic systems. Numerous method for estimating

neural firing rates, including the method of Chapter 2, have been developed in recent

years, but to date no systematic comparison has been made between them. Here

we review both classic and current firing rate estimation techniques. We compare

the advantages and drawbacks of these methods. Then, in an effort to understand

their relevance to the field of neural prostheses, we also apply these estimators to

experimentally-gathered neural data from a prosthetic arm-reaching paradigm. Us-

ing these estimates of firing rate, we apply standard prosthetic decoding algorithms

to compare the performance of the different firing rate estimators, and, perhaps sur-

prisingly, we find minimal differences. This chapter serves as a review of available

spike train smoothers and a first quantitative comparison of their performance for

brain-machine interfaces. This work, which has been published as Cunningham et al.

(2009), was done jointly with Vikash Gilja, Stephen Ryu, and Krishna Shenoy.

134
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Figure 7.1: Context for firing rate estimation and neural prosthetic decode. (a)
N single spike trains are gathered from N neurons on one experimental trial. (b)
Those spike trains are denoised and smoothed using a firing rate estimation method.
(c) Those firing rates are used by a decoding algorithm to estimate, for example, a
reaching arm trajectory.

7.1 Introduction

Neuronal activity is highly variable. Even when experimental conditions are repeated

closely, the same neuron may produce quite different spike trains from trial to trial.

This variability may be due to both randomness in the spiking process and to differ-

ences in cognitive processing on different experimental trials. One common view is

that a spike train is generated from a smooth underlying function of time (the firing

rate) and that this function carries a significant portion of the neural information (vs.

the precise timing of individual spikes). If this is the case, questions of neuroscientific

and neural prosthetic importance may require an accurate estimate of the firing rate.

Unfortunately, these estimates are complicated by the fact that spike data gives only

a sparse observation of its underlying rate. Typically, researchers average across many

trials to find a smooth estimate (averaging out spiking noise). However, averaging

across many roughly similar trials can obscure important temporal features (Nawrot

et al., 1999; Yu et al., 2006, 2009b). Trial averaging can be especially problematic in

a brain-machine interface (BMI) setting, where physical behavior is not under strict

experimental control, and so motor movements and their associated neural activity

can vary considerably across trials. Thus, estimating the underlying rate from only

one spike train is an important but challenging problem.

To address this problem, researchers have developed a number of methods for

estimating continous, time-varying firing rates from neural spike trains. The goal of

any firing rate estimator then is two-fold: first, the method seeks to return a smooth,

continuous-time firing rate that is more amenable to analytical efforts than the spiking
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neural signal. Second, as is the goal of any statistical signal processing algorithm, the

firing rate estimator seeks to denoise the signal (separate the meaningful fluctuations

in underlying firing rate from the noise introduced by the spiking process). This firing

rate estimation step is shown in Fig. 7.1. Panel (a) shows a single spike train (one

experimental trial) for each of N neural units. The spike train is shown as a train of

black rasters, where each raster (vertical tick) represents the occurence of a spike at

that time in the trial. The firing rate estimator seeks to process each of these noisy

spike trains into smooth, continuous-time firing rates that are denoised and simpler

to analyze, as shown in panel (b). Finally, in a BMI setting (our case of interest here),

these firing rates may then be used by a prosthetic decoding algorithm to estimate a

motor movement, as shown in Fig. 7.1, panel (c).

In this study, we review the methods that have been developed both classically

and more recently, from the fields of statistics, machine learning, and computational

neuroscience (see “Firing Rate Methods” below). We point to the relevant publica-

tions and give high level overviews of each method, noting a few potential strengths

and weaknesses with respect to the problem of estimating firing rates from single

spike trains.

Having reviewed several estimation methods, we then turn to the question of

performance. To date, no comparison between these methods exists; such comparisons

may assist researchers in determining what firing rate estimator is appropriate for

what application. In this study, we choose the BMI application of neural prosthetic

decode in an arm-reaching setting. We train a monkey to make point-to-point reaches

in a 2-D workspace. Using a multi-electrode array implanted in pre-motor/motor

cortex, we record spike trains from ten to fifteen neural units (we consider only high

quality single units) during this reaching task. There are many prosthetic decoding

algorithms that can decode the arm movement from the recorded neural activity

(some papers include: Georgopoulos et al. (1986); Brown et al. (1998); Serruya et al.

(2002); Taylor et al. (2002); Carmena et al. (2003); Kemere et al. (2004); Wu et al.

(2004); Brockwell et al. (2004); Carmena et al. (2005); Wu et al. (2006); Hochberg

et al. (2006); Yu et al. (2007); Srinivasan et al. (2007); Chestek et al. (2007); Velliste

et al. (2008)). Some of these algorithms use smooth estimates of firing rates as input.

Here we investigate how the performance of these decoders changes, depending on

what firing rate estimation method is used. In particular, we choose the widespread
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linear decoder (as recently used in Carmena et al. (2005); Chestek et al. (2007)) and

the Kalman filter (as recently used in Wu et al. (2002, 2004, 2006)). We individually

smooth thousands of spike trains (from many trials and many neural units) with each

firing rate estimation method, and we decode arm trajectories from these firing rate

estimates with the same decoding algorithms.

The purpose of this chapter then is both to review available firing rate estimators

and to get some understanding of their relevance to BMI applications. This study does

not attempt to address the many other important avenues for investigation in BMI or

spike train signal processing. For BMI performance, these avenues include at least:

prosthetic decode algorithms (Georgopoulos et al., 1986; Brown et al., 1998; Wu et al.,

2004; Brockwell et al., 2004; Wu et al., 2006; Srinivasan et al., 2007; Yu et al., 2007),

recording technology (Wise et al., 2004), the design of prosthetic end effectors and

interfaces, be that a robotic arm or computer screen (Schwartz, 2004; Velliste et al.,

2008; Cunningham et al., 2008b), and multiple signal modalities (e.g., EEG, ECoG,

LFP, and spiking activity) (Mehring et al., 2003). Two reviews in particular give a

thorough overview of these and other important areas of BMI investigation (Lebedev

and Nicolelis, 2006; Schwartz, 2004). For spike train signal processing, there are also

many avenues of research not addressed in this study, including at least: spike-sorting

(Lewicki, 1998), information-theoretic studies (Borst and Theunissen, 1999; Nirenberg

et al., 2001), neural correlations (Shlens et al., 2006; Pillow et al., 2008), methods

for multiple simultaneously recorded neurons (Chapin, 2004; Churchland et al., 2007;

Yu et al., 2009b), and more accurate spiking models (Johnson, 1996; Barbieri et al.,

2001; Ventura et al., 2002; Kass and Ventura, 2003; Truccolo et al., 2005; Koyama

and Kass, 2008). Two reviews in particular discuss these and other issues in spike

train processing (Brown et al., 2004; Kass et al., 2005).

Linking methodological developments to observable physical behavior (such as

neural prosthetic decode performance) is critical for increasing the adoption and use-

fulness of these methods. This study takes an important first step in that direction

for the problem of firing rate estimation.
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7.2 Firing Rate Methods

This section reviews several popular and current firing rate estimation methods. We

introduce each method at a high level, point to relevant publications, and suggest

potential advantages and disadvantages of each. We then summarize the reviewed

methods and discuss related methods and other possibilities that are not yet included

in literature.

7.2.1 Kernel Smoothing (KS)

The most common historical approach to the problem of estimating firing rates has

been to collect spikes from multiple trials in a time-binned histogram known as a

peri-stimulus-time histogram (PSTH), which produces a piecewise constant estimate.

To achieve a smooth, continuous firing rate estimate, as is often of interest in single

trial settings (such as neural prostheses), researchers instead typically use kernel

smoothing (KS); that is, they convolve the spike train with a kernel of a particular

shape (e.g., Nawrot et al. (1999)). This convolution produces an estimate where the

firing rate at any time is a weighted average of the nearby spikes (the weights being

determined by the kernel). A Gaussian shaped kernel is most often used (see, e.g.,

Kass et al. (2005)), and this kernel serves to smooth the spike data to a firing rate

that is higher in regions of spikes, lower otherwise. However, The kernel shape and

time scale (e.g., the standard deviation of the Gaussian) are frequently chosen in an

ad hoc way, which largely alters the frequency content of the resulting estimate (in

other words, how quickly firing rate can change, and how susceptible the estimate is

to noise).

The most obvious advantage of kernel smoothing is its simplicity. KS methods

are extremely fast and simple to implement, which has led to wide adoption. In

this study, we implement three Gaussian kernel smoothers of various bandwidths

(which determine smoothness): 50ms standard deviation (KS50), 100ms (KS100), and

150ms (KS150). These are common choices for single trial studies, and they produce

significantly different estimates of firing rate. This ad hoc choice of smoothness is

typically considered a major disadvantage of KS methods.
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7.2.2 Adaptive Kernel Smoothing (KSA)

In Richmond et al. (1990), the authors address two concerns with standard KS: first,

the ad hoc smoothness choice as noted above, and second, the fact that the kernel

width can not adapt at different regions of smoothness in the firing rate. We call

this fixed frequency behavior stationarity. KSA incorporates a nonstationary kernel

to allow the spike train to determine the extent of firing rate smoothness at various

points throughout the trial. It does so by forming first a stationary firing rate estimate

(called a pilot estimate), and from that pilot, it forms a set of local kernel widths

at the spike events. These local kernels are then used to produce a smoothed firing

rate that changes more rapidly in regions of high firing, and less in regions of less

firing. This trend is sensible, as regions of little spiking give fewer observations into

the firing rate process underlying the data.

KSA benefits from the simplicity of KS methods, and the added complexity of

the local kernel widths increases the computational effort only very slightly. Further,

this approach lifts the strict stationarity requirement of many methods. A possible

shortcoming is that, even though it adapts the kernel width, KSA still requires an ad

hoc choice of kernel width for the pilot estimate.

7.2.3 Kernel Bandwidth Optimization (KBO)

In KS methods, as latter sections in this paper will show, the ad hoc choice of smooth-

ness can have a significant impact on the firing rate estimate. KBO seeks to remove

this shortcoming of kernel smoothing by establishing a principled approach to choos-

ing the kernel bandwidth. In Shimazaki and Shinomoto (2007b), a method is devel-

oped for automatically choosing the bin width of a PSTH. By assuming that neural

spike trains are generated from an inhomogeneous Poisson process (i.e., a Poisson

process with time-varying firing rate), the authors show that the mean squared er-

ror (MSE) between the PSTH and the true underlying firing rate can be minimized

using only the mean rate (rate averaged across time), without knowledge of the true

underlying firing rate.

In Shimazaki and Shinomoto (2007a), this PSTH method is adapted to similarly

optimize the bandwidth of a smoothing kernel. The authors of that report provide a
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simple algorithm for the popular Gaussian kernel, which we implemented for the pur-

poses of this study. Once the optimal kernel bandwidth is chosen with the algorithm

of Shimazaki and Shinomoto (2007a), we then perform standard kernel smoothing (as

defined in KS above) with the optimized kernel bandwidth. We refer to this method

as KBO.

We also note here a method quite similar in spirit to KBO. In Nawrot et al.

(1999), a heuristic method is developed to find the optimal bandwidth of a kernel

smoother. We also implemented this method and found that, with the particular

motor cortical data of interest for this BMI study, the method of Nawrot et al.

(1999) produced very often a flat, uninformative firing rate function (i.e., a very large

kernel bandwidth). Accordingly, we chose the newer, principled method of Shimazaki

and Shinomoto (2007a,b) (which produces a range of different kernel bandwidths,

depending on the spike data) to demonstrate the performance of kernel bandwidth

optimization methods.

KBO has the advantage of simple implementation and correspondingly very fast

run time (only slightly longer than a regular kernel smoother, due to the overhead

required to calculate the optimal bandwidth). Shortcomings of this approach may in-

clude the Poisson spiking assumption (required for this method), as much research has

shown that neural spiking often deviates significantly from Poisson spiking statistics

(see, e.g., Barbieri et al. (2001); Miura et al. (2007); Paninski et al. (2004a)).

7.2.4 Gaussian Process Firing Rates (GPFR)

All kernel smoothing methods, including KS, KSA, and KBO as above, act as low

pass filters to produce a smooth, time-varying firing rate. Alternatively, several meth-

ods take a probabilistic approach. If one assumes a prior probability distribution for

firing rate functions (e.g., some class of smooth functions), and a probability model

describing how spikes are generated, given the underlying firing rate (e.g., an inhomo-

geneous Poisson process (Daley and Vere-Jones, 2002)), one can then use Bayes rule

(Papoulis and Pillai, 2002) to infer the most likely (or expected) underlying firing rate

function, given an observation of one or multiple spike trains. The following methods

- GPFR, BARS, and BB - are variations on this general approach.

In Cunningham et al. (2008c), firing rates are assumed a priori to be draws from

a Gaussian process. Gaussian processes place a probability distribution on firing
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rate functions which allow all functions to be possible, but strongly favor smooth

functions (Rasmussen and Williams, 2006). This study then assumes that, given

the firing rate function, spike trains are generated according to an inhomogeneous

Gamma interval process, which is a generalization of the familiar Poisson process

to allow spike history effects such as neuronal refractory periods. Bayesian model

selection and Bayes’ rule are then used to infer the most likely underlying firing

rate function, given an observation of one or multiple spike trains. Owing to this

probabilistic model, the computational overhead of such a firing rate estimator can be

significant, so the authors developed numerical methods to alleviate these challenges

(Cunningham et al., 2008a).

GPFR has the advantage of using a probabilistic model, which allows automatic

smoothness detection (in contrast to the ad hoc smoothness choices made in, for ex-

ample, KS), and which naturally produces error bars on its predictions (which may

be useful for data analysis purposes). GPFR also has the benefit of being able to

readily incorporate different a priori assumptions about firing rate (such as known,

stimulus-driven nonstationarities in the firing rate, which can be controlled through

the Gaussian process prior). Even with the significant computational improvements

developed in Cunningham et al. (2008a), GPFR still requires seconds of compu-

tational resource (for spike trains roughly one second in length), which may be a

disadvantage compared to kernel smoothers (which work in tens to hundreds of mil-

liseconds).

7.2.5 Bayesian Adaptive Regression Splines (BARS)

Instead of a Gaussian Process prior on smooth firing rate functions, BARS, as in-

troduced and used in DiMatteo et al. (2001); Kass et al. (2005); Kaufman et al.

(2005); Behseta and Kass (2005), models underlying firing rate with a spline basis.

Splines generally are piecewise polynomial functions that are connected at time points

called “knots.” In DiMatteo et al. (2001), the authors choose a prior distribution on

the number of knots, the position of the knots, and other parameters of the spline

function. Conditioned on firing rate, BARS then assumes that spikes are generated

according to a Poisson spiking process.

This model choice allows Bayesian inference to be carried out. Owing to the forms

of the probability distributions chosen, approximate inference methods must be used
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(an analytical solution is intractable). BARS uses the well established techniques

of reversible-jump Markov chain Monte Carlo and Bayesian information criteria to

estimate the underlying firing rate (which in this case is the mean of the approximate

posterior distribution, given the observed data). BARS is fully described in DiMatteo

et al. (2001), and further applications and explanations can be found in Olson et al.

(2000); Kass et al. (2005); Kaufman et al. (2005); Behseta and Kass (2005). This study

uses the MATLAB implementation of BARS available at the time of publication at

http://lib.stat.cmu.edu/~kass/bars/bars.html

One major advantage of BARS is that the spline basis allows different regions

of firing rate to change more or less smoothly, which allows high frequency changes

in rate while still removing high frequency noise (this is not possible in traditional

kernel smoothers). Further, like other probabilistic methods, BARS produces an

approximate posterior distribution on firing rates, so valuable features like error bars

are available. BARS, like GPFR, suffers from technical complexity that translates

into meaningful computational effort and run-time, compared to more basic kernel

smoothers.

7.2.6 Bayesian Binning (BB)

Instead of assuming a continuous, time-varying firing rate as in many of the above

approaches, the authors of Endres et al. (2008) assume neural firing rates can be

modeled a priori by piecewise constant regions of varying width (in contrast to a

fixed-width binning scheme like the classic PSTH). This BB approach, like BARS

and GPFR, constructs a probabilistic model for spiking, where both the firing rates

in piecewise constant regions and the boundaries between the regions themselves have

associated probability distributions (together, the boundaries and the firing rates at

each interval fully specify a firing rate function). BB then assumes an inhomogeneous

Bernoulli process for spiking (i.e., each time point contains 0 or 1 spikes), given the

underlying firing rate.

With these assumptions made, Bayes rule is then used to infer the underlying

firing rate from the above model. Importantly, because the boundaries and height

of the firing rate bins are probabilistic, the result of this firing rate inference is a

smooth, time-varying firing rate, and BB is thus comparable to the other methods

highlighted in this study. The BB method is fully described in Endres et al. (2008),
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Table 7.1: Summary of reviewed firing rate methods.

Method

KS KSA KBO GPFR BARS BB

Automatic Smoothness Detect. N N Y Y Y Y

Probabilistic Model N N N Y Y Y

Runtime/Comp. Complexity millisec. millisec. millisec. seconds seconds minutes

Nonstationary Smoothness N Y N N Y Y

Spike History Effects N N N Y N N

and we implemented the algorithm using the authors’ source code, which is available

at the time of publication at http://mloss.org/software/view/67/.

Like GPFR and BARS, BB has the advantage of being a fully probabilistic model,

which allows automatic smoothness detection (in contrast to the ad hoc smoothness

choices made in, for example, KS), and which produces error bars on its predictions.

Also, like BARS and KSA (and unlinke GPFR, KBO, and KS), BB is a nonstationary

smoothing model, so it can adapt its smoothness to regions of faster or slower firing

rate changes. However, as BB constructs a thorough probabilistic model for spiking

and solves it exactly, the method requires significant computational resource (gener-

ally an order of magnitude more than BARS and GPFR, the other computationally

expensive methods), which may limit the use of BB in some applications.

7.2.7 Summary of Reviewed Methods

These methods were chosen in that they all can be used as single trial, single neuron

firing rate estimators (as is relevant for neural prosthetic applications). In Fig. 7.2, we

show four examples of firing rates inferred by all eight methods reviewed above. Each

panel represents a different spike train, which is denoted above the firing rates as a

train of black rasters (as in Fig. 7.1). These four panels show a range of spiking pat-

terns, including: (a) high firing, (b) sharply increasing activity, (c) sharply decreasing

activity, and (d) low firing. Though there are infinite possible firing rate patterns,

these four example spike trains illustrate the wide range of firing rates profiles that

can be estimated from the same neural activity, depending on the estimation method

used.

