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SI, Shenoy KV. A closed-loop human simulator for investigating
the role of feedback control in brain-machine interfaces. J Neuro-
physiol 105: 1932–1949, 2011. First published October 13, 2010;
doi:10.1152/jn.00503.2010.—Neural prosthetic systems seek to im-
prove the lives of severely disabled people by decoding neural activity
into useful behavioral commands. These systems and their decoding
algorithms are typically developed “offline,” using neural activity
previously gathered from a healthy animal, and the decoded move-
ment is then compared with the true movement that accompanied the
recorded neural activity. However, this offline design and testing may
neglect important features of a real prosthesis, most notably the
critical role of feedback control, which enables the user to adjust
neural activity while using the prosthesis. We hypothesize that under-
standing and optimally designing high-performance decoders require
an experimental platform where humans are in closed-loop with the
various candidate decode systems and algorithms. It remains unex-
plored the extent to which the subject can, for a particular decode
system, algorithm, or parameter, engage feedback and other strategies
to improve decode performance. Closed-loop testing may suggest
different choices than offline analyses. Here we ask if a healthy human
subject, using a closed-loop neural prosthesis driven by synthetic
neural activity, can inform system design. We use this online pros-
thesis simulator (OPS) to optimize “online” decode performance
based on a key parameter of a current state-of-the-art decode algo-
rithm, the bin width of a Kalman filter. First, we show that offline and
online analyses indeed suggest different parameter choices. Previous
literature and our offline analyses agree that neural activity should be
analyzed in bins of 100- to 300-ms width. OPS analysis, which
incorporates feedback control, suggests that much shorter bin widths
(25–50 ms) yield higher decode performance. Second, we confirm this
surprising finding using a closed-loop rhesus monkey prosthetic
system. These findings illustrate the type of discovery made possible
by the OPS, and so we hypothesize that this novel testing approach
will help in the design of prosthetic systems that will translate well to
human patients.

neural prostheses; brain-computer interfaces

DEBILITATING CONDITIONS LIKE spinal cord injuries can leave a
human without voluntary motor control. However, in many
cases, the brain itself maintains normal function. Millions of
people worldwide suffer motor deficits due to these diseases
and injuries that result in a significantly diminished ability to
interact with the physical world. Indeed, tetrapalegic humans

list regaining “arm/hand function” as the top priority for
improving their quality of life, as restoring this function would
allow significant independence (Anderson 2004). To address
this huge medical need, brain-machine interfaces (BMI, also
called neural prosthetic systems or brain-computer interfaces)
seek to access the information in the brain and use that
information to control a prosthetic device such as a robotic arm
or a computer cursor. Such systems, if successful, would have
a large quality of life impact for many people living with these
debilitating medical conditions.

In the last decade, advances in neural recording technologies
have accelerated research in neural prostheses. Technologies
for neural recording include electroencephalography (EEG),
electrocorticography (ECoG), and penetrating electrode or mi-
crowire arrays [see Lebedev and Nicolelis (2006) for a review].
To design a prosthetic arm that can be controlled continuously
with high precision, most work has focused on penetrating
electrodes implanted directly into motor cortical areas
(Schwartz 2004; Velliste et al. 2008). Researchers use nonhu-
man primates (e.g., rhesus monkeys) or, increasingly, human
participants (Hochberg et al. 2006; Kim et al. 2008). There are
many medical, scientific, and engineering challenges in devel-
oping such a system (Lebedev and Nicolelis 2006; Ryu and
Shenoy 2009; Schwartz 2004; Schwartz et al. 2006), but all
neural prostheses share in common the need for a decode
algorithm. Decode algorithms map neural activity into physical
commands such as kinematic parameters to control a robotic
arm.

