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a b s t r a c t

Neural spike trains present analytical challenges due to their noisy, spiking nature. Many studies of
neuroscientific and neural prosthetic importance rely on a smoothed, denoised estimate of a spike train’s
underlying firing rate. Numerousmethods for estimating neural firing rates have been developed in recent
years, but to date no systematic comparison has been made between them. In this study, we review
both classic and current firing rate estimation techniques. We compare the advantages and drawbacks of
these methods. Then, in an effort to understand their relevance to the field of neural prostheses, we also
apply these estimators to experimentally gathered neural data from a prosthetic arm-reaching paradigm.
Using these estimates of firing rate, we apply standard prosthetic decoding algorithms to compare the
performance of the different firing rate estimators, and, perhaps surprisingly,we findminimal differences.
This study serves as a reviewof available spike train smoothers and a first quantitative comparison of their
performance for brain–machine interfaces.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Neuronal activity is highly variable. Even when experimental
conditions are repeated closely, the same neuron may produce
quite different spike trains from trial to trial. This variability
may be due to both randomness in the spiking process and to
differences in cognitive processing on different experimental trials.
One common view is that a spike train is generated from a smooth
underlying function of time (the firing rate) and that this function
carries a significant portion of the neural information (vs. the
precise timing of individual spikes). If this is the case, questions of
neuroscientific and neural prosthetic importance may require an
accurate estimate of the firing rate. Unfortunately, these estimates
are complicated by the fact that spike data gives only a sparse
observation of its underlying rate. Typically, researchers average
acrossmany trials to find a smooth estimate (averaging out spiking
noise). However, averaging across many roughly similar trials can
obscure important temporal features (Nawrot, Aertsen, & Rotter,
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1999; Yu et al., 2005, 2009). Trial averaging can be especially
problematic in a brain–machine interface (BMI) setting, where
physical behavior is not under strict experimental control, and so
motor movements and their associated neural activity can vary
considerably across trials. Thus, estimating the underlying rate
from only one spike train is an important but challenging problem.
To address this problem, researchers have developed a number

of methods for estimating continuous, time-varying firing rates
from neural spike trains. The goal of any firing rate estimator is
twofold: first, the method seeks to return a smooth, continuous-
time firing rate that is more amenable to analytical efforts than the
spiking neural signal. Second, as is the goal of any statistical signal
processing algorithm, the firing rate estimator seeks to denoise the
signal (separate the meaningful fluctuations in underlying firing
rate from the noise introduced by the spiking process). This firing
rate estimation step is shown in Fig. 1. Panel (a) shows a single
spike train (one experimental trial) for each of N neural units. The
spike train is shown as a train of black rasters, where each raster
(vertical tick) represents the occurrence of a spike at that time in
the trial. The firing rate estimator seeks to process each of these
noisy spike trains into smooth, continuous-time firing rates that
are denoised and simpler to analyze, as shown in panel (b). Finally,
in a BMI setting (our case of interest here), these firing rates may
then be used by a prosthetic decoding algorithm to estimate a
motor movement, as shown in Fig. 1, panel (c).

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.02.004



Author's personal copy

1236 J.P. Cunningham et al. / Neural Networks 22 (2009) 1235–1246

Fig. 1. Context for firing rate estimation and neural prosthetic decode. (a) N single spike trains are gathered from N neurons on one experimental trial. (b) Those spike trains
are denoised and smoothed using a firing rate estimationmethod. (c) Those firing rates are used by a decoding algorithm to estimate, for example, a reaching arm trajectory.

In this study, we review the methods that have been developed
both classically and more recently, from the fields of statistics,
machine learning, and computational neuroscience (see Section 2).
Wepoint to the relevant publications and give high level overviews
of each method, noting a few potential strengths and weaknesses
with respect to the problem of estimating firing rates from single
spike trains.
Having reviewed several estimation methods, we then turn to

the question of performance. To date, no comparison between
these methods exists; such comparisons may assist researchers
in determining what firing rate estimator is appropriate for what
application. In this study, we choose the BMI application of neural
prosthetic decoding in an arm-reaching setting.We train amonkey
to make point-to-point reaches in a 2D workspace. Using a multi-
electrode array implanted in pre-motor/motor cortex, we record
spike trains from10–15 neural units (we consider only high quality
single units) during this reaching task. There are many prosthetic
decoding algorithms that can decode the arm movement from
the recorded neural activity (some papers include: Brockwell,
Rojas, and Kass (2004), Brown, Frank, Tang, Quirk, and Wilson
(1998), Carmena et al. (2003), Carmena, Lebedev, Henriquez, and
Nicolelis (2005), Chestek et al. (2007), Georgopoulos, Schwartz,
and Kettner (1986), Hochberg et al. (2006), Kemere, Shenoy,
and Meng (2004), Serruya, Hatsopoulos, Paninski, Fellows, and
Donoghue (2002), Srinivasan, Eden, Mitter, and Brown (2007),
Taylor, Tillery, and Schwartz (2002), Wu et al. (2004), Wu, Gao,
Bienenstock, Donoghue, and Black (2006), Velliste, Perel, Spalding,
Whitford, and Schwartz (2008) and Yu et al. (2007)). Some of these
algorithms use smooth estimates of firing rates as input. Here
we investigate how the performance of these decoders changes,
depending on what firing rate estimation method is used. In
particular, we choose the widespread linear decoder (as recently
used in Carmena et al. (2005) and Chestek et al. (2007)) and the
Kalman filter (as recently used inWu et al. (2002, 2004, 2006)).We
individually smooth thousands of spike trains (from many trials
and many neural units) with each firing rate estimation method,
and we decode arm trajectories from these firing rate estimates
with the same decoding algorithms.
The purpose of this paper then is both to review available firing

rate estimators and to get someunderstanding of their relevance to
BMI applications. This study does not attempt to address the many
other important avenues for investigation in BMI or spike train
signal processing. For BMI performance, these avenues include at
least: prosthetic decode algorithms (Brockwell et al., 2004; Brown
et al., 1998; Georgopoulos et al., 1986; Srinivasan et al., 2007; Wu
et al., 2004, 2006; Yu et al., 2007), recording technology (Wise,
Anderson, Hetke, Kipke, & Najafi, 2004), the design of prosthetic
end effectors and interfaces, be that a robotic arm or computer
screen (Cunningham, Yu, Gilja, Ryu, & Shenoy, 2008; Schwartz,
2004; Velliste et al., 2008), and multiple signal modalities (e.g.,
EEG, ECoG, LFP, and spiking activity) (Mehring et al., 2003). Two
reviews in particular give a thorough overview of these and other
important areas of BMI investigation (Lebedev & Nicolelis, 2006;
Schwartz, 2004). For spike train signal processing, there are also