The methods above also demonstrate a range of approaches and features that one

might consider in designing a firing rate estimator. Table 7.1 compares the above
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(a) High firing rate (L2006B.196.243)
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(b) Sharp increase (L2006B.301.60).
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(c) Sharp decrease (L2006B.170.92).
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(d) Low firing rate (L2006B.170.216).

Figure 7.2: Example of various firing rate methods applied to data from different
neurons and different trials. Each method (see legend) produces a smooth estimate
of underlying firing rate from each of the four separate spike trains. The spike trains
are represented as a train of black rasters above each panel. Note that KBO obscurs
KS50 in panel (c).

methods in terms of five important features, where we indicate generally desireable

features in green and undesireable features in red. The first row notes which methods

offer principled, automatic determination of the firing rate smoothness (vs. choosing

a kernel bandwidth in an ad hoc way). The second row indicates if the method

is a proper probalistic model, which carries advantages previously discussed. The

drawback of probabilistic models lies in their computational complexity (and, as a

result, run time); the third row of Table 7.1 details ballpark run-time requirements for

estimating one firing rate function from one single spike train. The fourth row details

which methods are nonstationary; that is, which methods can adapt the smoothness

of the estimate at different points in the spike train. Finally, we also noted above that

spike trains are known to depart significantly from Poisson statistics (e.g., refractory
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periods); the fifth row illustrates which methods are Poisson-based and which are not.

It is important to note that all of these methods can also be used for multiple-

trial firing rate analyses. Some methods, including BARS and BB, were introduced

more with a multi-trial motivation than a single-trial motivation. This study makes

no claim on the effectiveness of any of these methods at larger numbers of trials,

as such a circumstance is not germane to BMI applications. Thus, the forthcoming

results should not be viewed as a statement about the quality of a particular firing

rate estimator in general, but rather for the single-trial analyses that are relevant in

BMI studies.

7.2.8 Other Related Methods

Despite the range of methods already discussed, the above list of recent and clas-

sic firing rate estimators is by no means exhaustive. We here discuss a few other

possibilities and avenues of investigation not covered by the above methods.

First, we note that none of the above methods are implemented as cross-validation

schemes (Bishop, 2006). The probabilistic models (GPFR, BARS, BB) all do Bayesian

model selection to adapt their smoothness. KBO uses an MSE criterion and KSA uses

a criteria based on the amount of local spiking to adapt their smoothness, whereas KS

uses only a user-defined kernel width choice. Another possibility is to cross-validate,

where other trials of data are used to inform the parameter (e.g., smoothness) choices

when estimating firing rate on a novel spike train (Bowman (1984) reports on the

related topic of probability density estimation). For example, one might believe that

all firing rates in a particular BMI application evolve with roughly equal smoothness.

Even though the firing rates may be quite different trial to trial, one could cross-

validate with some criterion (such as decode performance) to choose the smoothness

for the firing rate estimation on the new spike train in question. This report does not

review that possibility, as we wish to focus on methods that produce firing rates from

spike trains based on only those spike trains (not a validation set). Further, many,

if not all, of the above methods could incorporate a cross-validation scheme: for

example, GPFR, BARS, and BB could choose their parameters via cross-validation

instead of Bayesian model selection. Thus, cross-validation is a feature of model

selection more than it is of the firing rate method used, and we chose to focus on the

methods as previously published.
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Second, we also note that the methods outlined above are all unsupervised, in that

they infer firing rates without knowledge of an extrinsic covariate such as the path

of a rat foraging in a maze, or the kinematic parameters of a moving arm. Instead,

if one has a good idea about how some measureable behavior translates to firing

rate, one might assume a parametric form for firing rate based on behavior, learn

the parameters from the data, and use that model to infer time-varying firing rate.

Some studies using this approach include Brown et al. (1998); Barbieri et al. (2001);

Brown et al. (2002); Ventura et al. (2002); Eden et al. (2004); Truccolo et al. (2005);

Stark et al. (2006); Pillow et al. (2008). These approaches are specific to particular

neural areas, particular experimental setups, and they are susceptible to biases of

their own. Thus, we chose not to review these techniques to again focus on methods

that produce firing rates for a given spike train, using that spike train alone.

Third, we note that, although the methods described above are quite specific,

there are many areas in which they can be extended or combined with other ap-

proaches. Simple first examples include: KBO and KSA could be combined in a

two-stage method, or the method of Miura et al. (2007) could replace a part of the

model selection method in GPFR. As a more interesting example, one advantage of

probabilistic models (including BARS, GPFR, and BB) is that they can readily be

extended to different spiking probability models. One spiking model, the so-called

generalized linear model (GLM), has received much attention of late (Eden et al.,

2004; Barbieri et al., 2001; Truccolo et al., 2005; Srinivasan et al., 2007; Coleman and

Sarma, 2007; Czanner et al., 2008; Koyama and Kass, 2008; Pillow et al., 2008) for

its ability to model neural spiking quite well and its flexibility in being extended to

many different problem domains. This GLM spiking model may inform firing rate

estimation as well.

Finally, we note that all the methods above are single-neuron firing rate estima-

tors that are independent of the activity of other neurons. Firing rate estimation

methods that consider multiple units (as is often collected with electrode arrays in

BMI experiments) may be able to leverage the simultaneity of recordings to improve

the quality of firing rate estimates. Some work has begun to investigate this general

question, including (Chapin, 2004; Brown et al., 2004; Churchland et al., 2007; Pillow

et al., 2008; Yu et al., 2009b) (and the GLM model of Czanner et al. (2008) could also
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be readily extended for this purpose). However, none of these multi-dimensional ap-

proaches specifically addresses unsupervised firing rate estimation as do the methods

of this report, so we will leave multidimensional extensions to future work.

In summary, the problem of firing rate estimation (and, more generally, inferring

meaningful information from spiking data) is quite broad. The methods reviewed in

this report are all directly comparable, but there are many opportunities for exten-

sions and adaptations of these models.

7.3 Paradigm for Evaluating Firing Rate Methods

Having reviewed several firing rate estimators, we now investigate their relevance

for neural prosthetic applications. We first describe the experimental setting we

employed to study this question (“Reach Task and Neural Recordings” below). We

then describe two popular prosthetic decoding algorithms (“Decoding Algorithms”

below) and performance metrics (“Calculating Decode Performance” below) that we

can use to evaluate the quality of our firing rate estimation.

7.3.1 Reach Task and Neural Recordings

Animal protocols were approved by the Stanford University Institutional Animal Care

and Use Committee. We trained an adult male monkey (Macaca mulatta) to perform

point-to-point reaches on a 5-by-5 grid (25 targets) for juice rewards. Visual targets

were back-projected onto a fronto-parallel screen 30 cm in front of the monkey. The

monkey began each trial with his hand held at a particular target, which must be held

for a random time interval. These hold times were exponentially distributed with a

mean of 300 ms (but shifted to be no less than 150 ms). This exponential distribution

prevented the monkey from preempting the movement cue. After the hold time, a

pseudo-randomly chosen target was presented at one of the target locations. The 25

targets were spaced evenly on an 8 cm by 8 cm grid. Concurrent with the target

presentation, the current hold point disappeared, cueing the monkey to reach to the

target (the “go cue”). The monkey was motivated to move quickly by a reaction

time constraint (maximum allowable reaction time of 425 ms, minimum of 150 ms,

again to prevent preemption). The monkey reached to the target and then held the

target for 300 ms, after which the monkey received a liquid reward. The next trial
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Figure 7.3: Cartoon of the reaching task as in L2006A and L2006B. Four sample trials
are shown (one each in magenta, cyan, red, and green).

started immediately after the successful hold period. In total, all trials are 850 to

1500 ms long (these times vary depending on the length and speed of the reach and

the randomized hold time). Fig. 7.3 illustrates four sequential trials of the reaching

task.

During experiments, the monkey sat in a custom chair (Crist Instruments, Hager-

stown, MD) with the head braced. The presentation of the visual targets was con-

trolled using the Tempo software package (Reflective Computing, St. Louis, MO). A

custom photo-detector recorded the timing of the video frames with 5 ms resolution.

The position of the hand was measured in three dimensions using the Polaris optical

tracking system (Northern Digital, Waterloo, Ontario, Canada; 60 Hz, 0.35 mm ac-

curacy), whereby a passive marker taped to the monkey’s fingertip reflected infrared

light back to the position sensor. Eye position was tracked using an overhead infrared

camera (Iscan, Burlington, MA; 240 Hz, estimated accuracy of 1 � ).

A 96-channel silicon electrode array (Cyberkinetics, Foxborough, MA) was im-

planted straddling dorsal pre-motor (PMd) and motor (M1) cortex (left hemisphere),

as estimated visually from local landmarks, contralateral to the reaching arm. Surgi-

cal procedures have been described previously (Churchland et al., 2006b; Santhanam

et al., 2006; Hatsopoulos et al., 2004). Spike sorting was performed offline using tech-

niques described in detail elsewhere (Sahani, 1999; Santhanam et al., 2004; Zumsteg

et al., 2005). Briefly, neural signals were monitored on each channel during a two

minute period at the start of each recording session while the monkey performed the

behavioral task. Data were high-pass filtered, and a threshold level of three times
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the RMS voltage was established for each channel. The portions of the signals that

did not exceed threshold were used to characterize the noise on each channel. During

experiments, snippets of the voltage waveform containing threshold crossings (0.3 ms

pre-crossing to 1.3 ms post-crossing) were saved with 30 kHz sampling. After each

experiment, the snippets were clustered as follows. First, they were noise-whitened

using the noise estimate made at the start of the experiment. Second, the snippets

were trough-aligned and projected into a four-dimensional space using a modified

principal components analysis. Next, unsupervised techniques determined the opti-

mal number and locations of the clusters in the principal components space. We then

visually inspected each cluster, along with the distribution of waveforms assigned to

it, and assigned a score based on how well-separated it was from the other clusters.

This score determined whether a cluster was labeled a single-neuron unit or a multi-

neuron unit. For this report, as many firing rate methods are based on biophysical

properties of single neurons, we use units labelled only as high quality, single-neuron

units.

The monkey (monkey L) was trained over several months, and multiple data sets

of the same behavioral task were collected. We chose two such data sets to evaluate

prosthetic decode (L2006A and L2006B), from which we took 14 and 15 high quality,

single-neuron units, respectively (note that more units would be available were we to

consider “possible single units” or multi-units, as is often done in prosthesis studies).

For the purposes of this study, we selected the first 300 successful trials (about five

minutes of neural activity and physical behavior), which is ample for fitting the de-

coding models used here. Thus, we use two data sets, each with 14 or 15 neural units

and 300 experimental trials. This produces a total of 8700 spike trains that were all

analyzed by each of the 8 firing rate methods (and subsequently by the two decoding

algorithms). Across all these firing rate estimations and their subsequent prosthetic

decodes, this analysis required roughly four weeks of fully dedicated processor time

on five to ten 2006-era workstations (Linux Fedora Core 4 with 64 bit, 2.2-2.4GHz

AMD processors and 2-4GB of RAM) running MATLAB.

7.3.2 Decoding Algorithms

Having detailed the experimental collection of neural spike trains and physical behav-

ior, and having reviewed methods for processing spike trains into firing rates, we now
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address how to decode arm trajectories from neural firing rates. As with the firing

rate methods above, we discuss the methods at a high level and point to the relevant

literature which offers more methodological description.

Linear Decode

The Linear Decode algorithm, as used for example in Carmena et al. (2005); Hochberg

et al. (2006); Chestek et al. (2007), is a simple first approach to decoding arm tra-

jectories from neural activity. This algorithm assumes the physical behavior at a

particular time t is a linear combination of all recorded neural activity (across all N

recorded neural units) that preceeds t by some amount of time. We chose to con-

sider the preceeding 300ms of neural activity1. This period of neural activity can

be considered a row in a matrix of firing rates (as many rows as time points in the

experimental trials). If each dimension of the behavior (e.g., horizontal hand position

and vertical hand position) is a vector of length also equal to the number of time

points, then simple least squares can solve for the linear weights that relate neural

activity to physical behavior. These weights can then be applied to novel neural ac-

tivity to produce a decoded reach trajectory, which hopefully matches the true reach

well. More mathematical details can be found in, e.g., Chestek et al. (2007).

For completeness, we note here a few specifics of our implementation of this algo-

rithm. To provide the algorithm with a finely time-resolved firing rate, we sampled

the firing rate estimates (from all firing rate methods) every 5ms. We found that

increasing this sampling rate did little more than increase the computational burden

of the decode, and reducing this rate ignored features of the firing rate estimates,

which would be detrimental to our comparison of methods. Further, because of the

300ms integration window and the trial structure of the data (there is a time break

in between each trial), for the decode analysis, we decode only the length of the trial

beginning 300 ms after the beginning of the trial (this prevents the linear decode filter

from going into a region of undefined neural activity). Owing to the random hold

time and the reaction time of the monkey (both enforced to be no less than 150ms,

1We chose 300ms as a number on par with the timescale of arm movements and motor processing.
Ideally, one might run this analysis at a variety of temporal window sizes. However, we note that
this choice has no discernable bias in favor of any particular firing rate estimation method. We also
found that using 300ms produced decode results of similar quality to using longer periods. Finally,
we note that the Kalman Filter does not make this assumption, providing yet another cross-check.
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see “Reach Task and Neural Recordings” above), there was no movement for the first

300ms of the trial, so this step is reasonable. Furthermore, we found that including

this portion of the trials did not change the result considerably.

Kalman Filter

To employ the popular Kalman Filter (Kalman, 1960), we assume that the arm

state (in this case, horizontal and vertical position and velocity) evolves as a linear

dynamical system: the arm state at discrete time t is a linear transformation of the

arm state at time t − 1, plus Gaussian noise. We also assume a linear relationship

between arm state and neural activity at that time t (again, plus noise). With this

done, the Kalman Filter allows the inference of the hand state from the observation

of neural data only. Starting from arm state at the beginning of the trial, the Kalman

filter proceeds iteratively through time, updating its estimates of arm state and error

covariance at every time step t, before and after the inclusion of neural data at

that time step. These steps are entirely based on mathematical properties of the

Gaussian, and the algorithm is fast and stable. Importantly, the Kalman Filter

has been previously and successfully used as a BMI decoding algorithm, and more

explanation and mathematical detail can be found in Wu et al. (2002, 2004, 2006).

As above, we note here a few implementation specifics. To parallel with the Linear

Decode, we also sampled firing rates at 5ms intervals when fitting the Kalman Filter

model and when estimating reach trajectories from it. In the Linear Decode, we chose

to remove the first 300ms of the trial, during which the monkey did not move. In

the Kalman Filter decodes, we truncated 300ms from the end of the trials. Choosing

this slightly different time interval allows us to look across the Linear Decode and the

Kalman Filter and rule out any potential idiosyncracies with the starting and ending

of a trial. We also varied this choice and found that it had no effect on the relative

decode performance of the different firing rate methods. Next, we note that we

included horizontal and vertical position and velocity in our arm state. Acceleration

is sometimes included, but the inclusion of this data in our Kalman Filter had little

effect on the decode quality, so we chose not to consider it further. Finally, we note

that we did not impose a temporal lag (or a group of lags) between neural data and

physical behavior. Our testing with different lags produced minor differences that

agreed generally with the results of Wu et al. (2006). As this aspect did not influence
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(a) Reasonable decodes (L2006A.231).
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(b) Reasonable decodes (L2006A.154)
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(c) Better decodes (L2006A.69).
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(d) Failed decodes (L2006A.169).

Figure 7.4: Example of decoded arm trajectories derived from different firing rate
estimates of the same neural data (see legend). All data shown are decoded using a
Kalman Filter and the data set L2006A. In all cases the true reach is shown in black
(moving from black square hold point to the yellow square target). To give an idea
of the velocity profile of the true reach and decoded trajectories, marks are placed on
each trajectory at 20ms intervals.

the comparisons between firing rate estimators, we do not report further on it.

To provide a sample of these decodes, we show in Fig. 7.4 four decoded trials

from L2006A that use the Kalman Filter. Each panel shows the true reach as a

black trace moving from the black square hold point to the yellow square target.

Trajectories decoded with each firing rate method (but the same neural data) are

shown in colors corresponding to those in Fig. 7.2 (see legend). Marks are placed

on each trajectory at 20ms intervals to give an idea of decoded velocity profiles.

Panels (a) and (b) show reasonably average decodes (in terms of the RMS error,

see the panel captions). Panel (c), a trial which decodes rather well, shows the wide

variety of decoded trajectories that can arise from different firing rate estimations (but

the same spike trains). Finally, Fig. 7.4, panel (d), shows that indeed the Kalman
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Filter, like the Linear Decode (not shown) does sometimes fail entirely to decode the

true reach, regardless of the firing rate method used. In the following sections, we

generalize these specific examples, calculating performance metrics across all trials,

decode methods, and data sets.

7.3.3 Calculating Decode Performance

Given any decoded arm trajectory, there are a number of possible metrics to evaluate

accuracy. We use two of the most common metrics: root-mean-square error (RMSE)

and correlation coefficient. For any given firing rate method, RMSE on each trial is

the square root of the mean of the squared errors (across time) between the true arm

trajectory and the decoded trajectory. RMSE is likely the most often-used perfor-

mance metric; some examples of its use (or MSE, which is simply RMSE squared)

include: Serruya et al. (2002); Brockwell et al. (2004); Kemere et al. (2004); Wu et al.

(2006); Yu et al. (2007); Srinivasan et al. (2007). Correlation coefficient (ρ or r2) is

another commonly used performance metric that reflects how well the decoded tra-

jectory matches the true arm trajectory. Considering each time step as a draw from

a random variable, this metric correlates the true and decoded trajectories across

time to calculate how well one trajectory predicts the other (ρ = 1 implies perfect

linear correlation). Some previous literature using correlation coefficients to evaluate

decode performance includes (Wu et al., 2002; Carmena et al., 2005; Wu et al., 2006;

Chestek et al., 2007).