Much work has gone into this domain, and many experi-
mental paradigms and decoding approaches have been devel-
oped and used (Artemiadis et al. 2007; Brockwell et al. 2004;
Brown et al. 1998; Carmena et al. 2003, 2005; Chase et al.
2009; Chestek et al. 2007; Eden et al. 2004; Ganguly and
Carmena 2009; Gao et al. 2002; Georgopoulos et al. 1986;
Hatsopoulos et al. 2004; Hochberg et al. 2006; Kemere et al.
2004; Kim et al. 2006, 2008; Koyama et al. 2010; Kulkarni and
Paninski 2008; Lebedev et al. 2005; Li et al. 2009; Moritz et al.
2008; Mulliken et al. 2008; Musallam et al. 2004; Paninski et
al. 2004; Sanchez et al. 2008; Santhanam et al. 2006; Serruya
et al. 2002; Shakhnarovich et al. 2006; Shenoy et al. 2003;
Shoham et al. 2005; Srinivasan and Brown 2007; Srinivasan et
al. 2007, 2006; Taylor et al. 2002; Velliste et al. 2008; Ventura
2008; Wessberg et al. 2000; Wu et al. 2004, 2006; Wu and
Hatsopoulos 2008; Yu et al. 2007). Most research in decode
algorithms has been done with offline data analysis using
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simulated neural data (Brockwell et al. 2004; Kemere et al.
2004; Srinivasan and Brown 2007; Srinivasan et al. 2006,
2007; Ventura 2008) and/or neural data that were previously
recorded from a healthy animal (Artemiadis et al. 2007; Brock-
well et al. 2004; Brown et al. 1998; Carmena et al. 2005;
Chestek et al. 2007; Eden et al. 2004; Gao et al. 2002;
Georgopoulos et al. 1986; Hatsopoulos et al. 2004; Kim et al.
2006; Lebedev et al. 2005; Mulliken et al. 2008; Paninski et al.
2004; Santhanam et al. 2006; Serruya et al. 2002; Shakhnarov-
ich et al. 2006; Shenoy et al. 2003; Shoham et al. 2005; Taylor
et al. 2002; Wessberg et al. 2000; Wu et al. 2004, 2006; Wu
and Hatsopoulos 2008; Yu et al. 2007). In these studies, the
benchmark for success is often how well the decoded arm
trajectory matches the true arm movement that was recorded in
conjunction with the (possibly simulated) neural activity. A
smaller number of studies have used an online, closed-loop
paradigm to illustrate that prostheses can be meaningfully
controlled by humans or monkeys (Carmena et al. 2003; Chase
et al. 2009; Ganguly and Carmena 2009; Hochberg et al. 2006;
Kim et al. 2008; Koyama et al. 2010; Li et al. 2009; Moritz et
al. 2008; Mulliken et al. 2008; Musallam et al. 2004; Santha-
nam et al. 2006; Serruya et al. 2002; Taylor et al. 2002; Velliste
et al. 2008), but only a few of these studies (Chase et al. 2009;
Koyama et al. 2009; Li et al. 2009) compare closed-loop
performance of different algorithms in monkeys, and only one
of these studies (Kim et al. 2008) compares the closed-loop
performance of two different decode algorithms in humans.
This reality is at least in part driven by the substantial resources
and effort required for online studies in animals and humans,
thereby prohibiting extensive online algorithmic comparisons.

Despite this abundance of work, our ability to decode arm
movements accurately remains limited. To decode an arbitrary
reach, one current state-of-the-art algorithm is perhaps the
Kalman filter [introduced nearly 50 yr ago in Kalman (1960),
used in this context in Kim et al. (2008); Wu et al. (2006)],
which is the only algorithm that has been vetted in online
human experiments as having better performance than some
competing possibilities such as a linear filter (Kim et al. 2008)
[although the closed-loop monkey studies of Chase et al.
(2009); Koyama et al. (2010); Li et al. (2009) indicate that
other algorithms are also competitive]. Current achievable
performance is encouraging and we have exciting proofs of
concept (Hochberg et al. 2006; Santhanam et al. 2006; Velliste
et al. 2008), but we must advance considerably before these
systems are clinically viable and further still before we achieve
decoded movements with speed and accuracy comparable to a
healthy arm (e.g., near perfect, subsecond accuracy).

In response to this critical need, several groups have pro-
posed more advanced mathematical approaches to neural pros-
thetic decoding (Artemiadis et al. 2007; Brockwell et al. 2004;
Brown et al. 1998; Eden et al. 2004; Gao et al. 2002; Kemere
et al. 2004; Kim et al. 2006; Kulkarni and Paninski 2008; Li et
al. 2009; Mulliken et al. 2008; Paninski et al. 2004; Sanchez et
al. 2008; Shakhnarovich et al. 2006; Shoham et al. 2005;
Srinivasan and Brown 2007; Srinivasan et al. 2007, 2006;
Ventura 2008; Wu and Hatsopoulos 2008; Yu et al. 2007).
However, none of these methods has seen widespread adoption
(across research studies or in critical translational work), in
part due to the uncertainty of how these methods translate to
closed-loop decode performance.