many avenues of research not addressed in this study, including
at least: spike-sorting (Lewicki, 1998), information-theoretic
studies (Borst & Theunissen, 1999; Nirenberg, Carcieri, Jacobs, &
Latham, 2001), neural correlations (Pillow et al., 2008; Shlens et al.,
2006), methods for multiple simultaneously recorded neurons
(Chapin, 2004; Churchland, Yu, Sahani, & Shenoy, 2007; Yu et al.,
2009), and more accurate spiking models (Barbieri, Quirk, Frank,
Wilson, & Brown, 2001; Johnson, 1996; Kass & Ventura, 2003;
Koyama&Kass, 2008; Truccolo, Eden, Fellows, Donoghue, &Brown,
2004; Ventura, Carta, Kass, Gettner, & Olson, 2002). Two reviews in
particular discuss these and other issues in spike train processing
(Brown, Kass, & Mitra, 2004; Kass, Ventura, & Brown, 2005).
Linking methodological developments to observable physical

behavior (such as neural prosthetic decode performance) is critical
for increasing the adoption and usefulness of these methods. This
study takes an important first step in that direction for the problem
of firing rate estimation.

2. Firing rate methods

This section reviews several popular and current firing rate
estimation methods. We introduce each method at a high level,
point to relevant publications, and suggest potential advantages
and disadvantages of each. We then summarize the reviewed
methods and discuss related methods and other possibilities that
are not yet included in literature.

2.1. Kernel smoothing (KS)

The most common historical approach to the problem of
estimating firing rates has been to collect spikes from multiple
trials in a time-binned histogram known as a peri-stimulus-time
histogram (PSTH), which produces a piecewise constant estimate.
To achieve a smooth, continuous firing rate estimate, as is often
of interest in single trial settings (such as neural prostheses),
researchers instead typically use kernel smoothing (KS); that is,
they convolve the spike train with a kernel of a particular shape
(e.g., Nawrot et al. (1999)). This convolution produces an estimate
where the firing rate at any time is a weighted average of the
nearby spikes (the weights being determined by the kernel). A
Gaussian shaped kernel is most often used (see, e.g., Kass et al.
(2005)), and this kernel serves to smooth the spike data to a firing
rate that is higher in regions of spikes, lower otherwise. However,
the kernel shape and timescale (e.g., the standard deviation of the
Gaussian) are frequently chosen in an ad hoc way, which greatly
alters the frequency content of the resulting estimate (in other
words, howquickly firing rate can change, and how susceptible the
estimate is to noise).
The most obvious advantage of kernel smoothing is its simplic-

ity. KSmethods are extremely fast and simple to implement, which
has led to wide adoption. In this study, we implement three Gaus-
sian kernel smoothers of various bandwidths (which determine
smoothness): 50 ms standard deviation (KS50), 100 ms (KS100),
and 150 ms (KS150). These are common choices for single trial
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studies, and they produce significantly different estimates of fir-
ing rate. This ad hoc choice of smoothness is typically considered a
major disadvantage of KS methods.

2.2. Adaptive kernel smoothing (KSA)

In Richmond, Optican, and Spitzer (1990), the authors address
two concernswith standard KS: first, the ad hoc smoothness choice
as noted above, and second, the fact that the kernel width can
not adapt at different regions of smoothness in the firing rate. We
call this fixed frequency behavior stationarity. KSA incorporates
a nonstationary kernel to allow the spike train to determine the
extent of firing rate smoothness at various points throughout the
trial. It does so by forming first a stationary firing rate estimate
(called a pilot estimate), and from that pilot, it forms a set of local
kernel widths at the spike events. These local kernels are then used
to produce a smoothed firing rate that changes more rapidly in
regions of high firing, and less in regions of less firing. This trend
is sensible, as regions of little spiking give fewer observations into
the firing rate process underlying the data.
KSA benefits from the simplicity of KS methods, and the

added complexity of the local kernel widths increases the
computational effort only very slightly. Further, this approach lifts
the strict stationarity requirement of many methods. A possible
shortcoming is that, even though it adapts the kernel width, KSA
still requires an ad hoc choice of kernelwidth for the pilot estimate.

2.3. Kernel bandwidth optimization (KBO)

In KS methods, as latter sections in this paper will show, the
ad hoc choice of smoothness can have a significant impact on
the firing rate estimate. KBO seeks to remove this shortcoming
of kernel smoothing by establishing a principled approach to
choosing the kernel bandwidth. In Shimazaki and Shinomoto
(2007b), a method is developed for automatically choosing the bin
width of a PSTH. By assuming that neural spike trains are generated
from an inhomogeneous Poisson process (i.e., a Poisson process
with time-varying firing rate), the authors show that the mean
squared error (MSE) between the PSTH and the true underlying
firing rate can be minimized using only the mean rate (rate
averaged across time), without knowledge of the true underlying
firing rate.
In Shimazaki and Shinomoto (2007a), this PSTH method is

adapted to similarly optimize the bandwidth of a smoothing
kernel. The authors of that report provide a simple algorithm
for the popular Gaussian kernel, which we implemented for the
purposes of this study. Once the optimal kernel bandwidth is
chosen with the algorithm of Shimazaki and Shinomoto (2007a),
we then perform standard kernel smoothing (as defined in KS
above) with the optimized kernel bandwidth. We refer to this
method as KBO.
We also note here a method quite similar in spirit to KBO. In

Nawrot et al. (1999), a heuristic method is developed to find the
optimal bandwidth of a kernel smoother. We also implemented
thismethod and found that, with the particularmotor cortical data
of interest for this BMI study, the method of Nawrot et al. (1999)
produced very often a flat, uninformative firing rate function (i.e.,
a very large kernel bandwidth). Accordingly, we chose the newer,
principled method of Shimazaki and Shinomoto (2007a, 2007b)
(which produces a range of different kernel bandwidths, depend-
ing on the spike data) to demonstrate the performance of kernel
bandwidth optimization methods.
KBO has the advantage of simple implementation and corre-

spondingly very fast run time (only slightly longer than a regu-
lar kernel smoother, due to the overhead required to calculate

the optimal bandwidth). Shortcomings of this approach may in-
clude the Poisson spiking assumption (required for this method),
as much research has shown that neural spiking often devi-
ates significantly from Poisson spiking statistics (see, e.g., Bar-
bieri et al. (2001), Miura, Tsubo, Okada, and Fukai (2007) and
Paninski, Pillow, and Simoncelli (2004)).