To calculate these performance metrics, we use leave-one-out cross validation

(LOOCV) (Bishop, 2006). That is, for each data set, we select one experimental

trial (one arm trajectory) to test, and we exclude both that trial’s neural activity

and physical behavior. We then train a decoder model based on the other 299 trials

collected in that data set (L2006A or L2006B). We can then use the decode algorithm

(Linear Decode or Kalman Filter) to decode the arm trajectory on the excluded trial,

using only the neural activity from that trial. We repeat this same procedure 300

times (once per trial), which provides 300 decoded trials. We calculate the RMSE

for each trial, and then we can average these and produce 95% confidence intervals

(Zar, 1999). We also correlate all the decoded arm trajectories with the true tra-

jectories, producing one overall correlation coefficient ρ and 95% confidence intervals

on the estimate of this metric (see Zar (1999), section 19.3 for details on calculating
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(d) Vertical hand position, L2006B.

Figure 7.5: The decode performance of spike trains smoothed with different firing
rate methods. Error is root mean squared error (RMSE). In all panels, red bars are
decode performance with a Linear Decode; green bars are performance numbers with
a Kalman Filter. Error bars indicate the 95% confidence interval.

confidence intervals for a population correlation coefficient).

7.4 Performance Results

In “Firing Rate Methods” above, we described a host of methods that estimate firing

rates from experimentally gathered spike trains. We then used these firing rates to

decode arm trajectories using two different decoding algorithms (above in “Decoding

Algorithms”) and two different performance measures (above in “Calculating Decode

Performance”). We now compare different firing rate estimation methods in terms of

their decode performance.

In Fig. 7.5 and Fig. 7.6, we show the RMSE and correlation coefficient results
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(b) Vertical hand position, L2006A.
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(c) Horizontal hand position, L2006B.
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(d) Vertical hand position, L2006B.

Figure 7.6: The decoder performance of spike trains smoothed with different firing
rate methods. Vertical axis is correlation coefficient with the true reach. In all panels,
red bars are decode performance with a linear filter; green bars are performance
numbers with a Kalman Filter. Error bars (vanishingly small) indicate the 95%
confidence interval on the estimate of the correlation coefficient (see Zar (1999)).

(respectively) from several different decoding scenarios. Each panel shows the decode

performance across all eight of the reviewed firing rate methods (KS50, KS100, KS150,

KSA, KBO, GPFR, BARS, and BB). Within each panel, red bars represent the

decode error using the Linear Decode method, and green bars represent the decode

error using the Kalman Filter method. Panels (a) and (b) show decoding results from

data set L2006A, and panels (c) and (d) show results from data set L2006B. Also, the

left panels (a and c) and the right panels (b and d) show the results from decoding

horizontal and vertical hand position, respectively. Thus, each firing rate estimate

has sixteen performance metrics (two decode methods, two data sets, horizontal and

vertical dimensions, RMSE and correlation coefficient). This variety is important to

ensure that any effects are robust across data sets and decode algorithms and different
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strengths of neural tuning.

First, we note several important cross-checks with existing literature. The RMSE

and correlation coefficient numbers match well to the results of, for example, Wu et al.

(2002, 2006); Yu et al. (2007); Chestek et al. (2007). The errors are in some cases

higher than those seen in previous literature, which may be due to the complexity

of this task (vs. a simpler, center-out task as in Yu et al. (2007)) or the restrictive

choice of using only single neural units (rather than the many more multi-units which

are often informative in a decode setting). Indeed, when we altered the number of

neural units, the absolute decode performance changed as expected, but the relative

differences between the decode results (from the various firing rate methods) did not.

Accordingly, we are satisfied that the selected neural populations are representative.

Specifically to the Linear Decode, our performance may also be different in that we

used only 300 ms of preceeding neural data vs. prior literature which has used, for

example, 1000 ms (Chestek et al., 2007) or 550 ms (Wu et al., 2002). Specifically to

the Kalman Filter, as noted above, our performance may also be different in that we

did not impose a temporal lag between neural data and physical behavior. Again,

we tested changing the temporal lags and found relative performance between firing

rate methods insensitive to this choice, so we are satisfied that this choice is also

representative. We also visually compared trajectories decoded in this study (e.g.,

Fig. 7.4) to decoded trajectories from Wu et al. (2002, 2006), and we found these

similar, giving confidence that we are successfully reproducing similar decode quality

as existing literature.

The most salient feature in Fig. 7.5 and Fig. 7.6 is the similarity in performance

across all firing rate methods. Let us consider, for example, the Kalman Filter results

from Fig. 7.5, panel a. Looking across these eight green bars, there is no statistically

significant difference between the RMSE results produced by any of the methods.

If we consider different decoding algorithms (Linear Decode - red bars - or Kalman

Filter - green bars), different performance metrics (RMSE - Fig. 7.5 - or correlation

coefficient - Fig. 7.6), different dimensions of physical activity (horizontal - left panels

- or vertical - right panels), and different data sets (L2006A - upper panels - or L2006B

- lower panels), the story is unchanged: all seem to produce very similar performance

results no matter what firing rate estimation method is used. In some cases the

Kalman Filter may generally outperform (Fig. 7.5, panel d) or underperform the
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Linear Decode (Fig. 7.6, panel c), or there may be generally higher error in data set

L2006A than L2006B. In all cases though, there is very little trend that can be seen in

the data suggesting that one firing rate method consistently outperforms any other.

This finding is perhaps surprising, given the variety of firing rate estimates that are

produced from the same spike trains using these different methods, as seen in Fig. 7.2.

We further note that, from our testing, this similarity in decode performance re-

mains if different numbers of neurons are used, or if different lengths of trials are con-

sidered, or if different temporal lags are imposed between neural activity and physical

behavior (as is often done in BMI studies), or if the firing rate data is considered at

finer or coarser time intervals. In addition to these summary performance statistics,

we note that, from our visual inspection of many decoded trials (e.g., Fig. 7.4), all

the firing rate estimators had the same performance in terms of how many decoded

trajectories we described as “better” (cf. Fig. 7.4, panel c), “reasonable” (Fig. 7.4,

panels a and b), and “failed” (Fig. 7.4, panel d). Thus, across all quantitative and

qualitative analysis of the data that we have investigated, firing rate estimation of-

fers little difference in terms of the quality of prosthetic decode. We discuss the

implications of this seemingly general finding below.

7.5 Discussion and Conclusions

Optimally inferring neural firing rates from spike trains is an unanswered research

question, and many groups have addressed this interesting problem. In this chapter,

we reviewed some recent and some classic firing rate estimators. We discussed the

theoretical motivation for each and discussed some potential advantages and disad-

vantages of competing methods. Firing rate estimation is a broad question that is

applicable to neuroscientific and BMI applications, multiple and single trials, mul-

tiple and single neurons, and more. Each firing rate method should be considered

specifically for its potential applications.

In this chapter, after reviewing these methods, we investigated the relevance of

firing rate estimation methods for an important BMI application: decoding individ-

ual arm movements from simultaneously recorded neural populations. We trained a

monkey in a standard reaching paradigm (as described in “Reach Task and Neural
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Recordings” and in Fig. 7.3), and we used two standard decoding algorithms to es-

timate arm trajectories from neural activity. These algorithms - the Linear Decode

and the Kalman Filter (as described in “Decoding Algorithms”) - accept as input

neural firing rates over a population of neurons. Using the same neural spike trains,

we inferred neural firing rates using eight different firing rate methods, and then we

decoded arm trajectories using these firing rates.

Though the firing rates found by all eight methods appear quite different (see

Fig. 7.2), the decoding test indicated that in fact firing rate estimation matters very

little for this domain of prosthetic decode. We showed in Fig. 7.5 and Fig. 7.6 that

RMSE and correlation coefficients of the decode are rather insensitive to the firing

rate estimation method that is used to process the neural spike trains. Looking across

two dimensions of decode (horizontal and vertical), two different data sets with differ-

ent neural populations (L2006A and L2006B), and two different decoding algorithms

(Linear Decode and Kalman Filter), no discernable trend appears to indicate that

one method (or one class of methods) is unambiguously better than any other. Thus,

we believe the relevance of firing rate estimation, as it pertains to neural prosthetic

decode, is in doubt.

Naturally the question then arises: how do such different firing rates (as in Fig. 7.2)

produce such similar decode performance (as in Fig. 7.5 and Fig. 7.6)? We consider

three possible explanations: (1) the decoding algorithms themselves are insensitive

to differences in firing rate estimation; (2) the firing rate methods all have particu-

lar strengths and weaknesses but result in essentially the same signal-to-noise ratio

(SNR); and (3) the ability to decode depends much more on factors other than firing

rate estimation, and thus the firing rate estimator is not meaningful.

To the first point, if the decoding algorithms themselves smoothed over any differ-

ences in the firing rate estimations, we might expect very similar decoded trajectories.

However, the different firing rate methods do in fact produce quite different decoded

trajectories. Fig. 7.4 demonstrates this variety in four sample cases. Across the Lin-

ear Decode and the Kalman Filter, we find that the RMSE between different decoded

trajectories (estimates derived from different firing rate methods) is typically 30-50%

of the error with the true reach, and thus these estimates are indeed consistently

different. Further, if the decoder was insensitive to firing rate estimates, we should

be able to remove the firing rate estimator entirely (simply binning firing rate counts)
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without change to the decode quality. We tried a simple binning scheme, using both

50ms (as used in, e.g., Wu et al. (2002)) and 100ms bins (as used in, e.g. Chestek et al.

(2007)). Interestingly, we find this simplifying step can change error meaningfully,

increasing error considerably in the case of the Linear Decode (but less so with the

Kalman Filter; indeed, sometimes binning reduces error in the Kalman Filter case).

Thus, temporal smoothing of firing rates seems valuable, and the method of smooth-

ing influences the decoded arm trajectory meaningfully. Based on these findings, we

see that the decode algorithms themselves are indeed sensitive to differences in firing

rate estimation.

To the second possibility, each firing rate method does seem to make particular

tradeoffs between signal and noise. In the simplest case, a low bandwidth kernel

smoother (such as KS150) will produce a slowly varying firing rate with a similar

time course to the arm activity. However, it also eliminates steep changes in firing

rate, which likely provide a meaningful signal to the timecourse of arm movement.

Fig. 7.2, panel (b), shows this possibility: while KS50, GPFR, and others pick up the

sharp “ON” transient in the firing rate, they also pick up noise in the subsequent high

firing rate. In contrast, KS150 smooths out both the noise and the step change in firing

rate. Thus, it is likely that these firing rate methods and others each represent some

balance between capturing or removing both signal and noise. Loosely, while each

method may result in very different firing rate estimates, the SNR of each estimate

may in fact be similar.

To the third possibility, it seems quite likely that the biggest effect on decode

performance comes from aspects of the decoding system that are not neural firing

rates. For example, the addition or removal of one or more very informative neurons

to the neural population does often alter these performance numbers considerably (we

found this effect in our additional testing), thus suggesting that recording technology

(such as Wise et al. (2004)) may be more critical. Furthermore, the consideration

of neural plan activity (before the movement begins) has been found to significantly

reduce decoding error (Kemere et al., 2004; Yu et al., 2007). These are two examples

of a host of avenues that may be significant determinants of prosthetic performance.

Other avenues, as previously noted, may include prosthetic decode algorithms in

general (Georgopoulos et al., 1986; Brown et al., 1998; Wu et al., 2004; Brockwell

et al., 2004; Wu et al., 2006), the prosthetic interface itself (Schwartz, 2004; Velliste
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et al., 2008; Cunningham et al., 2008b), and multiple signal modalities (e.g., EEG,

ECoG, LFP, and spiking activity) (Mehring et al., 2003). Even if these other factors

are much larger determinants of performance than firing rate estimation, one might

still hope to see that certain firing rate estimators performed unambiguously better

(albeit only slightly better) than others. Looking across decoders and data sets and

error metrics, such a claim can not be made.

Despite the questionable relevance of firing rate estimation to the problem of neu-

ral prosthetic decode, we want to strongly clarify that we do not call into question

the validity of firing rate estimation in general. Many of the excellent papers in this

domain (several of which were reviewed in this study) may have important applica-

tions in neuroscientific studies or some other domain of neural signal processing. For

example, these methods may be especially important in settings, unlike arm move-

ments, where experimental conditions can be closely copied on each trial, producing

similar neural responses (e.g., visual stimuli shown to in vitro retinal neurons (Pillow

et al., 2005)).

Neural prostheses and BMI have received much attention in the last decade. As a

result, many researchers from many fields have studied ways to improve our ability to

understand and decode neural signals. Despite this preponderance of methodological

development, very few systematic comparisons have been made in real experimental

settings. The gold standard for such a comparison is perhaps online (closed loop)

clinical trials, where the BMI user may engage learning, neural plasticity, and a host

of other feedback mechanisms. Prior to that step, offline comparisons should be made

on a variety of experimentally gathered data, and these comparisons can be made

between all aspects of neural prosthetic systems. It behooves the field to review and

compare available methods at each step in the BMI signal path. In this chapter, we

have made a first effort in that direction by reviewing and comparing different firing

rate estimation methods. Prosthetic decoding algorithms may be another attractive

target for such a review and comparison. The field should largely benefit from such

studies, both in terms of benchmarking the past and helping to set research agendas

for the future.
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Chapter 8

Neural Prosthetic Systems:

Current Problems and Future

Directions

Having demonstrated one area where performance improvements were found (Chapter

6), and one area where they were not found (Chapter 7), this chapter now turns to

the broader question of what areas are available for future algorithmic research in

neural prosthetic systems, and what opportunities they might present for performance

improvement. This chapter highlights several outstanding problems that exist in

most current approaches to prosthetic signal processing. These include two problems

that we argue are unlikely to result in further dramatic increases in performance,

specifically spike sorting and spiking models (as detailed in the previous chapter).

We also discuss three issues that have been less examined in the literature, and

we argue that addressing these issues may result in dramatic future increases in

performance. These include: non-stationarity of recorded waveforms, limitations of a

linear mappings between neural activity and movement kinematics, and the low signal

to noise ratio of the neural data. We demonstrate these problems with data from 39

experimental sessions with a non-human primate performing reaches and with recent

literature. In all, this study suggests that research in cortically-controlled prosthetic

systems may require reprioritization to achieve performance that is acceptable for

a clinically viable human system. This work, which is being published as Chestek*

et al. (2009), was done jointly with Cindy Chestek, Vikash Gilja, Paul Nuyujukian,
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Stephen Ryu, and Krishna Shenoy. Cindy and I acted as joint first authors on this

project, and I was particularly involved in data analysis and paper writing.

8.1 Introduction

In recent years, advances in neural technologies have enabled the creation of neu-

ral prosthetic systems (variously called neural interfaces, brain-machine interfaces,

or BMI) that aim to help severely disabled human patients. There are many med-

ical, scientific, and engineering challenges in developing such systems (Lebedev and

Nicolelis, 2006; Schwartz, 2004; Donoghue, 2008; Linderman et al., 2008; Sanchez

et al., 2008), and all neural prosthetic systems share in common a signal processing

backend. This backend takes as input raw voltage waveforms from multi-electrode

recordings (or other technologies), and it produces as output a control signal such as

kinematic parameters to control a prosthetic arm. Along this signal flow, there are

two major steps: first, raw voltage must be separated into spike trains from single

or multiple neural units, called “spike sorting”; second, these spike trains must be

processed by a decoding algorithm to produce behavioral control signals. Both of

these steps have been well studied: spike sorting (Lewicki, 1998; Wood et al., 2004;

Wood and Black, 2008) and decode algorithms (Georgopoulos et al., 1986; Gao et al.,

2002; Kemere et al., 2004; Brockwell et al., 2004; Kim et al., 2006; Wu et al., 2006;

Santhanam et al., 2006; Shakhnarovich et al., 2006; Yu et al., 2007; Srinivasan et al.,

2007; Velliste et al., 2008; Ventura, 2008; Wu and Hatsopoulos, 2008; Kulkarni and

Paninski, 2008; Sanchez et al., 2008; DiGiovanna et al., 2009). These works have de-

livered important proofs of concept that brain-machine interfaces can translate neural

signals into physical commands. However, moving to a clinically viable system will

require several significant developments. These developments exist at all stages: in

the recording technologies (Wise et al., 2004), the signal processing backend, and

prosthetic end effectors such as robotic arms and computer interfaces (Cunningham

et al., 2008b). This study introduces several problems in the signal processing domain.

First, the field must better understand how the recorded signals change over time,

as there has been much work suggesting various levels of stability in recorded neural

activity over time (Santhanam et al., 2007; Suner et al., 2005) - discussed in Section

8.3.1 below. Next, noisy spike trains must be meaningfully processed into neural firing
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rates or other quantities appropriate for input into decode algorithms; we address this

potential problem in Section 8.3.2 below. Decode algorithms calculate a mapping

between physical behavior and neural activity. We introduce unresolved questions in

these models in Section 8.3.3 below. Further, a large problem may be fundamental

limitations in the data - discussed in Section 8.3.4. These limitations exist due to an

insufficient signal to noise ratio in the limited number of neural channels available,

as well as model mismatch (e.q., many algorithms assume linear mappings to model

nonlinear relationships). Other limitations may also exist in experimental design and

algorithmic testing, and we discuss those potential issues in Section 8.3.5. Many

of these aspects of BMI performance can interact in complex ways. However, as a

starting point in this study, we will address them individually.

8.2 Methods

8.2.1 Animal Task and Neural Recordings

Animal protocols were approved by the Stanford University Institutional Animal Care

and Use Committee. We trained a rhesus monkey (Macaca mulatta), monkey L, in

a standard reaching paradigm that has been extensively reported elsewhere (Chestek

et al., 2007; Cunningham et al., 2008b, 2009). We give a short overview here. We

implanted a 96-electrode Utah electrode array (Blackrock Microsystems, Salt Lake

City, UT) into premotor cortex. The array was implanted 10 months prior to the

experiments, showed substantial neural activity, and continued to do so for several

months after the experiments1. The monkey is trained to make instructed reaches to

a number of points (28 peripheral targets at 4 radial distances from the central target,

uniformly distributed in 7 directions) on a vertical screen. Monkey L begins with his

hand on a target at the screen center. After a brief hold time, a peripheral target

appears, indicating the goal of his reach. Restrictions on reaction time ensure that

the monkey will reach quickly and accurately to the peripheral target, then receiving

a juice reward (Chestek et al., 2007). This experiment was performed on 39 days

over a period of 7 weeks. Prior to this time, this monkey had been heavily trained on

similar tasks for several years. Here we analyze the first hour of data from each day,

1Previous reports discuss the same monkey. Here we use a newer implant (same technology) and
a very similar experimental paradigm.
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with an average of 1655 reaches per dataset.