Offline evaluation of algorithms may neglect potentially
important features of a real neural prosthesis, including the
user’s ability to modify control strategies to improve prosthetic
performance. Truly understanding decode performance re-
quires the human learning machine (the brain and motor plant)
to be in closed-loop with the decode algorithm. In this online,
closed-loop setting, as soon as a prosthesis user sees a decoded
arm reach (the action of a robotic arm or the path of a cursor
on a computer screen), he/she will bring to bear all of his/her
modification strategies to drive a desirable reach.

As a specific example of offline vs. online evaluation (in
anticipation of the experiments done here), a previous offline
study found that prosthetic decode error is minimized when the
time bin over which neural activity is integrated (a windowed
spike count in the Kalman filter) is 200–300 ms (Wu et al.
2006). This bin width also represents the time step at which the
algorithm updates its estimate of the decoded reach. However,
it may be that in a closed-loop experiment, when reaches last
only roughly 1,000 ms, the intermittent “hopping” behavior of
a decoded reach will frustrate the user. Perhaps better control
could be gained with a more frequent update, where feedback
control would compensate for the increased noise in the de-
code. Indeed, in Kim et al. (2008), shorter bin widths (50 and
100 ms) were used in online human experiments. It would
appear that shorter bin widths were found to be better in initial
online testing, although perhaps not optimized online, which
may be in part due to the overall difficulty/challenges of testing
with disabled human participants. Thus it remains unclear how
this and other parameters should be set in future studies. This
simple question, motivated in part by the work of Kim et al.
(2008) and Wu et al. (2006), can be answered with current
algorithmic technologies, but it requires closed-loop valida-
tion. The field should investigate the extent to which the
subject can, for a given decode algorithm, engage online
control strategies to improve decode performance. Closed-loop
testing may suggest different priorities for algorithmic devel-
opment than offline analyses.

Addressing this problem is highly challenging, since fully
doing so would imply validating every algorithmic choice,
ideally, in a human clinical trial. Algorithmic choices include
both the structure of the algorithm itself and the parameter
settings that should be optimized, resulting in thousands of
decode possibilities. Given the invasiveness and resource re-
quirements of a full neural prosthetic clinical trial, this ap-
proach is infeasible. To address this challenge, the field has
employed an appropriate animal model such as a rhesus mon-
key. However, given the large resource and temporal require-
ments of awake behaving intracranial experiments, such an
approach to widespread algorithm design is still impractical.
Faced with this reality, most algorithmic work has been done in
offline neural data (simulated or real).

We ask here if a healthy human subject, using an entirely
noninvasive prosthetic device driven by synthetic neural activ-
ity, can meaningfully inform the design of prosthetic decode
algorithms. This system, which we call an online prosthesis
simulator, represents a middle ground between simple (but
perhaps less realistic) offline testing and more realistic (but
difficult and resource intensive) animal model and human
clinical trials. We detail the concept of this proposed system in
Fig. 1. This figure shows in blue the dramatically increasing
complexity of testing each algorithmic choice (algorithm or
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parameter setting within a single algorithm) as researchers
move towards animal studies or human clinical trials. This
figure also shows (in red) the corresponding dramatic decrease
in the number of algorithmic choices that can be meaningfully
tested. Here we ask two questions: first, how different are
offline and online analyses; and second, how similar are the
OPS and closed-loop animal model BMI? The OPS, by anal-
ogy to flight simulators or silicon integrated circuit simulation
software like “SPICE,” may allow more realistic evaluation of
current and future prosthetic decode approaches.