2.4. Gaussian process firing rates (GPFR)

All kernel smoothing methods, including KS, KSA, and KBO as
above, act as low pass filters to produce a smooth, time-varying
firing rate. Alternatively, several methods take a probabilistic
approach. If one assumes a prior probability distribution for
firing rate functions (e.g., some class of smooth functions),
and a probability model describing how spikes are generated,
given the underlying firing rate (e.g., an inhomogeneous Poisson
process (Daley & Vere-Jones, 2002)), one can then use Bayes rule
(Papoulis & Pillai, 2002) to infer the most likely (or expected)
underlying firing rate function, given an observation of one or
multiple spike trains. The methods GPFR, BARS, and BB are
variations on this general approach.
In Cunningham, Yu, Shenoy, and Sahani (2008), firing rates

are assumed a priori to be draws from a Gaussian process.
Gaussian processes place a probability distribution on firing rate
functions which allows all functions to be possible, but strongly
favors smooth functions (Rasmussen &Williams, 2006). This study
then assumes that, given the firing rate function, spike trains
are generated according to an inhomogeneous Gamma interval
process, which is a generalization of the familiar Poisson process
to allow spike history effects such as neuronal refractory periods.
Bayesianmodel selection and Bayes’ rule are then used to infer the
most likely underlying firing rate function, given an observation
of one or multiple spike trains. Owing to this probabilistic model,
the computational overhead of such a firing rate estimator can
be significant, so the authors developed numerical methods to
alleviate these challenges (Cunningham, Sahani, & Shenoy, 2008).
GPFR has the advantage of using a probabilistic model, which

allows automatic smoothness detection (in contrast to the ad hoc
smoothness choicesmade in, for example, KS), andwhich naturally
produces error bars on its predictions (which may be useful for
data analysis purposes). GPFR also has the benefit of being able
to readily incorporate different a priori assumptions about firing
rate (such as known, stimulus-driven nonstationarities in the firing
rate, which can be controlled through the Gaussian process prior).
Even with the significant computational improvements developed
in Cunningham, Sahani et al. (2008), GPFR still requires seconds
of computational resource (for spike trains roughly one second
in length), which may be a disadvantage compared to kernel
smoothers (which work in tens to hundreds of milliseconds).

2.5. Bayesian adaptive regression splines (BARS)

Instead of a Gaussian process prior on smooth firing rate
functions, BARS, as introduced and used in Behseta and Kass
(2005), Dimatteo, Genovese, and Kass (2001), Kass et al. (2005)
and Kaufman, Ventura, and Kass (2005), models underlying firing
ratewith a spline basis. Splines generally are piecewise polynomial
functions that are connected at time points called ‘‘knots’’. In
Dimatteo et al. (2001), the authors choose a prior distribution
on the number of knots, the position of the knots, and other
parameters of the spline function. Conditioned on firing rate, BARS
then assumes that spikes are generated according to a Poisson
spiking process.
This model choice allows Bayesian inference to be carried

out. Owing to the forms of the probability distributions chosen,
approximate inference methods must be used (an analytical
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solution is intractable). BARS uses the well established techniques
of reversible-jump Markov chain Monte Carlo and Bayesian
information criteria to estimate the underlying firing rate (which
in this case is the mean of the approximate posterior distribution,
given the observed data). BARS is fully described in Dimatteo et al.
(2001), and further applications and explanations can be found
in Behseta and Kass (2005), Kass et al. (2005), Kaufman et al. (2005)
and Olson, Gettner, Ventura, Carta, and Kass (2000). This study
uses the MATLAB implementation of BARS available at the time of
publication at http://lib.stat.cmu.edu/~kass/bars/bars.html.
One major advantage of BARS is that the spline basis allows

different regions of firing rate to change more or less smoothly,
which allows high frequency changes in rate while still removing
high frequency noise (this is not possible in traditional kernel
smoothers). Further, like other probabilistic methods, BARS
produces an approximate posterior distribution on firing rates, so
valuable features like error bars are available. BARS, like GPFR,
suffers from technical complexity that translates into meaningful
computational effort and run-time, compared tomore basic kernel
smoothers.

2.6. Bayesian binning (BB)

Instead of assuming a continuous, time-varying firing rate as
in many of the above approaches, the authors of Endres, Oram,
Schindelin, and Foldiak (2008) assume neural firing rates can be
modelled a priori by piecewise constant regions of varying width
(in contrast to a fixed-width binning scheme like the classic PSTH).
This BB approach, like BARS and GPFR, constructs a probabilistic
model for spiking,where both the firing rates in piecewise constant
regions and the boundaries between the regions themselves have
associated probability distributions (together, the boundaries and
the firing rates at each interval fully specify a firing rate function).
BB then assumes an inhomogeneous Bernoulli process for spiking
(i.e., each time point contains 0 or 1 spikes), given the underlying
firing rate.
With these assumptions made, Bayes rule is then used to infer

the underlying firing rate from the above model. Importantly,
because the boundaries and height of the firing rate bins are
probabilistic, the result of this firing rate inference is a smooth,
time-varying firing rate, and BB is thus comparable to the other
methods highlighted in this study. The BBmethod is fully described
in Endres et al. (2008), and we implemented the algorithm using
the authors’ source code, which is available at the time of this
report at http://mloss.org/software/view/67/.
Like GPFR and BARS, BB has the advantage of being a fully

probabilisticmodel,which allows automatic smoothness detection
(in contrast to the ad hoc smoothness choicesmade in, for example,
KS), and which produces error bars on its predictions. Also, like
BARS andKSA (andunlikeGPFR, KBO, andKS), BB is a nonstationary
smoothingmodel, so it can adapt its smoothness to regions of faster
or slower firing rate changes. However, as BB constructs a thorough
probabilistic model for spiking and solves it exactly, the method
requires significant computational resource (generally an order of
magnitude more than BARS and GPFR, the other computationally
expensive methods), which may limit the use of BB in some
applications.