8.2.2 Neural Prosthetic Decoding

In the results that follow, we will demonstrate the quality of decoding neural activity

based on different segmentations of the neural data. Accordingly, we need a method

with which to decode neural activity into action so that we can compare performance

of different signal processing techniques. We describe those methods briefly here,

where we refer to blocks of the general signal flow for a BMI, as shown in Fig. 8.1.

To extract spike trains from raw voltage, neural units were isolated off-line using

a PCA-based spike sorting algorithm (Sahani, 1999), and quality was assessed by

hand using the waveforms and clusters in principle component space. Units were

labeled single unit, contaminated single-units (with waveforms from other neurons),

and multi-units. For analyses using threshold crossings only, all events that crossed

a threshold of three times rms noise were used; more explanation can be found in

Cunningham et al. (2009). All of these threshold crossings were classified as single or

multi-units in the full spike sorting analysis.

First, we use a simple maximum likelihood (ML) decoder, as seen in Santhanam

et al. (2006); Cunningham et al. (2008b). This method uses training data to build

an expectation, for reaches to each of the reach targets, of the number of spikes

recorded from each neuron. Given test data, the ML decoder evaluates the likelihood

(under a Poisson noise model) and picks the reach condition with the largest value

(hence maximum likelihood) as the decoded reach. The percentage of reach conditions

correctly decoded is reported as overall performance (Cunningham et al., 2008b).

ML decoding makes a discrete choice. In some cases, we also want to decode

moment-by-moment parameters of the subject’s reach. To do this, we use the pop-

ular linear decoder (LD), which assumes that movement is a linear combination of

recorded neural activity. Using least squares, the movement can be decoded from neu-

ral activity, and common metrics such as root-mean-squared-error (RMS) or correla-

tion coefficient can be used to determine the quality of decode (Chestek et al., 2007;

Cunningham et al., 2009). A third common approach is the Kalman filter (Kalman,

1960), which stipulates a linear relationship between physical behavior over time and

between neural activity and physical behavior (Wu et al., 2006; Cunningham et al.,

2009).
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Figure 8.1: Block diagram of a typical BMI illustrating potential areas for improve-
ment. The lower feedback loop illustrates aspects of neural adaptation that can be
engaged only in closed-loop experiments.

8.3 Results and Discussion

Here we discuss the problems we highlighted in the introduction, and we demonstrate

these problems in our experimental data and recent publications.

8.3.1 Spike Sorting

Spike sorting is a major challenge in neural signal extraction, both for basic neuro-

science studies and for neural prosthetic systems (Lewicki, 1998; Wood et al., 2004;

Wood and Black, 2008). We discuss here the importance of isolating single neuron

activity, and the instability of neural recordings over time.

Single Unit Activity

When studying the properties of individual cells, it is important to isolate “single

units” with accurate spike sorting. Often, recorded neural activity that likely arises

from multiple cells is excluded from analysis, despite the fact that such activity typ-

ically comprises a substantial portion of recorded neural activity. For example, from

a single dataset, we differentiated all neural events into 205 clusters. Of these 205

neural units, only 53 came from well-isolated or somewhat contaminated units (units

with clearly differentiated waveforms that were either not adjacent to other waveforms

in voltage and PCA space (well isolated) or adjacent but clearly distinct (somewhat
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contaminated). The remaining 152 neural units were classified as likely multi-unit.

Table 8.1 shows the percent correct for a ML decode of reach directions from sin-

gle unit only and multi-unit activity. Also, adding multi-unit activity to single unit

activity increases performance from 74% to 82%. Therefore, it seems clear that multi-

units should be included in prosthetic decoders, despite being “unclean” isolations in

a basic science sense.

The complexity of the spike sorting process has substantial power implications

for integrated circuits that may be used as part of future clinical systems to transmit

wireless neural data from the patient (Wise et al., 2004; Harrison et al., 2007; Zumsteg

et al., 2005), since this complexity changes the number of bits required per channel for

full waveforms versus threshold crossings. This may be partially alleviated by small

process technologies or novel powering methods, but is still likely to be a substantial

concern. This raises the question, does full spike sorting produce a large improvement

in decode performance over threshold based systems? Table 8.1 shows a performance

comparison between PCA based spike sorting, using all single and multi-units (third

row) and a single threshold per channel (3 times RMS noise, fourth row). While

small increases in performance can be important to users, using sorted spikes instead

of thresholds produces a surprisingly small improvement of 7%. Also, the threshold

number represents a base level performance which could likely be improved by setting

the thresholds optimally on a per-channel basis. Further, two thresholds per channel

could also substantially make up the difference in performance without requiring full

broadband data. The optimal may resemble (O’Driscoll et al., 2006), in which bits

of resolution are distributed to channels based on information content.

Waveform Shape Instability

While there is evidence that neurons themselves maintain stable tuning properties

at least over the course of a day (Chestek et al., 2007), there is significant doubt

about the stability of the raw voltage recordings of those neurons over the same time

periods (due to changing position of the electrodes with respect to the neurons, or

similar) (Santhanam et al., 2007; Suner et al., 2005). If these recordings are not

stable, accurate spike sorting will require additional sophistication to track neural

units over the course of minutes, hours, and days (Bar-Hillel et al., 2006).

Fig. 8.2 shows the dramatic effect of this instability on decode performance. We
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Table 8.1: Decode performance by unit type.

Number Decode Performance

of Units ML Decode1 Correlation Coeff.2

Single units3 53 74% 0.86
Multi-units 152 79% 0.91
All sorted units 205 82% 0.92
Thresholds4 96 75% 0.89

1 Note that chance ML decode accuracy is 1/7, or 14%.
2 Correlation coefficient based on a linear decoder.
3 Includes definite and high-confidence single units.
4 Standard thresholding at 3 times RMS noise.

fix a decode algorithm to the population recorded on an array on the first day of

recording. We fix both the maximum likelihood parameters and the spike-sorting

projections (waveform shapes) across seven weeks. Performance falls precipitously

after only a few days, which must be due to changes in the recorded neural activity

(the signal processing backend has been held constant). This suggests that nonsta-

tionarity will be a substantial problem in future clinical systems. Human systems to

date have used daily calibration by skilled technicians (Hochberg et al., 2006), but

this approach will not economically scale to broad use.

Fig. 8.3 shows how much a recording can change over the course of a single ex-

perimental recording session. While the average change in waveform shape is small

(many remain within +/- 5% of their time zero size) several neurons indeed change

their waveforms significantly over just one hour (e.g. red growing by 25% and the

blue shrinking by 25%). The average absolute change was 0.3%/min. Looking at the

slopes in absolute voltages, the average change was 1 µV/min, but changes above 5

µV/min were observed on several units. Examination over even greater time spans

may reveal even greater excursions. More accurately characterizing these changes

requires analysis of multi-week wireless recordings (Chestek et al., 2009) from ad-

ditional animals2. These waveform changes can and do cause serious spike sorting

2It is possible that some of the change in performance over days is due to slight differences in
connector impedance. However, this likely makes only a small contribution since the noise across
the array was fairly stable (mean 1.1 µVrms, std 0.2 µVrms). Also, there were a few electrodes
with highly similar waveforms across days. At the the same time, waveform changes on individual
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Figure 8.2: Decoder performance (ML accuracy) determined by generating spike
sorting templates and maximum likelihood coefficients from the first day of the ex-
periment, and applying those models across 7 weeks of similar experiments. Sorted
data shown in blue, threshold data shown in magenta; dotted lines indicate data that
was re-fit on each experimental day.

difficulties. Fig. 8.4 shows a single unit that remained well isolated over several weeks

(uncontaminated units like this are rare). The tuning curves in the second row sug-

gest this is the same neuron, despite substantial waveform changes. More commonly,

as shown in the third row, a unit that is initially well isolated disappears over days

into multi-unit activity. Since spike-sorting algorithms rely on waveform shape, these

instabilities may confound spike sorting significantly over the course of several hours,

and certainly across days.

Some aspects of these instabilities might be particular to the experimental prepara-

tion considered here. However, these devices were approved for initial human studies

(Hochberg et al., 2006), are likely to be used for future human work, and are believed

to be at least as stable (if not more so) than other multi-electrode technologies due

electrodes could be dramatic over only a few hours.
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Figure 8.3: Waveform change over one hour for 23 example neurons. Change is
normalized to the size of the initial waveform.

to its ability to move with the brain rather than being secured to the skull. Accord-

ingly, one might consider different strategies going forward to compensate for these

instabilities. This may be substantially easier in neural prosthetics than basic science

because it is arguably not important to track single units. Perhaps decode algorithms

can be designed by sorting on tuning alone over time or using simply no spike-sorting

algorithm whatsoever (Ventura, 2008). In any event, since the effect on performance

is high, serious effort to address these instabilities must be committed.

8.3.2 Models for Neural Spiking

Spike trains present analytical challenges due to their noisy, spiking nature. A com-

mon view is that spikes are generated from a smooth function of time (the firing

rate) and that this function carries a significant portion of the neural information

(vs. the precise spike timing). If so, decoding neural activity may require accu-

rately estimate firing rate. There has been extensive work in modeling spike trains
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Figure 8.4: Example waveforms over days. Panel A shows an isolated unit changing
over time but (usually) remaining well isolated. From left to right, top panels show the
single unit from days 1,5,16,17,34, and 45. Panel B shows the tuning pattern across
7 angular directions on those days. Panel C shows a more common example of a
waveform shape collapsing into the multi-unit activity. Waveforms crossing threshold
are shown for one electrode on six consecutive days.

(Johnson, 1996; Barbieri et al., 2001; Ventura et al., 2002; Kass and Ventura, 2003;

Truccolo et al., 2005; Sanchez et al., 2008) and estimating firing rates (Shimazaki

and Shinomoto, 2007a; Cunningham et al., 2008c; DiMatteo et al., 2001; Kass et al.,

2005; Endres et al., 2008). While some decode algorithms average over neural ac-

tivity in small temporal windows (Yu et al., 2007), some algorithms use firing rates

or use spiking models directly (Srinivasan et al., 2007). Spiking models are another

source of approximation in BMIs. Though sophisticated firing rate estimation has

proven valuable in basic neuroscience, a recent study found minimal differences in

prosthetic decode performance using different estimators (Cunningham et al., 2009)

(as discussed in Chapter 7). Perhaps models for neural spiking, though clearly yet

one more approximation in decoding, may not be a source of major performance gain
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for future research.

8.3.3 The Mapping between Physical Behavior and Neural

Spiking

To date, essentially all prosthetic decode algorithms (population vectors, linear de-

coders, Kalman filters, etc.) have assumed a linear mapping between kinematic pa-

rameters of the arm and neural firing rates (or, in some cases, spiking activity directly)

(Georgopoulos et al., 1986; Gao et al., 2002; Kemere et al., 2004; Brockwell et al.,

2004; Kim et al., 2006; Wu et al., 2006; Santhanam et al., 2006; Shakhnarovich et al.,

2006; Yu et al., 2007; Srinivasan et al., 2007; Velliste et al., 2008; Ventura, 2008; Wu

and Hatsopoulos, 2008; Kulkarni and Paninski, 2008; Sanchez et al., 2008; DiGio-

vanna et al., 2009). There are a few potential shortcomings with this linear choice,

including the fact that most algorithms ignore meaningful nonlinearities in neural

data, and the poor generalization of these models.

Nonlinearities

There is wide variation in how well the activity of a neuron can be linearly related

to a given kinematic parameter, shown in Fig. 8.5. The top panel shows the average

reach speed, and the second panel shows X-position for reaches to 7 out of 28 targets.

These respresent typical kinematic signals that one would like a linear model to

accurately predict. The middle panel shows that some neurons that have a strongly

linear relationship with speed given a specific time lag. In general, a subset of neurons

may have a strong linear relationship with a given kinematic parameter. However,

the remaining two panels show firing rates from four neurons with firing rates that

do not have an obvious linear relationship to any parameter. For example, activity

in the fourth panel comes from two units with long plateaus of activity that precede

and follow movement. The two bottom units show double peaks, that also have no

obvious linear transformation to kinematic parameters.

One way linear decoders can cope with non-linearities is to use only units with

clear linear relationships and set other coefficients to low values. In our data, linear

decoders can come within 10% of the optimal error using between 15-29% of the 53

predominantly single units (for x and y position and velocity). This number was
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obtained by sorting individual units for correlation with the various parameters, and

adding them to the decoder until the error was within 10% of its value for the whole

ensemble. To achieve this performance level on all 4 kinematic parameters together,

only 49% of the units were required. More than half the units were unused. This

underutilization may occur because neurons with nonlinear relationships to behavior

provide a source of model mismatch to linear decoders. However, model mismatch

is not noise; there is possibly information in these neural units that linear decod-

ing models (like the linear filter, the population vector, and the Kalman filter) are

unable to exploit. Future algorithmic designs may offer significant performance im-

provements by modeling nonlinearities in this mapping. Also, nonlinearities could

be introduced at many points in the signal flow shown in Figure 8.1, not just the

mapping considered here.

Generalization

The ability of a model to generalize to novel conditions is a major concern with

any decoding algorithm. Linear algorithms in particular may generalize poorly to

novel reaches. For example, in the current dataset, determining an optimum linear

filter using 27 out of the 28 targets and testing on reaches to the remaining target

resulted in a 4x greater squared error on average than training on a dataset that

included reaches to that target. This occurred despite the fact that the training

dataset included 3 other examples of reaches to the same angle and 6 other reaches to

the same distance. It is notable that many other prosthetic experiments to date have

used highly constrained movement tasks which may overestimate the ability of linear

models to generalize (Yu et al., 2007; Kim et al., 2008). While these tests indeed

demonstrate useful signal extraction from cortex, they do not test a broad range of

behavior. Accordingly, it may be that these constrained experimental settings pose

an unrealistic proxy to the eventual user mode.

A real prosthesis user will desire a broad range of potentially novel behaviors. An

accurate model mapping physical behavior to neural activity must be able to decode

novel reaching conditions. Moving to unconstrained settings in three dimensions,

with many other types of reaching - curved, straight, point-to-point, continuous, and

more - there are many possible model mismatches. Further, arbitrary movement in

three dimensions engages long-studied questions of reference frames and coordinate
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Figure 8.5: Comparison of kinematic parameters (blue traces) with neural firing rates
(red and green traces). (A) Average speed during reaches. (B) Average X-position
during reaches to 7 out of 28 targets. (C) Normalized average firing rates from two
units with a strong linear relationship to velocity. (D) Two example units whose
activity precedes and postcedes neural activity. (E) Two example units with double
peaked average firing rates. For both (D) and (E) there is no obvious linear transform
between neural activity and any of the kinematic parameters.

transformations (Shadmehr and Wise, 2005), which may complicate things further.

In short, experimental constraints may not translate to a prosthesis that general-

izes to the needs of a human user. Some effort should be made in vetting all BMI

developments with a range of experimental control (including very little).

8.3.4 Limitations on Precision

There is obviously not arbitrarily large information content in a given number of

neural channels. For example, while the output of a continuous linear decoder can

exhibit high correlation with the actual hand movement, single trials often decode

to erratic reach behavior. Figure 8.6A shows an example of actual reaches to one

of the 28 targets in the center out task. A position-based linear decoder trained on
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the first half of the dataset predicted reaches in the second half of the data with a

correlation coefficient of R=0.88, which shows similar performance to other results

in the literature (Wu et al., 2006; Kim et al., 2008). Reaches decoded by the linear

model are shown in Fig. 8.6B. While the average correlation is apparent, the endpoints

exhibit a much higher standard deviation (21 mm vs 6 mm) than actual reaches (the

red ellipse).

This illustration represents an “offline” linear decode. One might argue that these

incorrect trajectories can be corrected using feedback in an “online” BCI experiment.

However, online linear models have shown a tendency to move erratically as well (Kim

et al., 2008). This may place limitations on how closely spaced potential targets can

be and whether undesired targets can be avoided. Moving from computer control to

the control of a robotic limb would further emphasize this problem.

Models for Physical Behavior

One weakness of algorithms like the linear decoder (and population vector) is that

these algorithms do not have an explicit physical behavior model, and thus all noise

in the recorded signal is passed through to the decoded arm trajectory. In contrast to

this shortcoming, models such as the Kalman filter (Kalman, 1960), which stipulate

a model for physical behavior in arm reaches, have been shown to outperform the

linear decoder in a variety of cases (Wu et al., 2006; Kim et al., 2008). This success

led to extensions that assume similar models for physical behavior (Yu et al., 2007;

Srinivasan et al., 2007; Wu et al., 2008; Kim et al., 2006; Wu and Hatsopoulos,

2008; Kulkarni and Paninski, 2008; Sanchez et al., 2008; DiGiovanna et al., 2009).

Unfortunately, this class of models for physical behavior is inappropriate in some

ways for reaching movements.

Specifically, the Kalman filter assumes a linear dynamical system (xt = Axt−1 +v,

where v is some noise). Depending on the matrix A, reaches from this distribution

can only converge to the origin, oscillate, or diverge to infinity, which conflicts with

the reality that the majority of arm reaches are point-to-point (Shadmehr and Wise,

2005). Fig. 8.6C shows that this model can decoded reaches that fail to stop. Overall,

the performance does not appear substantially less erratic than those from the simple

linear decoder. The Kalman filter, like other linear models, fails to infer the correct

reach goal and stop precisely. These inadequate physical models have been chosen in
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Figure 8.6: Panel A shows actual reaches to one of 28 targets measured using an
infrared motion tracking system. Panel B shows the linear decode of neural activity
during those reaches. Panel C shows a Kalman filter decode of that same activity.
Black dots denote the end points of each reach, and the black ellipse denotes the
standard deviation in the X and Y direction. Note the red end-point variance ellipse
is very small in the first panel.

large part because of their mathematical tractability. Instead, a model could exploit

the deep literature describing how reaches are actually made in human behavior

(Shadmehr and Wise, 2005).