The creation of the OPS and the messages of this study have
important connections to previous work. First, we note that
previous literature has used signal sources other than motor
cortex to control an external BMI-like interface. In Rad-
hakrishnan et al. (2008), the authors noted that electromyog-
raphy (EMG) may serve as a useful proxy to motor cortical
signal for a BMI (a possible extension to the OPS that we
discuss at length in the DISCUSSION). While connections to BMI
design were discussed, this study primarily investigated the
ability of the motor system to learn a nonintuitive control
mapping (connecting to an important “fundamental neurosci-
ence” aspect of the OPS that we describe in the DISCUSSION).
From that study, we draw the key message that aspects of BMI
design can be studied without the need for an invasive BMI.
More closely, Danziger et al. (2009) used a sensored glove to
map hand movements to cursor control and to study how
subjects learned in the presence of an adaptive control map-
ping. They draw connections to “co-adaptation” for BMI,
which has been a question of interest since Taylor et al. (2002).
These two studies support the notion that a simulation system
like the OPS can be used to study nontrivial interface control-
lers. While these studies focus primarily on neuroscientific
aspects of human motor learning, the OPS is distinct by being
designed specifically to investigate neural prosthetic algorithm
and system design choices.

Second, two recent related works have investigated online
vs. offline analysis in a specific BMI algorithm setting. First,
Chase et al. (2009) compared two BMI algorithms in standard
offline analysis and showed stark performance differences.

However, when the same two algorithms were then analyzed
under closed-loop control in a monkey experiment, the perfor-
mance differences between these two algorithms became con-
siderably less. One significant message of that study is that
certain types of error (directional biases) are readily learnable
in an online context, and so algorithms should not necessarily
be discarded because of biases that impact offline performance
negatively. Their second work (Koyama et al. 2010) then
compared more algorithmic features, such as directional biases
(again finding a discrepancy between offline and online per-
formance implications) and trajectory smoothness (which
seemed to matter in both online and offline contexts). This
work is important in supporting the distinction between offline
and online, but the OPS is distinct in that it offers a noninva-
sive simulation environment for rapidly testing such algorith-
mic features in true closed-loop. One abstract (Marathe et al.
2009) did use humans noninvasively in this offline vs. online
context, with a similar spirit to the OPS. Here subjects used a
joystick or EMG to control a virtual arm, and the authors
revealed the negative impact of systems that accentuate low-
frequency control signals, insomuch as such signals slow
online feedback control.

The studies (Chase et al. 2009; Koyama et al. 2010) also
included simulation of one difference between online and
offline control and supported the value of further simulations.
However, as the authors noted, this simulation model did not
include online correction and the use of feedback control. They
rightly noted that such a computer simulation would be con-
siderably more involved and heavy with assumptions. Here, we
introduce the OPS as a system to accurately model the human
feedback-control system, using an actual human in closed-loop
with the decoding algorithm. Furthermore, the OPS system
allows verification of these findings and extensions to new
algorithmic questions without full animal model experiments.

The remainder of this study is as follows: in METHODS, we
describe the experimental hardware and software platform that
allows us to test the OPS in humans, the OPS in monkeys, and
a real neural prosthetic BMI in monkeys (we term these testing
scenarios “human OPS mode,” “monkey OPS mode,” and
“monkey BMI mode,” respectively). We describe two variants
to a simple center out reaching task that we had both humans
and monkey perform, and we detail relevant data analysis
methods. In RESULTS, data from humans and monkey demon-
strate that the subjects using the OPS paradigm show signifi-
cant performance differences when using different bin widths
of a Kalman filter decode algorithm. We then compare these
online results to offline analysis to make the first major point of
this study: offline analysis does not provide an accurate picture
of online performance. As a second major point, we then show
using the monkey data that the OPS paradigm accurately
reflects these trends, indicating similar algorithmic choices as
does real BMI mode. Finally, in the DISCUSSION, we discuss the
implications of these results.