2.7. Summary of reviewed methods

These methods were chosen in that they all can be used as
single trial, single neuron firing rate estimators (as is relevant for
neural prosthetic applications). In Fig. 2, we show four examples
of firing rates inferred by all eight methods reviewed above. Each
panel represents a different spike train, which is denoted above
the firing rates as a train of black rasters (as in Fig. 1). These four

panels show a range of spiking patterns, including: (a) high firing,
(b) sharply increasing activity, (c) sharply decreasing activity, and
(d) low firing. Though there are an infinite number of possible firing
rate patterns, these four example spike trains illustrate the wide
range of firing rate profiles that can be estimated from the same
neural activity, depending on the estimation method used.
The methods above also demonstrate a range of approaches

and features that one might consider in designing a firing rate
estimator. Table 1 compares the above methods in terms of
five important features, where we indicate generally desirable
features in green and undesirable features in red. The first row
notes which methods offer principled, automatic determination
of the firing rate smoothness (vs. choosing a kernel bandwidth
in an ad hoc way). The second row indicates whether the
method is a proper probabilistic model, which carries advantages
previously discussed. The drawback of probabilistic models lies in
their computational complexity (and, as a result, run time); the
third row of Table 1 details ballpark run-time requirements for
estimating one firing rate function from one single spike train. The
fourth rowdetailswhichmethods are nonstationary; that is, which
methods can adapt the smoothness of the estimate at different
points in the spike train. Finally, we also noted above that spike
trains are known todepart significantly fromPoisson statistics (e.g.,
refractory periods); the fifth row illustrates which methods are
Poisson based and which are not.
It is important to note that all of thesemethods can also be used

for multiple-trial firing rate analyses. Some methods, including
BARS and BB, were introduced more with a multi-trial motivation
than a single-trial motivation. This study makes no claim on the
effectiveness of any of these methods at larger numbers of trials,
as such a circumstance is not germane to BMI applications. Thus,
the forthcoming results should not be viewed as a statement about
the quality of a particular firing rate estimator in general, but rather
for the single-trial analyses that are relevant in BMI studies.

2.8. Other related methods

Despite the range of methods already discussed, the above
list of recent and classical firing rate estimators is by no means
exhaustive. We here discuss a few other possibilities and avenues
of investigation not covered by the above methods.
First, we note that none of the abovemethods are implemented

as cross-validation schemes (Bishop, 2006). The probabilistic
models (GPFR, BARS, BB) all do Bayesian model selection to adapt
their smoothness. KBO uses an MSE criterion and KSA uses a
criterion based on the amount of local spiking to adapt their
smoothness, whereas KS uses only a user-defined kernel width
choice. Another possibility is to cross-validate, where other trials
of data are used to inform the parameter (e.g., smoothness) choices
when estimating firing rate on a novel spike train (Bowman (1984)
reports on the related topic of probability density estimation). For
example, one might believe that all firing rates in a particular BMI
application evolve with roughly equal smoothness. Even though
the firing rates may be quite different trial to trial, one could
cross-validate with some criterion (such as decode performance)
to choose the smoothness for the firing rate estimation on the
new spike train in question. This report does not review that
possibility, as we wish to focus on methods that produce firing
rates from spike trains based on only those spike trains (not a
validation set). Further,many, if not all, of the abovemethods could
incorporate a cross-validation scheme: for example, GPFR, BARS,
and BB could choose their parameters via cross-validation instead
of Bayesian model selection. Thus, cross-validation is a feature of
model selection more than it is of the firing rate method used, and
we chose to focus on the methods as previously published.



Author's personal copy

J.P. Cunningham et al. / Neural Networks 22 (2009) 1235–1246 1239

(a) A high firing rate (data from L2006B.196.243). (b) A sharply increasing firing rate (L2006B.301.60).

(c) A sharply decreasing firing rate (L2006B.170.92). (d) A low firing rate (L2006B.170.216).

Fig. 2. Example of various firing ratemethods applied to data fromdifferent neurons and different trials. Eachmethod (see legend) produces a smooth estimate of underlying
firing rate from each of the four separate spike trains. The spike trains are represented as a train of black rasters above each panel. Note that KBO obscurs KS50 in panel (c).

Table 1
Summary of firing rate methods reviewed in this report.

Second, we also note that the methods outlined above are all
unsupervised, in that they infer firing rates without knowledge of
an extrinsic covariate such as the path of a rat foraging in a maze,
or the kinematic parameters of a moving arm. Instead, if one has
a good idea about how some measureable behavior translates to
firing rate, one might assume a parametric form for firing rate
based on behavior, learn the parameters from the data, and use
that model to infer time-varying firing rate. Some studies using
this approach include Barbieri et al. (2001), Brown et al. (1998),
Brown, Barbieri, Ventura, Kass, and Frank (2002), Eden, Frank,
Barbieri, Solo, and Brown (2004), Pillow et al. (2008), Stark, Drori,
and Abeles (2006), Truccolo et al. (2004) and Ventura et al. (2002).
These approaches are specific to particular neural areas, particular
experimental set-ups, and they are susceptible to biases of their
own. Thus, we chose not to review these techniques to again focus
on methods that produce firing rates for a given spike train, using
that spike train alone.

Third, we note that, although the methods described above are
quite specific, there are many areas in which they can be extended
or combinedwith other approaches. Simple first examples include:
KBO and KSA could be combined in a two-stage method, or the
method of Miura et al. (2007) could replace a part of the model
selection method in GPFR. As a more interesting example, one
advantage of probabilistic models (including BARS, GPFR, and
BB) is that they can readily be extended to different spiking
probability models. One spiking model, the so-called generalized
linear model (GLM), has received much attention of late (Barbieri
et al., 2001; Coleman & Sarma, 2007; Czanner et al., 2008; Eden
et al., 2004; Koyama & Kass, 2008; Pillow et al., 2008; Srinivasan
et al., 2007; Truccolo et al., 2004) for its ability to model neural
spiking quite well and its flexibility in being extended to many
different problem domains. This GLM spiking model may inform
firing rate estimation as well.
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Finally, we note that all the methods above are single-neuron
firing rate estimators that are independent of the activity of other
neurons. Firing rate estimation methods that consider multiple
units (as is often collected with electrode arrays in BMI experi-
ments) may be able to leverage the simultaneity of recordings to
improve the quality of firing rate estimates. Some work has begun
to investigate this general question, including (Brown et al., 2004;
Chapin, 2004; Churchland et al., 2007; Pillow et al., 2008; Yu et al.,
2009) (and the GLM model of Czanner et al. (2008) could also be
readily extended for this purpose). However, none of these multi-
dimensional approaches specifically address unsupervised firing
rate estimation as do the methods of this report, so we will leave
multidimensional extensions to future work.
In summary, the problem of firing rate estimation (and, more

generally, inferring meaningful information from spiking data) is
quite broad. The methods reviewed in this report are all directly
comparable, but there are many opportunities for extensions and
adaptations of these models.

3. Prosthetic paradigm for evaluating firing rate methods

Having reviewed several firing rate estimators, we now
investigate their relevance for neural prosthetic applications.
We first describe the experimental setting we employed to
study this question (Section 3.1). We then describe two popular
prosthetic decoding algorithms (Section 3.2) and performance
metrics (Section 3.3) that we can use to evaluate the quality of our
firing rate estimation.