Data Limitations

Current recording technologies can record from up to hundreds of individual neurons,

which is a tiny fraction of the many millions involved in arm reaching. Accordingly,

the field is and will continue to be limited in the amount of information it can record

from cortex.

BMI devices using lower SNR sources such as ECoG often try to maximize in-

formation throughput by using an “indirect” signal source. For example, imagining
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something that can be somewhat unrelated to arm movement in order to generate cur-

sor movement (Leuthardt et al., 2006). Cortical BMI’s have relatively higher SNR,

and can attempt a “direct” decode (Donoghue, 2008). For example, Santhanam

et al. (2006); Yu et al. (2007) decoded movements towards particular targets, but

the number and position of targets was small, fixed, and known. Kim et al. (2008)

demonstrated improved accuracy with humans controlling a computer cursor by using

a training paradigm of reaches that moved very slowly.

Much traction might be gained by restricting the space of movements that can

be decoded from neural activity. Researchers may consider the field of human mo-

tor control (e.g., Shadmehr and Wise (2005)), where work has shown fundamental

constraints on the human reaching system. By similarly constraining the space of

movements that can be decoded from neural activity, some performance improve-

ments may be achieved using currently available signal sources. By recognizing that

there is not an arbitrary amount of information in the recorded neural activity, the

field can begin to ask meaningful questions about what actions we may hope to ex-

tract from cortex. Designing decode strategies in this way will be critical in moving

towards a clinically viable system.

8.3.5 Experimental Limitations

In this final section we introduce another potential issue in current prosthetic design,

and we discuss why we think addressing this issue may be a valuable direction for

future investigation. As previously noted, experimental constraints do not necessar-

ily translate to a prosthetic device that can generalize well. For example, decoding

success is often determined by how well the decoded arm trajectory matches the true

arm movement that was recorded alongside the (possibly synthetic) neural activity.

Unfortunately, this “offline” approach neglects potentially important features of a real

neural prosthesis, including the prosthetic user’s ability to modify behavioral strate-

gies to improve control of the prosthetic device (via the decode algorithm). In other

words, as soon as the prosthesis user sees the prosthetic device act, he/she will bring

to bear all his/her behavioral modification strategies to attempt to drive a natural,

desired reach. In moving towards a usable prosthesis, experimental paradigms should

be tested in this “online” context in order to provide a realistic proxy to clinical use.
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This feature is noted by the large feedback loop in Fig. 8.1. The field should investi-

gate the extent to which the subject can (for a given decode algorithm, spike sorting

approach, or other signal processing choice) engage feedback mechanisms, learning

and adaptation, and other control strategies to improve decode performance.

8.4 Conclusions

Neural prostheses have received much attention in the last decade. In this study,

we used 39 neural datasets, from a single monkey making center out reaches day

after day, to examine potential areas for future advances. These analyses suggest

that areas such as single unit spike sorting and advanced spiking models, while useful

to pure neuroscience research, may not provide dramatic performance increases in

future BMIs. However, there are three areas that we believe may provide more space

for improvement. First, non-stationarity of neural waveforms must be addressed

when moving towards long term clinical systems. Second, linear models may not

be fully exploiting information available from particularly non-linear neurons. This

may also lead to observed difficulties in model generalization. Third, erratic decoded

movements cause difficulty in predictably controlling a BMI cursor. This shortcoming

could be mitigated by more careful analysis of the neural information content, by

limiting the types of reaches based on the information available, and by meaningfully

testing algorithmic developments in an online context. In all of these issues, it is of

great value for the field to review and compare available methods at each step in the

BMI signal path, and to design future studies (both experimental and algorithmic)

with those results in mind.
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Chapter 9

Conclusions and Future Work

The last seven chapters have demonstrated several algorithmic contributions towards

the broad goals of understanding motor cortical processing and improving the design

of neural prosthetic systems. The following sections briefly summarize these findings

at a high level and then point to interesting avenues of future work.

9.1 Part I

In the first part (understanding motor cortical processing), we developed novel signal

processing methods to interrogate single trial neural data, first from single neurons

(Chapter 2), and we then extended that to populations of simultaneously recorded

neurons (Chapter 5). We showed, based on various error metrics, that these meth-

ods model neural activity better than competing, simpler methods. The first part

also demonstrated that these technically complex algorithms can cause potentially

serious computational problems, but that this burden can be alleviated significantly

by problem-specific implementation considerations (Chapter 3). Then, we discussed

how these computational considerations led to a finding of broad statistical interest,

namely a new method for calculating multivariate Gaussian probabilities (Chapter

4). Finally, scientifically, using the GPFA method of Chapter 5, we then showed that

this method allows us to visualize across-trial convergence of neural activity during

the planning phase of a delayed-reach task, an effect which was only previously seen

indirectly.

This across-trial convergence is an example of the neuroscientific questions that

182
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can be asked and answered with analytical methods designed to investigate cortical

processing. However, it is certainly the case that this effect was seen previously

in Churchland et al. (2006b), albeit through a carefully designed indirect method.

A critical question for future study then is: are these neural trajectory algorithms

(GPFA and similar, as described in Part I) more than visualization tools? Answering

this question is a critical area of future work. Here, I address two areas of future

study that aim at this question. First, I discuss the utility of direct visualization

methods in driving scientific hypotheses. Second, I discuss the importance of denoised,

reduced-dimension views of neural activity in driving towards an understanding of the

computational mechanisms at work in cortical processing.

First, the scientific value of visualization methods should not be underestimated.

As detailed in Section 5.1, there are a number of experimental settings where single-

trial, population-level neural data should be visualized. For each of the examples

shown in Fig. 5.1, researchers have shown ways to detect (or indirectly view) trial-to-

trial differences in the neural responses, including computing streak indices (Horwitz

and Newsome, 2001), estimating firing rates from a single spike train (Roitman and

Shadlen, 2002; Cook and Maunsell, 2002; Cunningham et al., 2008c), and measuring

the across-trial variability of neural responses (Churchland et al., 2006b). In all of

these cases, however, what one really wants is a direct view of the time-evolution

of the neural response on single trials. Were such a visualization available, perhaps

these and other effects could be seen more readily, and perhaps these and other ef-

fects could be reported with fewer experimental and analytical controls. Indeed, the

PSTH and firing rate estimation in general are visualization tools that have allowed

many scientific discoveries by allowing researchers to view their data in a more com-

pact and intuitive representation (rather than just looking at rows of spike rasters),

thereby facilitating hypothesis generation. I believe the scientific merit of the neural

trajectory algorithms of Part I should not be underestimated from a visualization

standpoint alone. “Data-driven” hypotheses in science are frequent, and they rely

on data visualization. Particularly as future data sets are becoming larger and more

complex, future work in developing useful visualization tools is important.

To highlight this point, I here give two examples of future work that is in vari-

ous stages of development in our research group. The scientific hypotheses in these
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ongoing studies were formulated by viewing low-dimensional visualizations of popu-

lations of simultaneously recorded neural activity. First, I return to the direct view

of across-trial convergence of neural trajectories during the course of motor planning

(as in Chapter 5 and, previously, in Churchland et al. (2006b)). This convergence

hypothesis suggests that there is an optimal configuration of neural activity that indi-

cates a specific reach plan, and thus the proximity of neural activity to that optimum

correlates with how quickly a reach can be subsequently triggered (this reaction time

effect is thoroughly discussed in Churchland et al. (2006b)). Another researcher visu-

alized populations of neural activity using a neural trajectory algorithm and formed

a different hypothesis: rather than an optimum, perhaps reaction time is determined

by how far the neural activity, at the time of the movement cue, has progressed

along the path towards the average point (in the space of neural activity) at which

the reaching movement begins. This hypothesis significantly improves the scientific

correlate to behavior. This study, which is discussed preliminarily in Afshar (2008),

was enabled by neural trajectory visualization tools. Indeed, the eventual analysis

can be done in the raw data, but the hypothesis came from viewing compact rep-

resentations as discussed in Part I. A similar hypothesis has been tested by Rachel

Kalmar in the oculomotor system of monkeys, where she has shown an even stronger

effect predicting reaction time in an eye-saccade task. This ongoing work has also

shown that looking at the neural population as a whole creates a significantly better

correlate than looking at single neurons individually. This finding indicates there

is meaningful structure in the high-dimensional neural data. This high-dimensional

structure, however, can not be directly viewed in a high-dimensional space. Instead,

visualization techniques such as GPFA are required to give a parsimonious and hu-

man understandable low-dimensional projection. Thus, ongoing and future work has

relied on neural trajectory visualization to make scientific hypotheses, highlighting

the scientific merit of these algorithms in understanding motor cortical processing.

Second, it is important to discuss future work that may use neural trajectory

algorithms for more than visualization purposes. The GPFA algorithm of Chapter

5, by definition, partitions the covariance of the high-dimensional neural data into

shared network variance (the low-dimensional neural trajectory space that is mapped

up to high dimensions by the matrix C in Eq. 5.1) and individual-neuron “private”

variance (noise, that which is not shared across neurons, as captured in the matrix R
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in Eq. 5.1). By this construction, the algorithm trades off between explaining data

with low-dimensional, smooth trajectories and high-dimensional private noise. This

fundamental trade-off is discussed in Chapter 5 as a benefit of GPFA vs. two-stage

methods (such as smoothing and subsequently applying PCA).

Importantly, this construction means that the algorithm discovers smooth, low-

dimensional commonalities between many neurons. With electrode arrays, researchers

record up to a few hundred motor cortical neurons simultaneously. However, very few

researchers believe that those hundreds of neurons represent hundreds of completely

independent degrees of freedom, and few believe that the activity of those neurons is

exclusively task-relevant. Instead, many researchers believe that neural computation

is done with fewer degrees of freedom, and that these neurons have both redundancy

and non-task-related activity that can be considered as noise. To return then to neural

trajectory algorithms, this is precisely the coordinated, low-dimensional projections

that methods like GPFA find.

Accordingly, researchers may want to focus not on the high-dimensional, noisy

data, but rather on the low-dimensional trajectories that will hopefully better reflect

the computational mechanisms actually at play in the motor system. Of course, such

a statement comes with many caveats, including controls to ensure that the neural

trajectory algorithm is “finding something real.” This concern existed in earlier neu-

ral trajectory work (Yu et al., 2006) that led to the more flexible GPFA algorithm.

Current work (with Mark Churchland and Byron Yu) uses the GPFA neural trajec-

tory algorithm to show, among other findings, that outlier behavioral trials are also

outliers in this low-dimensional neural space. Importantly, this work finds that this

outlier effect is more pronounced in the low-dimensional, smoothed space than it is

in the high-dimensional space, indicating that the algorithm is in fact correctly iden-

tifying a meaningful projection of the data. Finally, future work just in the early

stages of development (with Mark Churchland) is investigating the ability for low-

dimensional projections in premotor cortex to explain data from motor cortex, which

is further pushing the importance of denoising and reducing high-dimensional neural

data to a more compact space where computation is meaningfully carried out. These

preliminary ideas are certainly less developed than the body of this dissertation, but

they point to the analytical and scientific importance of neural trajectory approaches

in general.
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I include that discussion to highlight my opinion that neural trajectory algo-

rithms are and will continue to be valuable algorithms for data visualization, driving

scientific hypotheses, and moving towards a real understanding of the computational

mechanisms at play in the motor system. The progress of Part I, in particular its

culmination in the GPFA algorithm of Chapter 5, is only a first step towards these

important analytical and scientific goals. In the field’s general aim to understand

motor cortical processing, a wealth of interesting and valuable algorithmic challenges

remain.

9.2 Part II

In the second part (neural prosthetic systems), we developed a novel optimization

algorithm which allowed meaningful performance improvements in a neural commu-

nications prosthesis by placing the reach targets in a principled way (Chapter 6).

We showed in simulated data that this algorithm should improve performance over

a wide range of neural populations, and we confirmed performance improvements in

real experimental data by having a monkey reach to both canonical and optimized

target placements. Chapter 7 then turned to firing rate estimation: another area of

prosthetic design that has been discussed as an opportunity for algorithms to lead to

performance improvements. We reviewed the many preexisting methods for estimat-

ing firing rates, and we found that, despite different firing rate estimators producing

very different decoded reaches, indeed there was very little overall performance dif-

ference. Chapter 8 then panned out to look across many algorithmic challenges in

neural prosthetic systems, and we analyzed large experimental datasets that suggest

potential reprioritization of signal processing efforts for neural prosthetic systems. I

placed this work (Chapter 8) last to point to a number of exciting areas of future

algorithmic and prosthetic design work.

One of those areas, closed-loop human prosthesis studies, is particularly exciting

as an area of future work, in that it may allow human users to drive algorithmic

development in a meaningful way going forward. I briefly expand on that idea here.

This future work was pointed to in Section 8.3.5, where we argued that offline evalua-

tion of algorithms neglects potentially important features of a real neural prosthesis,
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including the user’s ability to modify behavioral strategies to improve prosthetic con-

trol. Truly understanding decode performance requires the human learning machine

(the brain and motor plant) to be in closed-loop with the decode algorithm. In this

online, closed-loop setting, as soon as a prosthesis user sees a decoded arm reach

(the action of a robotic arm or the path of a cursor on a computer screen), he/she

will bring to bear all of his/her behavioral modification strategies to drive a desirable

reach. As a simple example, previous studies have found that prosthetic decode error

is minimized when the time bin over which neural activity is integrated (a windowed

spike count in the Kalman filter) is around 280ms (Wu et al., 2006). This bin width

represents the time step at which the algorithm updates its estimate of the decoded

reach. However, it may be that in a closed-loop experiment, when reaches last only

roughly 1000ms, the intermittent “hopping” behavior of a decoded reach will frus-

trate the user. Perhaps better control could be gained with a more frequent update.

Indeed, the authors of Kim et al. (2008), despite their own earlier 280ms result (Wu

et al., 2006), chose 50 and 100ms bin widths in their closed-loop human experiments.

Importantly, this parameter choice was not optimized in their closed-loop human clin-

ical trial (nor in any closed loop animal study), and it is our understanding that they

did not do so based on trial count limitations and the overall difficulty/challenges

of testing with disabled human participants. Thus, it remains unclear how this and

other parameters should be set in future studies. The field must investigate the ex-

tent to which the subject can, for a given decode algorithm, engage online control

strategies to improve decode performance. Closed-loop testing may suggest different

priorities for algorithmic development than offline analyses. This critical question,

which has not been investigated, is an exciting line of future work.

Addressing this problem is highly challenging, since fully doing so would imply

validating every algorithmic choice, ideally, in a human clinical trial. Algorithmic

choices include both the structure of the algorithm itself and the parameter settings

that should be optimized, resulting in thousands of decode possibilities. Given the

invasiveness and expense of a neural prosthetic clinical trial, this approach is clearly

infeasible. The field has next turned to an appropriate animal model such as a rhe-

sus monkey, but given the large time and financial cost of neural implants, such an

approach to widespread algorithm design is still impractical. Faced with this reality,

most algorithmic work has been done in offline simulated or real neural data. We
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Figure 9.1: Concept figure for Online HPS opportunity. The x-axis shows four testing
paradigms in terms of increasing realism. Offline data analysis is the least reasonable
proxy to eventual user mode, as it entirely neglects the closed-loop control. On the
other end of the spectrum is the human clinical trial, which is precisely the eventual
user mode. Left axis (blue) shows the cost associated with testing each algorithm or
algorithmic parameter setting. Right axis (red) shows the number of algorithm and
parameter choices that are testable, given costs and other constraints.

hypothesize that a healthy human subject, using an entirely noninvasive prosthetic

device driven by synthetic neural activity, can meaningfully inform the design of pros-

thetic decode algorithms. This synthetic neural activity can be generated based on a

healthy human subject’s muscle activity (recorded with EMG), arm kinematics, and

other behavioral parameters. When a decoded reach is rendered to the user in a vir-

tual display environment (and this reach will not match the user’s true reach, due to

model mismatch in the decoder and injected neural noise), the user will then be able

to modify his/her own behavioral control strategy to drive a desired reach. Impor-

tantly, this setup allows the user to interact with the decode algorithm in closed-loop.

We detail the concept of this opportunity, which we call an Online Human Prosthesis

Simulator (Online HPS), in Figure 9.1. This figure shows in blue the dramatically

increasing cost of testing each algorithmic choice (algorithm or just parameter set-

ting within a single algorithm) as researchers move towards animal studies or human

clinical trials. This figure also shows (in red) the corresponding dramatic decrease

in the number of algorithmic choices that can be meaningfully tested. The Online

HPS represents a middle ground between low cost (but low reality) offline testing and
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more realistic (but quite costly) animal model and human clinical trials. Essentially,

this approach is a neural prosthetic device simulator, akin to a surgical simulator (for

training laproscopic and similar procedures), flight simulator, or silicon integrated

circuit simulation software like SPICE, that allows human subjects to control pros-

thetic devices using synthetic neural activity. It also allows algorithms to be rapidly

tested in closed-loop with low cost and risk. Once these algorithms are vetted in this

online human simulation environment, the best performing algorithms should then

be used in our own monkey and human online experiments.

I include those details to emphasize what I believe is an important way forward

for neural prosthetic system design. The field has not produced a prosthetic with

performance rivaling the human arm, and one reason for this may be the testing and

design reality of Figure 9.1. It is our hope that pursuing this prosthetic simulator will

provide a helpful bridge for algorithmic design. This work is a logical extension of Part

II of this dissertation. Chapters 6 and 7 both studied individual signal processing

features, and then Chapter 8 panned out to look across many possible areas for

improvement. In addition to this simulation environment, we are also pursuing other

areas that may hold great promise for performance improvements. Thus, in prosthetic

systems, as in the scientific thrust of understanding motor cortical processing, a wealth

of interesting and valuable algorithmic challenges remain.