3.1. Reach task and neural recordings

Animal protocols were approved by the Stanford University
Institutional Animal Care and Use Committee. We trained an adult
male monkey (Macaca mulatta) to perform point-to-point reaches
on a 5-by-5 grid (25 targets) for juice rewards. Visual targets
were back-projected onto a fronto-parallel screen 30 cm in front
of the monkey. The monkey began each trial with his hand held
at a particular target, which had to be held for a random time
interval. These hold times were exponentially distributed with a
mean of 300 ms (but shifted to be no less than 150 ms). This
exponential distribution prevented the monkey from preempting
themovement cue. After the hold time, a pseudo-randomly chosen
target was presented at one of the target locations. The 25 targets
were spaced evenly on an 8 cm by 8 cm grid. Concurrent with
the target presentation, the current hold point disappeared, cueing
the monkey to reach to the target (the ‘‘go cue’’). The monkey
was motivated to move quickly by a reaction time constraint
(maximumallowable reaction timeof 425ms,minimumof 150ms,
again to prevent preemption). The monkey reached to the target
and then held the target for 300 ms, after which the monkey
received a liquid reward. The next trial started immediately after
the successful hold period. In total, all trials are 850 to 1500ms long
(these times vary depending on the length and speed of the reach
and the randomized hold time). Fig. 3 illustrates four sequential
trials of the reaching task.
During experiments, the monkey sat in a custom chair

(Crist Instruments, Hagerstown, MD) with the head braced. The
presentation of the visual targets was controlled using the Tempo
software package (Reflective Computing, St. Louis, MO). A custom
photo-detector recorded the timing of the video frames with
5 ms resolution. The position of the hand was measured in three
dimensions using the Polaris optical tracking system (Northern
Digital, Waterloo, Ontario, Canada; 60 Hz, 0.35 mm accuracy),
whereby a passive marker taped to the monkey’s fingertip
reflected infrared light back to the position sensor. Eye position

Fig. 3. Cartoon of the reaching task as in L2006A and L2006B. Four sample trials
are shown (one each in magenta, cyan, red, and green).

was tracked using an overhead infrared camera (Iscan, Burlington,
MA; 240 Hz, estimated accuracy of 1◦).
A 96-channel silicon electrode array (Cyberkinetics, Foxbor-

ough, MA) was implanted straddling dorsal pre-motor (PMd)
and motor (M1) cortex (left hemisphere), as estimated visually
from local landmarks, contralateral to the reaching arm. Surgical
procedures have been described previously (Churchland, Yu, Ryu,
Santhanam, & Shenoy, 2006; Hatsopoulos, Joshi, & O’Leary, 2004;
Santhanam, Ryu, Yu, Afshar, & Shenoy, 2006). Spike sorting was
performed offline using techniques described in detail elsewhere
(Sahani, 1999; Santhanam, Sahani, Ryu, & Shenoy, 2004; Zumsteg
et al., 2005). Briefly, neural signals were monitored on each chan-
nel during a two minute period at the start of each recording ses-
sion while the monkey performed the behavioral task. Data were
high-pass filtered, and a threshold level of three times the RMS
voltage was established for each channel. The portions of the sig-
nals that did not exceed threshold were used to characterize the
noise on each channel. During experiments, snippets of the volt-
age waveform containing threshold crossings (0.3 ms pre-crossing
to 1.3 ms post-crossing) were saved with 30 kHz sampling. After
each experiment, the snippetswere clustered as follows. First, they
were noise-whitened using the noise estimate made at the start
of the experiment. Second, the snippets were trough-aligned and
projected into a four-dimensional space using amodified principal
components analysis. Next, unsupervised techniques determined
the optimal number and locations of the clusters in the principal
components space. We then visually inspected each cluster, along
with the distribution of waveforms assigned to it, and assigned
a score based on how well separated it was from the other clus-
ters. This score determined whether a cluster was labeled a single-
neuron unit or a multi-neuron unit. For this report, as many firing
ratemethods are based onbiophysical properties of single neurons,
we use units labelled only as high quality, single-neuron units.
The monkey (monkey L) was trained over several months, and

multiple data sets of the same behavioral task were collected. We
chose two such data sets to evaluate prosthetic decode (L2006A
and L2006B), from which we took 14 and 15 high quality, single-
neuron units, respectively (note thatmore unitswould be available
were we to consider ‘‘possible single units’’ or multi-units, as is
often done in prosthesis studies). For the purposes of this study,
we selected the first 300 successful trials (about five minutes of
neural activity and physical behavior), which is ample for fitting
the decoding models used here. Thus, we use two data sets, each
with 14 or 15 neural units and 300 experimental trials. This
produces a total of 8700 spike trains that were all analyzed by
each of the eight firing rate methods (and subsequently by the two
decoding algorithms). Across all these firing rate estimations and
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their subsequent prosthetic decodes, this analysis required roughly
fourweeks of fully dedicated processor time on five to ten 2006-era
workstations (Linux Fedora Core 4 with 64 bit, 2.2–2.4 GHz AMD
processors and 2–4 GB of RAM) running MATLAB.

3.2. Decoding algorithms

Having detailed the experimental collection of neural spike
trains and physical behavior, and having reviewed methods for
processing spike trains into firing rates, we now address how to
decode arm trajectories from neural firing rates. As with the firing
rate methods above, we discuss the methods at a high level and
point to the relevant literature which offers more methodological
description.

3.2.1. Linear Decode
The linear decode algorithm, as used for example in Carmena

et al. (2005), Chestek et al. (2007) and Hochberg et al. (2006),
is a simple first approach to decoding arm trajectories from
neural activity. This algorithm assumes the physical behavior at
a particular time t is a linear combination of all recorded neural
activity (across allN recorded neural units) that precedes t by some
amount of time. We chose to consider the preceding 300 ms of
neural activity.2 This period of neural activity can be considered
a row in a matrix of firing rates (as many rows as time points in
the experimental trials). If each dimension of the behavior (e.g.,
horizontal hand position and vertical hand position) is a vector
of length also equal to the number of time points, then simple
least squares can solve for the linear weights that relate neural
activity to physical behavior. These weights can then be applied to
novel neural activity to produce a decoded reach trajectory, which
hopefully matches the true reach well. More mathematical details
can be found in, e.g., Chestek et al. (2007).
For completeness, we note here a few specifics of our

implementation of this algorithm. To provide the algorithm with
a finely time-resolved firing rate, we sampled the firing rate
estimates (from all firing rate methods) every 5 ms. We found
that increasing this sampling rate did little more than increase
the computational burden of the decode, and reducing this rate
ignored features of the firing rate estimates, which would be
detrimental to our comparison of methods. Further, because of
the 300 ms integration window and the trial structure of the
data (there is a time break in between each trial), for the decode
analysis, we decode only the length of the trial beginning 300 ms
after the beginning of the trial (this prevents the linear decode filter
from going into a region of undefined neural activity). Owing to
the random hold time and the reaction time of the monkey (both
enforced to be no less than 150 ms, see Section 3.1), there was no
movement for the first 300ms of the trial, so this step is reasonable.
Furthermore, we found that including this portion of the trials did
not change the result considerably.

3.2.2. Kalman Filter
To employ thepopular Kalman filter (Kalman, 1960),we assume

that the arm state (in this case, horizontal and vertical position

2 We chose 300 ms as a number on par with the timescale of arm movements
and motor processing. Ideally, one might run this analysis at a variety of temporal
window sizes. However, we note that this choice has no discernable bias in favor
of any particular firing rate estimation method. We also found that using 300 ms
produced decode results of similar quality to using longer periods. Finally, we note
that the Kalman filter does not make this assumption, providing yet another cross-
check.

and velocity) evolves as a linear dynamical system: the arm state
at discrete time t is a linear transformation of the arm state at time
t − 1, plus Gaussian noise. We also assume a linear relationship
between arm state and neural activity at that time t (again, plus
noise). With this done, the Kalman filter allows the inference of
the hand state from the observation of neural data only. Starting
from arm state at the beginning of the trial, the Kalman filter
proceeds iteratively through time, updating its estimates of arm
state and error covariance at every time step t , before and after
the inclusion of neural data at that time step. These steps are
entirely based on mathematical properties of the Gaussian, and
the algorithm is fast and stable. Importantly, the Kalman filter has
beenpreviously and successfully used as a BMIdecoding algorithm,
andmore explanation andmathematical detail can be found inWu
et al. (2002, 2004, 2006).
As above, we note here a few implementation specifics. To

parallel with the linear decode, we also sampled firing rates at
5 ms intervals when fitting the Kalman filter model and when
estimating reach trajectories from it. In the linear decode,we chose
to remove the first 300msof the trial, duringwhich themonkeydid
not move. In the Kalman filter decodes, we truncated 300 ms from
the end of the trials. Choosing this slightly different time interval
allows us to look across the linear decode and the Kalman filter and
rule out any potential idiosyncracies with the starting and ending
of a trial. We also varied this choice and found that it had no effect
on the relative decode performance of the different firing rate
methods. Next, we note that we included horizontal and vertical
position and velocity in our arm state. Acceleration is sometimes
included, but the inclusion of this data in our Kalman filter had
little effect on the decode quality, so we chose not to consider it
further. Finally, we note that we did not impose a temporal lag (or
a group of lags) between neural data and physical behavior. Our
testing with different lags produced minor differences that agreed
generally with the results of Wu et al. (2006). As this aspect did
not influence the comparisons between firing rate estimators, we
do not report further on it.
To provide a sample of these decodes, we show in Fig. 4 four

decoded trials from L2006A that use the Kalman filter. Each panel
shows the true reach as a black tracemoving from the black square
hold point to the yellow square target. Trajectories decoded with
each firing rate method (but the same neural data) are shown
in colors corresponding to those in Fig. 2 (see legend). Marks
are placed on each trajectory at 20 ms intervals to give an idea
of decoded velocity profiles. Panels (a) and (b) show reasonably
average decodes (in terms of the RMS error, see the panel captions).
Panel (c), a trial which decodes rather well, shows the wide variety
of decoded trajectories that can arise from different firing rate
estimations (but the same spike trains). Finally, Fig. 4, panel (d),
shows that indeed the Kalman filter, like the linear decode (not
shown) does sometimes fail entirely to decode the true reach,
regardless of the firing ratemethod used. In the following sections,
we generalize these specific examples, calculating performance
metrics across all trials, decode methods, and data sets.

3.3. Calculating decode performance

Given any decoded arm trajectory, there are a number of
possible metrics to evaluate accuracy. We use two of the most
common metrics: root-mean-square error (RMSE) and correlation
coefficient. For any given firing rate method, RMSE on each trial
is the square root of the mean of the squared errors (across
time) between the true arm trajectory and the decoded trajectory.
RMSE is likely the most often-used performance metric; some
examples of its use (or MSE, which is simply RMSE squared)
include: Brockwell et al. (2004), Kemere et al. (2004), Serruya
et al. (2002), Srinivasan et al. (2007), Wu et al. (2006) and Yu
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(a) Reasonable decodes (data from L2006A.231). Horizontal
(vertical) RMSE had range 20.5–26.0 mm (11.0–15.7 mm).

(b) Reasonable decodes (L2006A.154). Horizontal (vertical)
RMSE had range 20.1–30.3 mm (23.8–39.5 mm).

(c) Better decodes (L2006A.69). Horizontal (vertical) RMSE had
range 5.6–10.7 mm (3.2–13.8 mm).

(d) Failed decodes (L2006A.169). Horizontal (vertical) RMSE had
range 42.6–48.4 mm (5.2–9.8 mm).

Fig. 4. Example of decoded arm trajectories derived from different firing rate estimates of the same neural data (see legend). All data shown are decoded using a Kalman
filter and the data set L2006A. In all cases the true reach is shown in black (moving from the black square hold point to the yellow square target). To give an idea of the
velocity profile of the true reach and decoded trajectories, marks are placed on each trajectory at 20 ms intervals. (Note that the true reach, in black, has a cluster of marks
at the trial start. These marks, which are obscured by other decodes, indicate that the arm is stationary for the early part of the trial. All decoders have difficulty decoding
this stationary period). To compare these results to the results across all trials, each panel quotes the range of RMS errors (across the different decoders) in the horizontal
and vertical dimensions (cf. Fig. 5, panels (a) and (b)).

et al. (2007). Correlation coefficient (ρ or r2) is another commonly
used performance metric that reflects how well the decoded
trajectory matches the true arm trajectory. Considering each time
step as a draw from a random variable, this metric correlates
the true and decoded trajectories across time to calculate how
well one trajectory predicts the other (ρ = 1 implies perfect
linear correlation). Some previous literature using correlation
coefficients to evaluate decode performance includes (Carmena
et al., 2005; Chestek et al., 2007; Wu et al., 2002, 2006).
To calculate these performance metrics, we use leave-one-out

cross validation (LOOCV) (Bishop, 2006). That is, for each data set,
we select one experimental trial (one arm trajectory) to test, and
we exclude both that trial’s neural activity and physical behavior.
We then train a decoder model based on the other 299 trials
collected in that data set (L2006A or L2006B). We can then use
the decode algorithm (linear decode or Kalman filter) to decode
the arm trajectory on the excluded trial, using only the neural
activity from that trial. We repeat this same procedure 300 times
(once per trial), which provides 300 decoded trials. We calculate
the RMSE for each trial, and thenwe can average these and produce
95% confidence intervals (Zar, 1999). We also correlate all the
decoded arm trajectories with the true trajectories, producing one
overall correlation coefficient ρ and 95% confidence intervals on

the estimate of this metric (see Zar (1999), Section 19.3 for details
on calculating confidence intervals for a population correlation
coefficient).