9.3 Future Outlook

In closing, I return to the original motivation of this work. The introduction de-

scribed the classic systems neuroscience paradigm and how this paradigm has been

changing. If we consider the field-wide goal of a deep understanding of motor cortical

processing, researchers will need to bring to bear many new technologies, including

new recording/stimulation technologies and new experimental paradigms. The same

is true for the broad goal of developing a neurally controlled prosthetic arm with speed

and accuracy comparable to human arm. As we record more and more complicated

behaviors with more and more recording modalities, along with these improvements

comes a dramatic increase in data analysis needs.
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This dissertation has focused on creating analytical methods to address this pre-

cise need, both for understanding motor cortical processing and for prosthetic sys-

tems. While important and significant performance improvements have been shown

throughout the chapters, and while these studies have led to other interesting find-

ings, research into these questions is by no means finished. The above sections detail

exciting avenues for future work, and there are many scientific and biomedical engi-

neering questions still unanswered. Thus, as a departure point for this dissertation,

I believe that the preceeding chapters have shown solid progress towards a hugely

important scientific and biomedical goal, and that this goal has careers of exciting

work still remaining.
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Publications

The preceeding chapters describe the main thrust of my research over the course of my

Ph.D. work, much of which was done jointly with other researchers. I also participated

as a joint contributor on a number of other projects which led to various publications

that were not included in this dissertation. I include here a list of published work that

lists me as an author and that was completed during the course of my thesis work

at Stanford. I also include comments describing my relevant efforts for each project.

Note that I do not report conference abstracts or talks, as those are quite numerous

and typically subsumed by relevant conference or journal publications.

A.1 Journal Publications

1. J.P. Cunningham (2009) “Approximating Multivariate Gaussian Probabilities

with Expectation Propagation” In Revision.

�
This work, currently in revision for a machine learning journal publication, was pre-

sented in this document as Chapter 4. I am heavily involved in all aspects of this

work.

2. J.P. Cunningham, V. Gilja, S.I. Ryu, and K.V Shenoy (2009) “Methods for

estimating neural firing rates, and their application to brain-machine interfaces”

Neural Networks, doi:10.1016/j.neunet.2009.02.004. In Press.

�
This work was presented in this document as Chapter 7. I was heavily involved in all

aspects of this work.
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3. J.P. Cunningham, B.M. Yu, V. Gilja, S.I. Ryu, and K.V. Shenoy (2008) “Toward

Optimal Target Placement for Neural Prosthetic Devices” J. Neurophysiol-

ogy, vol. 100, no. 6, pp. 3445-3457.

�
This work was presented in this document as Chapter 6. I was heavily involved in all

aspects of this work.

4. C. Chang, J.P. Cunningham, and G.H. Glover (2009) “Influence of heart rate

on the BOLD signal: the cardiac response function” NeuroImage, vol. 44, no.

3, pp. 857-869.

�
This work was not covered in this dissertation. This work developed a nonparametric

Bayesian method to find a biologically plausible transfer function between the rate and

variation of cardiac and respiratory activity and the fMRI BOLD signal, and we showed

how deconvolving this function led to greater noise reductions than previously seen.

My involvement in this work was principally in the development of the nonparametric

Bayesian algorithm.

5. B.M. Yu, J.P. Cunningham, G. Santhanam, S.I. Ryu, K.V. Shenoy, and M.

Sahani (2009) “Gaussian-process factor analysis for low-dimensional single-trial

analysis of neural population activity” J. Neurophysiology, vol. 102, no. 1,

pp. 614-635.

�
This work was presented in this document as Chapter 5. I was heavily involved in all

aspects of this work.

6. M.M. Churchland, B.M. Yu, J.P. Cunningham, L.P. Sugrue, M.R. Cohen, G.S.

Corrado, W.T. Newsome, A.M. Clark, P. Hosseini, B.B. Scott, D.C. Bradley,

M.A. Smith, A. Kohn, J.A. Movshon, K.M. Armstrong, T. Moore, S.W. Chang,

L.H. Snyder, N.J. Priebe, I.M. Finn, D. Ferster, S.I. Ryu, G. Santhanam, M.

Sahani, and K.V. Shenoy (2009) “Stimulus onset quashes neural variability: a

widespread cortical phenomenon” In Preparation.

�
This work was not covered in this dissertation. This work, currently being prepared for

submission to Nature Neuroscience, analyzes many data sets from many different

brain areas and finds that stimulus onset precipitates a drop in the variability of neural

activity. This finding suggests that neural activity, which may be highly variable when

unconstrained or undriven, becomes consistent across experimental trials when driven

by an external stimulus such as a reach cue or reward anticipation. My involvement
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in this work is in the development and use of analytical methods (this work uses the

GPFA method of Chapter 5) and the preparation of the manuscript.

7. C.A. Chestek, A.P. Batista, G. Santhanam, B.M. Yu, A. Afshar, J.P. Cunning-

ham, V. Gilja, S.I. Ryu, M.M. Churchland, and K.V. Shenoy (2007) “Single-

neuron stability during repeated reaching in macaque premotor cortex” J. Neu-

roscience, vol. 27, no. 40, pp. 10742-10750.

�
This work was not covered in this dissertation. This work analyzed neural activity

over the course of an experimental session (typically 2-6 hours) and showed that neural

activity during a consistent reaching task is stable in terms of neural tuning and firing

activity. This finding importantly suggests that neurons are changing their response

properties slowly, not on the course of minutes or hours. My involvement in this work

was principally in the collection of neural data from monkey L.

A.2 Book Chapters

8. B.M. Yu, J.P. Cunningham, K.V. Shenoy, and M. Sahani (2007) “Neural de-

coding of movements: From linear to nonlinear trajectory models” In Neural

Information Processing (ICONIP 2007), Part I, vol. 4984, (M. Ishikawa,

K. Doya, H. Miyamoto, and T. Yamakawa, eds.), pp. 586-595. ISBN 978-3-

540-69154-9.

�
This work was not covered in this dissertation. This work analyzed run times for various

neural modeling algorithms. I was involved in a supporting role in all aspects of this

project.

A.3 Refereed Conference Publications

9. J.P. Cunningham, K.V. Shenoy, and M. Sahani (2008) “Fast Gaussian process

methods for point process intensity estimation” In Proc. of the 25th Ann.

Int. Conf. on Machine Learning (ICML 2008), (Andrew McCallum and

Sam Roweis, eds.), pp. 192-199.

�
This work was presented in this document as Chapter 3. I was heavily involved in all

aspects of this work.
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10. J.P. Cunningham, B.M. Yu, K.V. Shenoy, and M. Sahani (2008) “Inferring

neural firing rates from spike trains using Gaussian processes” In Advances

in Neural Information Processing Systems 20 (NIPS 20), (J. Platt,

D. Koller, Y. Singer, and S. Roweis, eds.), (Cambridge, MA), pp. 329-336.

[Selected for spotlight presentation]

�
This work was presented in this document as Chapter 2. I was heavily involved in all

aspects of this work.

11. C.A. Chestek*, J.P. Cunningham*, V. Gilja, P. Nuyujukian, S.I. Ryu, and

K.V. Shenoy (2009) “Neural Prosthetic Systems: Current Problems and Future

Directions” In Proc. 31st Annual Conf IEEE EMBS, In Press.

�
This work was presented in this document as Chapter 8. I was particularly involved in

the data analysis and paper writing aspects of this work.

12. B.M. Yu, J.P. Cunningham, G. Santhanam, S.I. Ryu, K.V. Shenoy, and M.

Sahani (2009) “Gaussian-process factor analysis for low-dimensional single-trial

analysis of neural population activity” In Advances in Neural Information

Processing Systems 21 (NIPS 21), (Cambridge, MA).

�
This work was subsumed by Yu et al. (2007) (item 5 above), which was presented in

this document as Chapter 5. I was heavily involved in all aspects of this work.

13. J.P. Cunningham, B.M. Yu, and K.V. Shenoy (2006) “Optimal target placement

for neural communication prostheses” In Proc. 28th Annual Conf IEEE

EMBS, pp. 2912-2915.

�
This work was subsumed by Cunningham et al. (2008b) (item 3 above), which was

presented in this document as Chapter 6. I was heavily involved in all aspects of this

work.

14. K.V. Shenoy, G. Santhanam, S.I. Ryu, A. Afshar, B.M. Yu, V. Gilja, M.D.

Linderman, R.S. Kalmar, J.P. Cunningham, C.T. Kemere, A.P. Batista, M.M.

Churchland, and T.H. Meng (2006) “Increasing the performance of cortically-

controlled prostheses” In Proc. 28th Annual Conf IEEE EMBS, pp. 6652-

6656.
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�
This work reviewed a number of developments in neural prosthetic systems. I was

heavily involved in the section describing the Optimal Target Placement algorithm of

Chapter 6.



Appendix B

Appendix Material for Fast

Computational Methods for Rate

Estimation

This appendix derives the Expectation Propagation algorithm updates for approx-

imating the posterior distribution on intensity in a conditionally inhomogeneous

gamma interval process with a Gaussian Process prior (GP IGIP), as described in

Chapter 3.

B.1 Expectation Propagation Algorithmic Details

Like the Laplace approximation, Expectation Propagation (EP) is a posterior approx-

imation method (Minka, 2001b) that creates a Gaussian approximation (or another

exponential family distribution) to the true posterior. EP has been found to be su-

perior to Laplace in many contexts (e.g. Kuss and Rasmussen (2005)). EP considers

global posterior information via iterative local likelihood approximations, whereas

Laplace uses information only at the mode of the posterior, setting that mode as the

mean of the approximate posterior and the curvature at that point as the covariance.

Thus, if the mode does not give an accurate summary of the posterior distribution,

Laplace may be ineffective. We will not cover the details of EP here; see Rasmussen

and Williams (2006) for implementation notes and further explanation of EP applied

to GP.
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In the context of this problem, we have a GP prior on the intensity function

{x(t)} and the conditionally IGIP likelihood. For model selection (be that modal

hyperparameter selection or approximate integration over hyperparameters), we are

interested in the model posterior p(θ | y) ∝ p(y | θ)p(θ), which requires the in-

tractable data evidence p(y | θ) =
∫
x
p(y | x, θ)p(x | θ)dx. We would like to use EP

to evaluate this data evidence. However, since EP makes iterative updates at each

site xi, running EP on the vector x is cumbersome and inherits the computational

burdens previously discussed (for example, doing rank one updates to the full n-by-n

covariance matrix are still necessary). Instead, we can exploit more problem specifics

to make EP feasible on a much lower dimensional integral. To do so, we will step

away from x, the quantity of interest, and return to the original gamma interarrival

distribution fz(z) ∼ Γ(γ). We define z with zi =
∫ yi

yi−1

x(u)du, and then the observed

event times y have conditional distribution:

p(y | z) =

N∏

i=1

p(yi | yi−1, zi) =

N∏

i=1

γγ

Γ(γ)
zγ−1

i exp{−γzi}. (B.1)

Then, we can equivalently write the data evidence, our quantity of interest, as

p(y | θ) =
∫
z
p(y | z, θ)p(z | θ)dz. Importantly, the data evidence is equivalent1, but

the integral is over the N dimensional vector z (number of time events), not the n

dimensional integral x (number of time points).

Again, {x(t)} is a GP in continuous time with a fixed mean and stationary kernel

Kx(τ), that is {x(t)} ∼ N (µ, Kx(τ)). Conveniently, the vector z is also Gaussian

distributed (since each zi is a linear transformation of {x(t)}). Then, we have z ∼
N (m, Π), where mi = (yi−1− yi)µ. If we choose the squared exponential (SE) kernel

for Kx(τ), namely:

K(ti − tj) = σ2
fexp

{
−κ

2
(ti − tj)

2

}
+ σ2

vδij, (B.2)

then Π will have the form:

1Since the gamma likelihood truncates our distribution over the nonnegative orthant, there is
a minor difference in the integral over x and the integral over z. This difference arises because
truncating z is not the same as individually truncating the elements of x that sum to z. This minor
discrepancy, we believe, is much smaller than the error introduced by including density outside the
nonnegative orthant, as does the Laplace approximation.
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Π =
{
Kz(i, j)

}
i,j∈{1,...,N}

where Kz(i, j) =

∫ yi

yi−1

∫ ji

yj−1

Kx(u− v)dudv (B.3)

= σ2
f

∫ yi

yi−1

∫ yj

yj−1

exp

{
−κ

2
(u− v)2

}
+ σ2

vδu−vdudv.

Define ỹi = yi

√
κ
2

and erf(u) =
∫ u

0
2√
π
exp(−v2)dv. By this definition,

∫
erf(u)du =

uerf(u) + 1√
π
exp(−u2), which can be carried through Eq. B.3 to yield the (lengthy

but computationally simple) expression:

Kz(i, j) =
σ2

f

√
π

κ

[
(ỹi − ỹj)erf(ỹi − ỹj) +

1√
π

exp{−(ỹi − ỹj)
2}

− (ỹi − ỹj−1)erf(ỹi − ỹj−1) −
1√
π

exp{−(ỹi − ỹj−1)
2}

− (ỹi−1 − ỹj)erf(ỹi−1 − ỹj) −
1√
π

exp{−(ỹi−1 − ỹj)
2}

+ (ỹi−1 − ỹj−1)erf(ỹi−1 − ỹj−1) +
1√
π

exp{−(ỹi−1 − ỹj−1)
2}
]

+ σ2
v

[
(yi − yj)+ − (yi−1 − yj)+

− (yi − yj−1)+ + (yi−1 − yj−1)+

]
, (B.4)

where the notation (·)+ , max(·, 0). It is important to note in the details above

that only the event times yi appear, and thus this covariance matrix is calculated in

O(N2) time and memory, and the larger n is never required.

We have now constructed the distributions p(y | z) and p(z) ∼ N (m, Π). EP

approximates the true posterior p(z | y) with the normal distribution

q(z | y) ,
1

ZEP

p(z)

N∏

i=1

ti(zi) = N (µ, Σ) where ti(zi) , Z̃iN
(
µ̃i, σ̃

2
i

)
. (B.5)

The EP implementation, and from that the calculation of data evidence, is typical

for GP (see Rasmussen and Williams (2006)). The only step particular to this problem
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is that of fitting a local (unnormalized) Gaussian to the product of the ith cavity

distribution q−i(zi) and the ith likelihood p(yi | yi−1, zi). By the standard Kullback-

Leibler minimization, we must match the first and second moments (and zeroth, for

good measure) of q̂(zi) , ẐiN (µ̂i, σ̂
2
i ) to the moments of q−i(zi)p(yi | yi−1, zi). In

detail:

Ẑi =

∫ ∞

0

q−i(zi)p(yi | yi−1, zi)dzi (B.6)

µ̂i =
1

Ẑi

∫ ∞

0

ziq−i(zi)p(yi | yi−1, zi)dzi (B.7)

σ̂2
i =

1

Ẑi

∫ ∞

0

z2
i q−i(zi)p(yi | yi−1, zi)dzi − µ̂2

i . (B.8)

Considering the first in detail:

Ẑi =

∫ ∞

0

1√
2πσ−i

exp
{
− 1

2σ2
−i

(zi − µ−i)
2
} γγ

Γ(γ)
zγ−1

i exp
{
−γzi

}
dzi

=
γγ

Γ(γ)
exp
{1

2
σ2
−iγ

2 − µ−iγ
}

·
∫ ∞

0

zγ−1
i

1√
2πσ−i

exp
{
− 1

2σ2
−i

(zi −
(
µ−i − γσ2

−i)
)2}

dzi

=
γγ

Γ(γ)
exp
{1

2
σ2
−iγ

2 − µ−iγ
}
Ēr(zi)

(
zγ−1

i

)
, (B.9)

where Ē represents the truncated expectation (integrating over the nonnegative half-

line instead of the real line), and r(zi) ∼ N
(
µ−i − γσ2

−i, σ
2
−i

)
. In words, the normal-

izing constant Ẑi is the product of a constant and a truncated higher order moment

(the (γ − 1)th moment) of a univariate normal distribution r(zi). By the same logic

as Eq. B.9, and substituting in for Ẑi,

µ̂i =
Ēr(zi)

(
zγ

i

)

Ēr(zi)

(
zγ−1

i

) and σ̂2
i =

Ēr(zi)

(
zγ+1

i

)

Ēr(zi)

(
zγ−1

i

) − µ̂2
i . (B.10)

Thus, the only difficult step in calculating an EP update is that of calculating

high order truncated moments of a univariate normal distribution. There is no closed



APPENDIX B. DETAILS OF EXPECTATION PROPAGATION 200

form expression for non-integer moments, so we here restrict ourselves to the case

of integer values of γ only. If, in a particular application, it is essential to have

non-integer values of γ, these moments can be empirically calculated, at the cost of

both accuracy and speed. For many applications, however, an integer γ should be

adequate.

Though no simple closed form can be derived for truncated higher order integer

moments of a normal distribution, we can recursively calculate these moments. We

begin with the truncated moment generating function from Jawitz (2004). Given a

normal distribution u ∼ N (a, b2), and letting c = − a
b
√

π
, we write:

Ē(uM) =
1

2

[
M∑

k=0

(
M

k

)
aM−k(b

√
2)k

∫ ∞

c

( 2√
π

)
vkexp

{
−v2

}
dv

]
. (B.11)

As suggested in Jawitz (2004), the integral in Eq. B.11 can be solved for any k in

closed form using integration by parts and the erf(·) function as previously defined.

However, it is tedious and impractical to detail the result of this integral for all

reasonable integers that could be assigned to γ. Instead, for any k, we can recursively

solve this integral (via two consecutive integrations by parts), and we see that:

(k = 0)

[∫ ∞

c

( 2√
π

)
v0exp

{
−v2

}
dv

]
= 1− erf(c), (B.12)

(k = 1)

[∫ ∞

c

( 2√
π

)
v1exp

{
−v2

}
dv

]
=

1√
π

exp
{
−c2

}
,

(k > 1)

[∫ ∞

c

( 2√
π

)
vkexp

{
−v2

}
dv

]
= ck−1 1√

π
exp
{
−c2

}

+
1

2
(k − 1)

[∫ ∞

c

( 2√
π

)
vk−2exp

{
−v2

}
dv

]
.

The integral for any order k can be calculated using only a simple calculation and

the (k− 2)th order of the same integral. For the EP updates, we need the (γ − 1)th,

γth, and (γ+1)th truncated moments as in Eqs. B.9,B.10. By Eqs. B.11,B.12, we can

calculate these moments precisely and in O(γ) time, which should for all reasonable

purposes be instantaneous. We have shown that this detail of the EP update is

exact and computationally simple (though, as is often the case with EP, care must
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be taken to ensure numerical stability). Since all the other details are standard for

EP, the entire EP update then has computational and memory complexity typical

for EP, which is O(N 3) due to the Cholesky factorization required in updating the

posterior covariance. Further, since the gamma likelihood is log concave in zi, EP

has only positive site updates (avoiding a known pitfall of EP, see Seeger (2002))

and has attractive convergence properties (it has been conjectured that EP with a

log concave likelihood will always converge (Rasmussen and Williams, 2006)). Thus,

we have developed a stable EP implementation that operates only on the number of

events N instead of the larger n.