4. Performance results

In Section 2, we described a host ofmethods that estimate firing
rates from experimentally gathered spike trains. We then used
these firing rates to decode arm trajectories using two different
decoding algorithms (Section 3.2) and two different performance
measures (Section 3.3). We now compare different firing rate
estimation methods in terms of their decode performance.
In Figs. 5 and 6, we show the RMSE and correlation coefficient

results (respectively) from several different decoding scenarios.
Each panel shows the decode performance across all eight of the
reviewed firing ratemethods (KS50, KS100, KS150, KSA, KBO,GPFR,
BARS, and BB). Within each panel, red bars represent the decode
error using the linear decode method, and green bars represent
the decode error using the Kalman filter method. Panels (a) and
(b) show decoding results from data set L2006A, and panels (c)
and (d) show results from data set L2006B. Also, the left panels
(a and c) and the right panels (b and d) show the results from
decoding horizontal and vertical hand position, respectively. Thus,
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(a) Horizontal hand position, L2006A. (b) Vertical hand position, L2006A.

(c) Horizontal hand position, L2006B. (d) Vertical hand position, L2006B.

Fig. 5. The decode performance of spike trains smoothed with different firing rate methods. Error is root mean squared error (RMSE). In all panels, red bars are decode
performance with a linear decode; green bars are performance numbers with a Kalman filter. Error bars indicate the 95% confidence interval.

each firing rate estimate has 16 performance metrics (two decode
methods, two data sets, horizontal and vertical dimensions, RMSE
and correlation coefficient). This variety is important to ensure that
any effects are robust across data sets and decode algorithms and
different strengths of neural tuning.
First, we note several important cross-checks with existing

literature. The RMSE and correlation coefficient numbers match
well to the results of, for example, Chestek et al. (2007), Wu
et al. (2002, 2006) and Yu et al. (2007). The errors are in some
cases higher than those seen in previous literature, which may
be due to the complexity of this task (vs. a simpler, center-out
task as in Yu et al. (2007)) or the restrictive choice of using
only single neural units (rather than the many more multi-units
which are often informative in a decode setting). Indeed, when
we altered the number of neural units, the absolute decode
performance changed as expected, but the relative differences
between the decode results (from the various firing rate methods)
did not. Accordingly, we are satisfied that the selected neural
populations are representative. Specifically to the linear decode,
our performance may also be different in that we used only
300 ms of preceding neural data vs. prior literature which has
used, for example, 1000 ms (Chestek et al., 2007) or 550 ms (Wu
et al., 2002). Specifically to the Kalman filter, as noted above, our
performance may also be different in that we did not impose a
temporal lag between neural data and physical behavior. Again, we
tested changing the temporal lags and found relative performance
between firing rate methods insensitive to this choice, so we are
satisfied that this choice is also representative. We also visually
compared trajectories decoded in this study (e.g., Fig. 4) to decoded
trajectories from Wu et al. (2002, 2006), and we found these to

be similar, giving confidence that we are successfully reproducing
similar decode quality as existing literature.
The most salient feature in Figs. 5 and 6 is the similarity in

performance across all firing rate methods. Let us consider, for
example, the Kalman filter results from Fig. 5, panel (a). Looking
across these eight green bars, there is no statistically significant
difference between the RMSE results produced by any of the
methods. If we consider different decoding algorithms (linear
decode — red bars or Kalman filter — green bars), different
performance metrics (RMSE — Fig. 5 or correlation coefficient
— Fig. 6), different dimensions of physical activity (horizontal —
left panels or vertical — right panels), and different data sets
(L2006A — upper panels or L2006B — lower panels), the story is
unchanged: all seem to produce very similar performance results
nomatterwhat firing rate estimationmethod is used. In some cases
the Kalman filter may generally outperform (Fig. 5, panel (d)) or
underperform the linear decode (Fig. 6, panel (c)), or there may
be generally higher error in data set L2006A than L2006B. In all
cases though, there is very little trend that can be seen in the data
suggesting that one firing rate method consistently outperforms
any other. This finding is perhaps surprising, given the variety of
firing rate estimates that are produced from the same spike trains
using these different methods, as seen in Fig. 2.
We further note that, from our testing, this similarity in decode

performance remains if different numbers of neurons are used, or
if different lengths of trials are considered, or if different temporal
lags are imposed between neural activity and physical behavior
(as is often done in BMI studies), or if the firing rate data is
considered at finer or coarser time intervals. In addition to these
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(a) Horizontal hand position, L2006A. (b) Vertical hand position, L2006A.

(c) Horizontal hand position, L2006B. (d) Vertical hand position, L2006B.

Fig. 6. The decoder performance of spike trains smoothedwith different firing rate methods. Vertical axis is correlation coefficient with the true reach. In all panels, red bars
are decode performance with a linear filter; green bars are performance numbers with a Kalman filter. Error bars (vanishingly small) indicate the 95% confidence interval
on the estimate of the correlation coefficient (see Zar (1999)).

summary performance statistics, we note that, from our visual
inspection of many decoded trials (e.g., Fig. 4), all the firing rate
estimators had the same performance in terms of how many
decoded trajectories we described as ‘‘better’’ (cf. Fig. 4, panel
(c)), ‘‘reasonable’’ (Fig. 4, panels (a) and (b)), and ‘‘failed’’ (Fig. 4,
panel (d)). Thus, across all quantitative and qualitative analysis of
the data that we have investigated, firing rate estimation offers
little difference in terms of the quality of prosthetic decode.
We discuss the implications of this seemingly general finding
below.