Accordingly, we can make a fast approximation of p(y | θ) using either a Laplace

approximation or EP on the transformed variable z. In particular cases, one estimate

may do better than others. In our specific application, we find that EP and Laplace

perform similarly when the majority of the prior mass is in the nonnegative orthant,

and that EP sometimes outperforms when this does not hold. More study is required

to understand if EP offers a meaningful improvement in this setting.



Appendix C

Appendix Material for Calculating

Gaussian Probabilities

The following appendices give additional details for the work discussed in Chapter 4.

C.1 Proof of Sensibility of KL Divergence

This section proves that minimizing KL divergence in our problem setting does cor-

respond to matching the zeroth, first, and second moments of q(x) to pA(x). As

minimizing KL divergence is the goal of the EP algorithm, this result shows that

EPGCD is the appropriate choice to solve this probability (zeroth moment) problem.

First, as defined in the main text, pA and q(x) do not normalize to 1. Thus, we use

the general definition of KL divergence for non-negative distributions f(x) and g(x):

KL
(
f(x) ‖ g(x)

)
=

∫
f(x) log

f(x)

g(x)
dx +

∫
g(x)dx −

∫
f(x)dx, (C.1)

as in Zhu and Rohwer (1995); Minka (2005). Note that the typically-seen normalized

KL divergence (e.g., Cover and Thomas (1991)) is recovered when both f(x) and g(x)

normalize to 1. We are interested in the distribution q(x) that minimizes KL
(
pA(x) ‖

q(x)
)
, where pA(x) is defined in the main text, Eq. 4.3. To simplify this proof,

as is often done when dealing with Gaussians, we will rewrite both p(x) and q(x)

in their Exponential Family representation (see for example Bishop (2006); Seeger

202



APPENDIX C. APPENDICES FOR GAUSSIAN PROBABILITIES 203

(2003); we use the notation of the latter reference). This representation reparametizes

main text Eq. 1, using instead the sufficient statistics vector φ(x), which for the

Gaussians in this problem is a vector of all elements xi and all pairs of elements xixj.

Then the mean and covariance parameters m, K of p(x) are reparameterized also and

become the so-called natural parameter vector θp. To be clear, this change is only

a convenient reparameterization; no change to the distributions or to the moment-

matching problem has taken place. In this form, we first redefine p(x) (which does

normalize to 1) and our distribution of interest, q(x) (which does not normalize to

1):

p(x) = exp
{

θT
p φ(x)− Φ(θp)

}
, (C.2)

q(x) = Z exp
{
θT

q φ(x)− Φ(θq)
}

, (C.3)

where Φ(θ) = log
∫

exp
{
θT φ(x)

}
dx normalizes p(x) to 1 and normalizes q(x) to Z.

Note that, since both p(x) and q(x) are Gaussian, both distributions share the same

sufficient statistics φ(x) and normalizing function Φ(θ) (this would not be true if

these two distributions belonged to different Exponential Families, such as Poisson

or multinomial). For convenience, we repeat here the definition of pA(x):

pA(x) =





p(x) x ∈ A
0 otherwise.

(C.4)

Thus, neither pA(x) nor q(x) normalize to 1. Since we seek the distribution q(x)

that minimizes KL
(
pA(x) ‖ q(x)

)
, we must find Z, θq minimizing

KL
(
pA(x) ‖ q(x)

)
=

∫
pA(x) log

pA(x)

q(x)
dx +

∫
q(x)dx −

∫
pA(x)dx (C.5)

=

∫

A
p(x) log

p(x)

q(x)
dx +

∫
q(x)dx −

∫

A
p(x)dx (C.6)

=

∫

A
p(x)

{
(θp − θq)

T φ(x)
}
dx −

∫

A
p(x)

{
Φ(θp)− Φ(θq)

}
dx

− log Z

∫

A
p(x)dx + Z −

∫

A
p(x)dx, (C.7)
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where all equations follow from standard properties of the logarithm and the defini-

tions of p(x) and q(x) in Eq. C.2 and Eq. C.3 (and we have used the fact that Z does

not depend on x to pull it out of the integrals). To minimize this KL, we first take

the derivative with respect to the normalizer of q(x), namely Z:

d

dZ
KL
(
pA(x) ‖ q(x)

)
= − 1

Z

∫

A
p(x)dx + 1 (C.8)

= 0 (C.9)

=⇒ Z∗ =

∫

A
p(x)dx. (C.10)

From this we see that minimizing the KL divergence over the normalizing constant

Z matches the zeroth moments, as we expected. Indeed, it is this equation that

motivates the entire EPGCD approach, because it clarifies that minimizing global KL

divergence will allow us to calculate the cumulative densities of Gaussians F (A). For

completeness, since the EP algorithm aims minimize global KL over the higher-order

moments as well, we also can differentiate KL with respect to the natural parameters

q(x), namely θq:

d

dθq

KL
(
pA(x) ‖ q(x)

)
= −

∫

A
p(x)φ(x)dx +

∫

A
p(x)∇θq

Φ(θq)dx.(C.11)

= −
∫

A
p(x)φ(x)dx + Z∗∇θq

Φ(θq), (C.12)

where we have used Z∗ from Eq. C.10 and the fact that Φ(θq) does not depend on x.

By the definition of Φ(·) (after Eq. C.3 above), we see that:

Z∗∇θq
Φ(θq) = Z∗

∫
φ(x) exp

{
θT

q φ(x)
}
dx

∫
exp
{
θT

q φ(x)
}

dx
(C.13)

= Z∗
∫

φ(x) exp
{

θT
q φ(x)− Φ(θq)

}
dx (C.14)

=

∫
q(x)φ(x)dx. (C.15)

where we have set q(x) to normalize to Z∗. Finally, returning to Eq. C.12 (and
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substituting in the result from Eq. C.15), we see that:

d

dθq

KL
(
pA(x) ‖ q(x)

)
= −

∫

A
p(x)φ(x)dx +

∫
q(x)φ(x)dx (C.16)

= −
∫

pA(x)φ(x)dx +

∫
q(x)φ(x)dx (C.17)

= − EpA

(
φ(x)

)
+ Eq

(
φ(x)

)
(C.18)

=⇒ Eq∗

(
φ(x)

)
= EpA

(
φ(x)

)
, (C.19)

where we use E(·) to represent expectation with respect to the distributions pA(x)

and q(x). Futher, since φ(x) captures first and second order statistics (elements xi

and xixj, as above), Eq(φ(x)) is simply the first and second moments of q(x) (so too

for pA(x)). To summarize, these final equations Eq. C.10 and Eq. C.19 tell us that, to

uniquely minimize the global KL divergence between the truncated distribution pA(x)

and the Gaussian q(x), we do two things: first, we set Z to be the total mass (zeroth

moment) of pA(x); and second, we set θq, the natural parameters of q(x) such that the

mean (first moment) and covariance (second moment) of q(x) equal exactly the first

and second moments of pA(x). Note that this proof also holds if the two distributions

p(x) and q(x) do not have the same sufficient statistics φ(x); that is, p(x) need not be

Gaussian, as long as q(x) is Gaussian. In that case, the result is then as in Eq. C.19,

but both sides of the equation would have φq(x), the moments of the approximating

Gaussian. However, the fact that the distributions in this problem do have the same

sufficient statistics may help explain the rapid convergence of this algorithm to what

our results indicate is very close to the global KL minimizer. Formalizing this claim

into a proof is a subject of ongoing research.

As it pertains to calculating probabilities, minimizing global KL divergence calcu-

lates the zeroth moment of pA(x), which is exactly F (A), the probability of interest.

As EP-based methods aim to solve this KL minimization, EPGCD is the sensible

choice for probability calculations.
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C.2 Genz Numerical Integration Method

The Genz method (as first described in Genz (1992), but see also Genz and Kwong

(2000); Genz and Brentz (1999, 2002); Genz (2004)) is a sophisticated numerical in-

tegration method for calculating multivariate probabilities. The core idea in Genz

(1992) is to make a series of transformations of the region A and the Gaussian p(x)

with the hope that this transformed region can be accurately integrated numerically.

This approach performs three transformations to F (A). It first whitens the Gaus-

sian integrand p(x) (via a Cholesky factorization of K, which changes the integration

bounds), and secondly it removes the integrand altogether by transforming the inte-

gration bounds with a function using the cdf and inverse cdf of a univariate Gaussian.

Finally, a further transformation is done (using points uniformly drawn from the [0, 1]

interval) to set the integration region to the unit box (in IR
n). Once this is done, Genz

(1992) makes intelligent choices on dimension ordering to improve accuracy. With all

orderings and transformations completed, numerical integration is carried out over

the unit hypercube, using either quasi-random integration rules (Niederreiter, 1972;

Cranley and Patterson, 1976) or lattice-point rules (Cranley and Patterson, 1976;

Nuyens and Cools, 2004). The original algorithm (Genz, 1992) reported, “it is pos-

sible to reliably compute moderately accurate multivariate normal probabilities for

practical problems with as many as ten variables.” Further developments including

Genz and Kwong (2000); Genz and Brentz (1999, 2002); Genz (2004) have improved

the algorithm to the performance available in Table 4.1. Our use of this algorithm was

enabled by the author’s MATLAB code QSILATMVNV. This function runs a vectorized,

lattice-point version of the algorithm from (Genz, 1992), which we found always pro-

duced lower error estimates (this algorithm approximates the accuracy of its result to

the true probability) than the vectorized, quasi-random QSIMVNV (with similar run-

times). We also found that these vectorized versions had lower error estimates and

significantly faster run-times than the non-vectorized QSIMVN. Thus, all results shown

as the “Genz method” were gathered using QSILATMVNV, available at the time of this

report at: http://www.math.wsu.edu/faculty/genz/software/software.html. The

software allows the user to define the number of lattice points used in the evaluation.

To calculate the high accuracy estimate (our proxy for F (A)), we used 5× 105 points

(5 × 104 for n = 500, 1000). For the “Fast Genz” and “Accurate Genz” methods to

which EPGCD was compared, we used 50 and 5000 points, respectively. We found
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that many fewer points increased the estimate variance considerably without run-time

benefit, and many more points increased run-time with little improvement to the es-

timates. We note also that several statistical software packages have bundled some

version of the Genz method into their product (e.g., mvncdf in MATLAB, pmvnorm

in R). Particular choices and calculations outside the literature are typically made in

those implementations (for example, MATLAB does not allow n > 25), so we have

focused on just the code available from the author himself.

C.3 Choosing Random Regions, Means, and Co-

variances

In Table 4.1, for any dimension n, we used the following procedure to choose a ran-

dom, n-dimensional Gaussian (defined by its mean m and covariance K) and a ran-

dom probability region A (as in Fig. 4.1). For the results in Table 4.1, this procedure

was repeated 1000 times at each n (100 times at n = 500 and n = 1000, due to the

burden of calculating the high accuracy Genz method probabilities at these dimen-

sions). First, we randomly drew one positive-valued n-vector from an exponential

with mean 10 (λ = 0.1, n independent draws from this distribution), and we call

the corresponding diagonal matrix (with this vector on the diagonal) the matrix of

eigenvalues S. We then randomly draw an n×n orthogonal matrix U (orthoganilizing

any random matrix with the singular value decomposition suffices), and we form the

Gaussian covariance matrix K = USUT . This procedure produces a good spread

differing covariances K (with quite different eigenvalue spectra and condition num-

bers, as determined by the exponential draws of the eigenvalues in S). We note that

this procedure produced a more interesting range of K (in particular, a better spread

of condition numbers) than using, for example, draws from a Wishart distribution

(Bishop, 2006). We then set the mean of the Gaussian m = 0 without loss of gener-

ality (note that, were m 6= 0, we could equivalently pick the region A to be shifted

by m, and then the problem would be unchanged; instead, we leave m = 0, and we

allow the randomness of A to suffice).

Now that we have the Gaussian p(x) = N (m, K), we must define the region A
for the probability F (A). The hyperrectangle A can be defined by two n-vectors: the

upper and lower bounds u and l. To make these vectors, We first randomly drew a
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point from the Gaussian p(x) and defined this point as an interior point of A. We

then added and subtracted randomly chosen lengths to each dimension of this point,

calling the larger and smaller points the bounds ui and li, respectively. These random

lengths were chosen uniformly with range proportional to the dimension of the data,

which was done to produce interesting cumulative densities on the range of 10−8 to

1 (otherwise, as the dimension n grows, all probabilities for a fixed region length will

get smaller and smaller.

With u, l,m, and K defined, we now have a randomly chosen A and the Gaussian

p(x), and we can test the probability methods as previously described. This procedure

produces a variety of Gaussians and regions, so we believe our results suggest strongly

that any valid Gaussian will produce similar results.



Appendix D

Appendix Material for Gaussian

Process Factor Analysis

The following appendices give additional details for the work discussed in Chapter 5.

D.1 GPFA Model Fitting

This section details how the parameters of the GPFA model are fit using the EM

algorithm, as well as the associated computational requirements.

E-Step. The E-step computes the relative probabilities P (X | Y ) of all possible

neural trajectories X given the observed activity Y , using the most recent parameter

estimates. We will first find the joint distribution of X and Y , which is Gaussian by

definition. The desired conditional distribution P (X | Y ) is therefore also Gaussian

and can then be obtained using the basic result of conditioning for jointly Gaussian

random variables.

Eqs. 5.1 and 5.2 can be re-expressed as

x̄ ∼ N
(
0, K̄

)
(D.1)

ȳ | x̄ ∼ N
(
C̄x̄ + d̄, R̄

)
, (D.2)

where x̄ =
[
x′

:,1 . . . x′
:,T

]′ ∈ IR
pT×1 is a concatenation of the columns of X, and

ȳ =
[
y′

:,1 . . . y′
:,T

]′ ∈ IR
qT×1 is a concatenation of the columns of Y . The block

209
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diagonal matrices C̄ ∈ IR
qT×pT and R̄ ∈ IR

qT×qT comprise T blocks of C and R,

respectively. The vector d̄ ∈ IR
qT×1 is a concatenation of T copies of d. The covariance

matrix

K̄ =




K̄11 . . . K̄1T

...
. . .

...

K̄T1 . . . K̄TT


 ∈ IR

pT×pT (D.3)

comprises blocks K̄t1t2 = diag {K1(t1, t2), . . . , Kp(t1, t2)} ∈ IR
p×p, where the diag op-

erator returns a diagonal matrix whose non-zero elements are given by its arguments,

Ki(t1, t2) is defined in Eq. 5.3, and t1, t2 = 1, . . . , T . One can interpret K̄t1t2 as the

covariance of the neural states at timepoints t1 and t2. From Eqs. D.1 and D.2, the

joint distribution of x̄ and ȳ can be written

[
x̄

ȳ

]
∼ N

([
0

d̄

]
,

[
K̄ K̄C̄ ′

C̄K̄ C̄K̄C̄ ′ + R̄

])
. (D.4)

Using the basic result of conditioning for jointly Gaussian random variables1,

x̄ | ȳ ∼ N
(
K̄C̄ ′ (C̄K̄C̄ ′ + R̄

)−1
(ȳ− d̄), K̄ − K̄C̄ ′ (C̄K̄C̄ ′ + R̄

)−1
C̄K̄

)
. (D.5)

Thus, the extracted neural trajectory is

E [x̄ | ȳ] = K̄C̄ ′ (C̄K̄C̄ ′ + R̄
)−1

(ȳ − d̄). (D.6)

From Eq. D.4, the data likelihood P (Y ) can be easily computed since

ȳ ∼ N
(
d̄, C̄K̄C̄ ′ + R̄

)
. (D.7)

M-Step. The M-step involves maximizing E(θ) = E [log P (X, Y | θ)] with respect

to the parameters θ = {C,d, R, τ1, . . . , τp}. The expectation in E(θ) is taken with

respect to the distribution P (X | Y ) found in the E-step, given in Eq. D.5. While

this is a joint optimization with respect to all parameters in θ, it turns out that their

optimal values are dependent on only a few or none of the other parameters, as shown

1Since x̄ is obtained by reshaping X , they contain the same elements. The same is true for ȳ

and Y . Thus, P (x̄ | ȳ) is equivalent to P (X | Y ).
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below. For clarity, we first define the following notation

〈x:,t〉 = E [x:,t | Y ] ∈ IR
p×1 for t = 1, . . . , T

〈x:,t x
′
:,t〉 = E

[
x:,t x

′
:,t | Y

]
∈ IR

p×p for t = 1, . . . , T

〈x′
i,: xi,:〉 = E

[
x′

i,: xi,: | Y
]
∈ IR

T×T for i = 1, . . . , p

where these expectations can be obtained from Eq. D.5.

Maximizing E(θ) with respect to C and d yields

[
C d

]
=

(
T∑

t=1

y:,t ·
[
〈x:,t〉′ 1

])( T∑

t=1

[
〈x:,t x

′
:,t〉 〈x:,t〉

〈x:,t〉′ 1

])−1

, (D.8)

which does not depend on any of the other parameters. The update for R is

R =
1

T
· diag

{
T∑

t=1

(y:,t − d) (y:,t − d)′ −
(

T∑

t=1

(y:,t − d) 〈x:,t〉′
)

C ′

}
, (D.9)

where the diag operator zeros all off-diagonal elements of its argument. The new

values of C and d found in Eq. D.8 should be used in Eq. D.9. Note that the updates

for C, d, and R have the same analytic form as for FA, except that the sums here are

taken over different timepoints rather than different datapoints in the case of FA.

Although there is no analytic form for the timescale updates, they can be obtained

using any gradient optimization technique. The gradient of E(θ) with respect to τi

(i = 1, . . . , p) is

∂E(θ)
∂τi

= tr

([
∂E(θ)
∂Ki

]′
∂Ki

∂τi

)
, (D.10)

where

∂E(θ)
∂Ki

=
1

2

(
−K−1

i + K−1
i 〈x′

i,: xi,:〉K−1
i

)

∂Ki(t1, t2)

∂τi

= σ2
f,i ·

(t1 − t2)
2

τ 3
i

· exp

(
−(t1 − t2)

2

2 · τ 2
i

)
.

As in Methods, Ki(t1, t2) denotes the (t1, t2)th entry of Ki and t1, t2 = 1, . . . , T . Note

that Eq. D.10 does not depend on the other p − 1 timescales, nor the other model
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parameters. Thus, each of the timescales is can be optimized individually. Because

the timescales must be non-negative, the optimization should be performed under

the constraint that τi ≥ 0. This constrained optimization problem can be converted

into an equivalent unconstrained optimization problem by optimizing with respect to

log τi (which can be positive or negative) rather than τi using a change of variable.

The derivations in this section assume a single time series (corresponding to a

single experimental trial) with T timepoints. We typically want to learn the model

parameters θ based on multiple time series, each with a possibly different T . The

parameter update equations above can be extended in a straightforward way to ac-

comodate multiple time series. Instead of optimizing E(θ) for a single time series,

we optimize their sum
∑

n En(θ) across all time series indexed by n. Equations anal-

ogous to Eqs. D.8–D.10 can be derived by considering ∂ (
∑

n En(θ)) /∂θ rather than

∂E(θ)/∂θ. This assumes that the time series are independent, given the model pa-

rameters. In other words, there is no constraint built into the model that similar

neural trajectories should be obtained on different trials. However, the neural trajec-

tories are assumed to lie within the same low-dimensional state space with the same

timescales.

Parameter Initialization and Local Optima. Because EM is an iterative al-

gorithm that is guaranteed to converge to a local optimum, the values at which the

parameters are initialized are important. Recall that the neural trajectories extracted

by GPFA can be viewed as a compromise between the low-dimensional FA projection

of each datapoint and the desire to string them together using a smooth function over

time. Under this view, we initialized the parameters C, d, and R using FA, which

provides dimensionality reduction, but no smoothness over time. We then allowed

GPFA to refine these estimates to obtain smooth neural trajectories. The degree of

smoothness is defined by the timescales τi, which also need to be initialized. We fit

the GPFA model starting at four different timescales: 50, 100, 150, 200 ms. In each

case, all p = 15 timescales were initialized to the same value. Fig. D.1 shows the

resulting learned timescales for each initialization. Although the learned timescales

were initialization-dependent, their distributions were similar. In each case, there was

one learned timescale around 525 ms, one or two around 300 ms, and the others in

the range 40–180 ms. As indicated by the arrows in Fig. D.1, the mean of the 15
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Figure D.1: Learned GPFA timescales τi (i = 1, . . ., 15) after 500 EM iterations
starting at four different initial values: 50, 100, 150, 200 ms. Arrows denote how the
mean of the 15 timescales changed between their initial and learned values. These
results are based on the same data used in Figs. 5.5–5.8. For the 100 ms initialization,
each of the learned timescales corresponds to a different panel in Fig. 5.6.

learned timescales ranged from 125 to 155 ms. Furthermore, the resulting training

data likelihoods, as well as the extracted orthonormalized neural trajectories, were

very similar in the four cases (results not shown). Unless otherwise specified, all re-

sults in this work are based on initializing the timescales to 100 ms and running EM

for 500 iterations. We also reran the analysis in Fig. D.1 using 2000 EM iterations

to verify that there are true local optima in the space of timescales. While other

parameter initializations are possible (e.g., starting at random values with multiple

restarts), we found that FA provided a sensible and effective initialization.

Because we seek to extract smooth neural trajectories, we fixed the GP noise

variances σ2
n,i to a small value (10−3) for all results shown in this work. Larger values

of σ2
n,i generally yield neural trajectories that are less smooth. We also considered

learning σ2
n,i from the data, where each state dimension indexed by i can have a

different GP noise variance. This involves finding the gradient of E(θ) with respect

to σ2
n,i (similar to Eq. D.10) and taking gradient steps in the joint space of σ2

n,i and

τi for each i during the M-step. If the σ2
n,i are initialized to 10−3, their learned values

(after 2000 EM iterations) remain on the order of 10−3, yielding a similar training
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data likelihood and prediction error as when the σ2
n,i are fixed to 10−3.

Computational Requirements. This section details the computation time re-

quired to fit the GPFA model parameters and to extract neural trajectories. The

computation time is a function of the state dimensionality p, the number of neurons

q, the number of trials, the number of timesteps T in each trial, and the number of

EM iterations. While fitting a GPFA model is generally computationally demanding,

extracting a single neural trajectory can be very fast, as described below.

Table D.1: Time required for fitting GPFA model

Time bin width 20 ms 50 ms

p = 3 50 min 8 min
p = 15 9 hrs 45 min

T range 47–71 19–28

Results were obtained on a 2006-era Linux (FC4) 64-bit

workstation with 2–4 GB of RAM running MATLAB

(R14sp3, BLAS ATLAS 3.2.1 on AMD processor).

Table D.1 lists the computation time required for fitting a GPFA model for dif-

ferent state dimensionalities p and time bin widths. The values are based on q = 61

neurons, 56 trials, and 500 EM iterations. Because the absolute time duration of each

trial is fixed, a larger time bin width means a smaller number of timesteps T , whose

range across the 56 trials is shown in Table D.1. A naive implementation scales as

O(q3T 3) due to the matrix inversion in Eq. D.5. The matrix inversion lemma can

be applied to reduce the computational load to O(p3T 3). Overall, the most costly

operations in fitting the GPFA model are the matrix inversion and multiplications in

Eq. D.5, as well as the iterative gradient optimization (Eq. D.10) of the timescales.

There are several ways in which computation time can be reduced for the same

state dimensionality p, number of neurons q, and number of trials. First, if different

trials have the same T , the costly matrix inversion and multiplications in Eq. D.5

can be reused. The computation time can be drastically reduced if all or many trials

have the same T . In Table D.1, many trials had different T and, therefore, did not

take full advantage of this savings. Second, depending on how crucial time resolution
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is, one might consider using a larger time bin width, thereby reducing T . Increasing

the time bin width has the additional benefit that it increases the number of trials

with the same T . As shown in Table D.1, increasing the time bin width from 20 ms

to 50 ms reduced the computation time from 9 hours to 45 minutes for p = 15.

Third, depending on how quickly the data likelihood Eq. D.7 converges, one may

need fewer (or more) than 500 EM iterations. The computation time scales linearly

with the number of EM iterations. Fourth, approximate techniques can be applied to

reduce computation time (Teh et al., 2005; Cunningham et al., 2008a). In this work,

we perform all computations exactly, without the potential speedups of approximate

techniques.

Once the GPFA model parameters are learned, extracting a single neural trajec-

tory (Eq. D.6) can be very fast, given the appropriate precomputation. In particular,

the expensive matrix inversion and multiplications in Eq. D.6 can be precomputed

for each T . Depending on the values of p and T , the time required for this pre-

computation ranges from a few milliseconds to a few seconds for each T . Once the

precomputation is finished, extracting a single neural trajectory takes 2.5 ms for

p = 15 and T = 71 (the most computationally-demanding trajectory in our dataset),

and less time for smaller values of p and T . It is readily possible to envision having

single-trial, low-dimensional visualizations (as extracted by GPFA) appear during the

inter-trial interval of behaving animal experiments (< 1 second) using standard PC

hardware and Matlab.

D.2 Computing Prediction Error

For GPFA, we first fit the model parameters θ = {C,d, R, τ1, . . . , τp} using the EM

algorithm to the training data. We show here how to evaluate model goodness-

of-fit by applying these learned parameters to data not used for model fitting. As

described in Methods, we seek to predict the activity of a neuron given the activity

of all other (q − 1) recorded neurons. Let ȳj ∈ IR
T×1 be the activity of neuron j and

ȳ−j ∈ IR
(q−1)T×1 be the activity of the other (q − 1) neurons across all T timepoints,

where j = 1, . . . , q. In other words, ȳj is equal to the transpose of the jth row of

Y , while ȳ−j comprises all but the jth row of Y . The model prediction ŷj ∈ IR
T×1

for neuron j is defined as E [ȳj | ȳ−j]. Because ȳj and ȳ−j are jointly Gaussian by
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definition, the model prediction can be computed analytically.

We first define sparse binary matrices Bj ∈ {0, 1}T×qT and B−j ∈ {0, 1}(q−1)T×qT

such that ȳj = Bjȳ and ȳ−j = B−jȳ. Multiplication by Bj and B−j can be viewed

as picking out the elements in ȳ corresponding to neuron j and to all other neurons,

respectively. Using Eq. D.7,

[
ȳj

ȳ−j

]
∼ N

([
Bjd̄

B−jd̄

]
,

[
BjΣB′

j BjΣB′
−j

B−jΣB′
j B−jΣB′

−j

])
, (D.11)

where Σ = C̄K̄C̄ ′ + R̄ is introduced for notational clarity. Applying the basic result

of conditioning for jointly Gaussian random variables,

ŷj = E [ȳj | ȳ−j] = Bjd̄ +
(
BjΣB′

−j

) (
B−jΣB′

−j

)−1 (
ȳ−j −B−jd̄

)
. (D.12)

The prediction error is defined as the sum-of-squared differences between the model

prediction and the observed square-rooted spike counts across all neurons and time-

points

Prediction error =

q∑

j=1

∥∥ŷj − y′
j,:

∥∥2
, (D.13)

where y′
j,: is the transpose of the jth row of Y .

For the two-stage methods using PCA, PPCA, or FA, the model prediction is

analogous to Eq. D.12, but has a simpler form because these static dimensionality

reduction techniques have no concept of time. It is important to note that the training

data and the data used to compute the model prediction must be pre-smoothed in

the same way (e.g., using the same kernel) for the two-stage methods. However,

when evaluating the prediction error, the model prediction must be compared to

unsmoothed square-rooted spike counts, as in Eq. D.13 for GPFA. Thus, for both the

two-stage methods and GPFA, a smooth model prediction is compared to unsmoothed

square-rooted spike counts.

To compute the model prediction for the reduced GPFA model, we cannot simply

apply Eq. D.12. Instead, we must consider an alternate approach to computing the

model prediction via the orthonormalized state space. The basic idea is that a p-

dimensional orthonormalized neural trajectory is first estimated using all but the jth
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neuron. Then, the activity of the jth neuron is predicted using the only the top p̃

dimensions (p̃ = 1, . . . , p) of the orthonormalized neural trajectory. The following

equations formalize these concepts

ŷj = E
[
y′

j,: | ȳ−j

]
(D.14)

= EX

[
E
[
y′

j,: | X, ȳ−j

] ∣∣∣ ȳ−j

]
(D.15)

= EX

[ (
c′jX + dj · 11×T

)′ ∣∣∣ ȳ−j

]
(D.16)

=
(
c′j EX [X | ȳ−j] + dj · 11×T

)′
(D.17)

=
(
u′

j DV ′ EX [X | ȳ−j] + dj · 11×T

)′
. (D.18)

Eq. D.15 is obtained from Eq. D.14 by conditioning on X. In Eq. D.16, we use the

fact that y′
j,: is independent of ȳ−j conditioned on X. Furthermore, c′

j ∈ IR
1×p is

the jth row of C, dj ∈ IR is the jth element of d, and 11×T is a 1 × T vector of all

ones. Eq. D.18 uses the singular value decomposition of C = UDV ′, as described in

Methods. Note that u′
j ∈ IR

1×p is the jth row of U , and that DV ′ EX [X | ȳ−j] is the

orthonormalized neural trajectory estimated using all but the jth neuron.

Eq. D.18 is an alternate approach to computing the GPFA model prediction and

yields the same result as Eq. D.12. Eq. D.18 says that the model prediction for neuron

j can be obtained by projecting the orthonormalized neural trajectory estimated using

all but the jth neuron onto the jth axis in the high-dimensional space. Although

Eq. D.18 tends to be more computationally demanding than Eq. D.12, it allows us to

compute the model prediction for the reduced GPFA model. For the reduced GPFA

model, Eq. D.18 is computed using only the top p̃ elements of uj (since its elements

are ordered due to orthonormalization) and setting all other elements of uj to zero.

D.3 Simulation with Error Floor

In Fig. 5.5, the benefit of GPFA over competing methods appears to be small (in

percentage terms) if measured in terms of distance from zero prediction error. How-

ever, zero prediction error is unachievable due to the noise present in the data to

be predicted. Thus, we conducted a simulation to determine the benefit of GPFA

relative to a known error floor. This must be done in simulation, since the error floor
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is unknown for real neural data.

The simulated data were generated using a three-dimensional state space, where

each state dimension evolved in time according to a sinusoid with a different frequency.

These sinusoids were then linearly combined and mapped out into a 61-dimensional

observation space according to Eq. 5.1. The independent noise was assumed to be

isotropic and Gaussian across the 61 dimensions. We simulated 56 trials, each with

50 timesteps. We then applied the two-stage methods and GPFA using 4-fold cross-

validation, as we did for the real neural data.

As shown in Fig. D.2 (left column), all methods correctly indicated that the data

are three-dimensional, since all curves reach their minimum at p = 3. Since the data

were generated with isotropic noise, the results for two-stage methods using PPCA

and FA were nearly identical. We then more densely sampled the kernel width for

p = 3 to find the optimal smoothing kernel width, shown in Fig. D.2 (center column).

Depending on the level of independent noise, we found that GPFA yielded prediction

errors (black) that were tens of percent (A: 58.5%, B : 47.9%, C : 33.9%) lower than

that of the best two-stage method (green dot), relative to the error floor (orange).

The error floor was computed based on the level of activity of each neuron before

noise was added, shown in Fig. D.2 (right column, orange curves). The orange curves

provide the theoretical limit for how well the leave-neuron-out model prediction can

come to the observed data on average.
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Figure D.2: Simulated data with known error floor. Each row corresponds to a
different independent noise variance A: 0.5, B : 2, C : 8. Left column: Prediction errors
for two-stage method with FA (green) and reduced GPFA (black), along with error
floor (orange), at different state dimensionalities. Each green curve corresponds to a
different kernel width (labeled are numbers of timesteps). Star indicates minimum of
black curve. Center column: Denser sampling of kernel widths for p = 3. Minimum
of green curved denoted by green dot. Right column: Each panel corresponds to an
observed dimension. The same two observed dimensions are used in A, B, and C.
Shown are the activity level of each neuron before noise was added (orange curves),
noisy observations (orange dots), leave-neuron-out prediction using best two-stage
method (green), and leave-neuron-out prediction using reduced GPFA (black).



Appendix E

Appendix Material for Optimal

Target Placement

The following appendices give additional details for the work discussed in Chapter 6.

E.1 Derivation of KL Divergence for Poisson Neu-

rons

We wish to show, for the Poisson spiking distribution p(y|m) (parameterized by target

position xm, as given in Eq. 6.2), that the KL divergence has the simple closed form

of Eq. 6.10. We begin by substituting Eq. 6.2 into Eq. 6.9:

KL(xm ‖ xm′) = Ey|m

[
log

p(y | m)

p(y | m′)

]
(E.1)

= Ey|m

[
log

K∏

k=1

(fk(xm)∆)yke−(fk(xm)∆)yk!

(fk(xm′)∆)yke−(fk(xm′ )∆)yk!

]
(E.2)

= Ey|m

[ K∑

k=1

(
yk log

fk(xm)

fk(xm′)
+ ∆fk(xm′)−∆fk(xm)

)]
(E.3)

where the third line follows using standard rules of exponents and logarithms (and

cancelling redundant terms in both numerator and denominator). Note that all fk(·)
terms are constant with respect to the expectation (that is, fk(·) does not depend on

y, since xm or xm′ is given). Using this fact and the linearity of expectation (bringing
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out the sum), we can simplify this KL divergence to:

KL(xm ‖ xm′) =

K∑

k=1

(
∆fk(xm′)−∆fk(xm) + Ey|m[yk] log

fk(xm)

fk(xm′)

)
. (E.4)

Finally, we note that Ey|m[yk] = ∆fk(xm), and so we see:

KL(xm ‖ xm′) = ∆

K∑

k=1

(
fk(xm′)− fk(xm) + fk(xm)log

fk(xm)

fk(xm′)

)
. (E.5)

which is the form given in Eq. 6.10.

E.2 Notes on Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a method for solving nonlinear con-

strained non-convex problems as in Eq. 6.13. The following gives only a brief overview

of our implementation; the interested reader is referred to the excellent tutorial (Boggs

and Tolle, 1996) and the general reference on convex optimization (Boyd and Van-

denberghe, 2004). We note at first that SQP is a well known general method; the

commonly used MATLAB (The MathWorks, Natick, MA) function for constrained

optimization fmincon uses an SQP implementation (for medium-scale optimization

problems). At low number of targets (M=2 or 4), we found this implementation to

be effective. With more targets (M=16), this MATLAB implementation had conver-

gence difficulties presumably associated with its numerical estimates of derivatives.

Our implementation of this specific SQP problem, which calculates gradients and

Hessians (second derivatives) in closed form, remains very effective to larger numbers

of targets.

To begin, we must pose Eq. 6.13 as a standard optimization problem. To solve

this minimax problem (i.e., minimizing the maximum element of a finite set - here

the M(M − 1) target pairs), it is common to introduce a slack variable t (Boyd and

Vandenberghe, 2004; Gockenbach and Kearsley, 1999):
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maximize
χ,t

t2

subject to KL(xm ‖ xm′) ≥ t2 ∀ m 6= m′

‖xm‖ ≤ γ ∀ m = 1. . .M

(E.6)

Maximizing t2 subject to the KL constraints imposes that t2 will have the value

of the worst pairwise KL divergence. Introducing this slack variable only makes the

problem algorithmically tractable; it does not change the result.

Newton’s Method minimizes an (unconstrained) objective function by iterating

through a series of minimizations of quadratic approximations to the objective func-

tion. Similarly, SQP minimizes a constrained objective function by iterating through

a series of minimizations of constrained quadratic approximations to the original

problem. These approximations are convex quadratic programs (QP) (see (Boyd and

Vandenberghe, 2004) for extensive reading on QP). Each QP locally approximates the

Lagrangian of Eq. E.6 at the current estimates of χ and t ((Boggs and Tolle, 1996)

justifies the choice of the Lagrangian instead of the objective itself). In our algorithm,

we solve each QP quickly and accurately using the MATLAB solver quadprog. SQP

requires a merit function to determine the length of steps that are taken in χ and t;

we used backtracking line search with an l1 merit function. Beyond these particulars

of our algorithm, the reader is again referred to (Boggs and Tolle, 1996) for many

general implementation details and practical considerations.
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