5. Discussion and conclusions

Optimally inferring neural firing rates from spike trains is an
unanswered research question, and many groups have addressed
this interesting problem. In this paper, we reviewed some recent
and some classical firing rate estimators. We discussed the
theoretical motivation for each and discussed some potential
advantages and disadvantages of competing methods. Firing rate
estimation is a broad question that is applicable to neuroscientific
and BMI applications,multiple and single trials,multiple and single
neurons, and more. Each firing rate method should be considered
specifically for its potential applications.
In this paper, after reviewing these methods, we investigated

the relevance of firing rate estimation methods for an important
BMI application: decoding individual arm movements from
simultaneously recorded neural populations.We trained amonkey
in a standard reaching paradigm (as described in Section 3.1 and in
Fig. 3), and we used two standard decoding algorithms to estimate

arm trajectories from neural activity. These algorithms – the linear
decode and the Kalman filter (as described in Section 3.2) – accept
as input neural firing rates over a population of neurons. Using the
same neural spike trains, we inferred neural firing rates using eight
different firing ratemethods, and thenwedecoded arm trajectories
using these firing rates.
Though the firing rates found by all eight methods appear quite

different (see Fig. 2), the decoding test indicated that in fact firing
rate estimation matters very little for this domain of prosthetic
decode. We showed in Figs. 5 and 6 that RMSE and correlation
coefficients of the decode are rather insensitive to the firing rate
estimation method that is used to process the neural spike trains.
Looking across two dimensions of decode (horizontal and vertical),
two different data sets with different neural populations (L2006A
and L2006B), and two different decoding algorithms (linear
decode and Kalman filter), no discernable trend appears to indicate
that one method (or one class of methods) is unambiguously
better than any other. Thus, we believe the relevance of firing rate
estimation, as it pertains to neural prosthetic decode, is in doubt.
Naturally the question then arises: how do such different firing

rates (as in Fig. 2) produce such similar decode performance (as
in Figs. 5 and 6)? We consider three possible explanations: (1) the
decoding algorithms themselves are insensitive to differences in
firing rate estimation; (2) the firing ratemethods all have particular
strengths andweaknesses but result in essentially the same signal-
to-noise ratio (SNR); and (3) the ability to decode depends much
more on factors other than firing rate estimation, and thus the
firing rate estimator is not meaningful.
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To the first point, if the decoding algorithms themselves
smoothed over any differences in the firing rate estimations,
we might expect very similar decoded trajectories. However, the
different firing rate methods do in fact produce quite different
decoded trajectories. Fig. 4 demonstrates this variety in four
sample cases. Across the linear decode and the Kalman filter,
we find that the RMSE between different decoded trajectories
(estimates derived from different firing rate methods) is typically
30%–50% of the error with the true reach, and thus these estimates
are indeed consistently different. Further, if the decoder was
insensitive to firing rate estimates, we should be able to remove
the firing rate estimator entirely (simply binning firing rate counts)
without change to the decode quality. We tried a simple binning
scheme, using both 50 ms (as used in, e.g., Wu et al. (2002)) and
100 ms bins (as used in, e.g. Chestek et al. (2007)). Interestingly,
we find this simplifying step can change error meaningfully,
increasing error considerably in the case of the linear decode (but
less so with the Kalman filter; indeed, sometimes binning reduces
error in the Kalman filter case). Thus, temporal smoothing of firing
rates seems valuable, and the method of smoothing influences the
decoded arm trajectory meaningfully. Based on these findings, we
see that the decode algorithms themselves are indeed sensitive to
differences in firing rate estimation.
To the second possibility, each firing rate method does seem to

make particular tradeoffs between signal and noise. In the simplest
case, a low bandwidth kernel smoother (such as KS150) will
produce a slowly varying firing rate with a similar time course to
the arm activity. However, it also eliminates steep changes in firing
rate, which likely provide a meaningful signal to the timecourse
of arm movement. Fig. 2, panel (b), shows this possibility: while
KS50, GPFR, and others pick up the sharp ‘‘ON’’ transient in the
firing rate, they also pick up noise in the subsequent high firing
rate. In contrast, KS150 smooths out both the noise and the step
change in firing rate. Thus, it is likely that these firing ratemethods
and others each represent some balance between capturing or
removing both signal and noise. Loosely, while each method may
result in very different firing rate estimates, the SNR of each
estimate may in fact be similar.
To the third possibility, it seems quite likely that the biggest

effect on decode performance comes from aspects of the decoding
system that are not neural firing rates. For example, the addition
or removal of one or more very informative neurons to the
neural population does often alter these performance numbers
considerably (we found this effect in our additional testing),
thus suggesting that recording technology (such as Wise et al.
(2004)) may be more critical. Furthermore, the consideration
of neural plan activity (before the movement begins) has been
found to significantly reduce decoding error (Kemere et al., 2004;
Yu et al., 2007). These are two examples of a host of avenues
that may be significant determinants of prosthetic performance.
Other avenues, as previously noted, may include prosthetic decode
algorithms in general (Brockwell et al., 2004; Brown et al., 1998;
Georgopoulos et al., 1986; Wu et al., 2004, 2006), the prosthetic
interface itself (Cunningham, Yu, Gilja et al., 2008; Schwartz, 2004;
Velliste et al., 2008), andmultiple signalmodalities (e.g., EEG, ECoG,
LFP, and spiking activity) (Mehring et al., 2003). Even if these other
factors are much larger determinants of performance than firing
rate estimation, one might still hope to see that certain firing rate
estimators performed unambiguously better (albeit only slightly
better) than others. Looking across decoders and data sets and
error metrics, such a claim can not be made.
Despite the questionable relevance of firing rate estimation

to the problem of neural prosthetic decode, we want to strongly
clarify that we do not call into question the validity of firing
rate estimation in general. Many of the excellent papers in this

domain (several of which were reviewed in this study) may have
important applications in neuroscientific studies or some other
domain of neural signal processing. For example, these methods
may be especially important in settings, unlike arm movements,
where experimental conditions can be closely copied on each trial,
producing similar neural responses (e.g., visual stimuli shown to
in vitro retinal neurons (Pillow, Paninski, Uzzell, Simoncelli, &
Chichilinsky, 2005)).
Neural prostheses and BMI have receivedmuch attention in the

last decade. As a result, many researchers from many fields have
studied ways to improve our ability to understand and decode
neural signals. Despite this preponderance of methodological
development, very few systematic comparisons have been made
in real experimental settings. The gold standard for such a
comparison is perhaps online (closed loop) clinical trials, where
the BMI user may engage learning, neural plasticity, and a host of
other feedbackmechanisms. Prior to that step, offline comparisons
should be made on a variety of experimentally gathered data, and
these comparisons can be made between all aspects of neural
prosthetic systems. It behooves the field to review and compare
available methods at each step in the BMI signal path. In this
paper, we have made a first effort in that direction by reviewing
and comparing different firing rate estimationmethods. Prosthetic
decoding algorithms may be another attractive target for such a
review and comparison. The field should greatly benefit from such
studies, both in terms of benchmarking the past and helping to set
research agendas for the future.
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