METHODS

In this work, we performed human and animal experiments, offline
and online analyses, in OPS and BMI modes, and with two different
task variants. To manage the description, we break up the methods
below as follows. First, we describe the relevant experimental hard-
ware that was used for all experiments. Second, we describe the

Fig. 1. Concept figure for online prosthetic simulator (OPS) opportunity. The
x-axis shows 4 testing paradigms in terms of increasing realism. Offline data
analysis is perhaps the least reasonable proxy to eventual user mode, as it
entirely neglects the closed-loop control. On the other end of the spectrum is
the human clinical trial, which is precisely the eventual user mode. Left axis
(blue) shows the difficulty associated with testing each algorithm or algorith-
mic parameter setting. Right axis (red) shows the number of algorithm and
parameter choices that are reasonably testable, given costs and other
constraints.
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reaching task performed by both the animals and humans. Third, we
describe human-specific protocols. Fourth, we describe animal-spe-
cific protocols (including surgery and neural data acquisition). Fifth,
as the ability to generate sensible synthetic neural data is a key aspect
of the OPS, we describe in detail our methods and choices for neural
spiking models. Sixth, we describe the decode algorithm that was used
to generate prosthetic cursor control in both the online and offline
cases. Seventh and finally, we describe the methods used to analyze
the performance of these varied experimental conditions.

Neural prosthetic experimental hardware. We first describe the
relevant experimental hardware and system. This experimental rig is
diagrammed schematically in Fig. 2. Importantly, this hardware was
used in all experiments, both by the human and animal subjects, in
both OPS and BMI modes, so we describe it here without distinction
to the user. This choice is intentional to further emphasize our effort
to make the OPS a close proxy to real BMI mode. In the human
experiments, the subject sat in a chair and placed his/her head
comfortably on a chin rest. In the animal experiments, the subject sat
with a fixed head position in a custom chair. In both cases, the
subject’s nose was positioned directly in front of a pair of mirrors (at
45-degree angles from the eye). Each mirror reflected an image from
a pair of LCD monitors on either side of the subject’s head. These
monitors displayed identical images but with a slight (multipixel)
offset to create a disparity cue leading to a stereoscopic depth percept,
creating the illusion of a 3-D environment [a typical Wheatstone
stereo 3-D display (Wheatstone 1838)].

The subject made arm reaches in the large 3-D volume behind the
mirrors. We recorded kinematic parameters of the reach endpoint
using a small reflective bead on the subject’s finger, which allowed
overhead optical position tracking (Polaris, Northern Digital, Water-
loo, Ontario). Hand position was measured at 60 Hz to a resolution of
0.35 mm root mean square. These data were recorded at 1,000 Hz by
a generic x86 “behavior” computer running an embedded operating
system (xPC; MathWorks, Natick, MA) executing custom software.
This computer processed the kinematic data (for example, in OPS
mode, to generate synthetic neural data and decode that data into a
decoded reach, specifics described below) or neural data (in BMI
mode, specifics described below) and transmitted a cursor position via
ethernet to a “visualization” x86 computer running a stripped-down
Linux operating system. This machine executed visualization software
(MSMS; USC MDDF, Los Angeles, CA) that rendered images to the
Wheatstone display in near real time (measured latency and jitter in
our system: 7 � 4 ms). This low-latency system critically allowed us
to investigate short timescale prosthetic design questions. For exam-
ple, in this work we were interested in optimizing the integration bin

width of the Kalman filter. However, if our system (which includes
the end-to-end integration of behavioral control, neural data streaming
and recording, and decoding) had latency and jitter in excess of 25 ms,
50 ms, or more, we could not have investigated any bin widths lower
than that threshold. This carefully engineered system was thus an
important enabler of this study.

This virtual environment rendered, against a black background, a
reach target (4 cm diameter green sphere) and the subject’s decoded
hand/cursor position (as a 4-cm diameter gray sphere, although it is
shown in Fig. 2 as a red sphere for clarity of illustration). In control
reaching trials, we rendered the subject’s true hand position back to
the display as the gray cursor. In closed-loop prosthetic trials (either
OPS or BMI mode), we rendered a decoded prosthetic reach as the
same gray cursor. This system, similar in spirit to the virtual envi-
ronment in Taylor et al. (2002), allowed online, closed-loop neural
prosthesis trials appropriate for the work proposed here.

Neural prosthetic experimental task. Having described the hard-
ware in which the subjects made reaches, we here describe the specific
structure of the experimental task. To make close comparisons be-
tween the offline and online analyses, and between the OPS and BMI
modes, we held constant the task design across all human and monkey
subjects.

All subjects made center-out reaches in the virtual environment
described above. Each reach consisted of the subject moving the gray
cursor (under subject control) to the green reach target. The green
reach target alternated between a center point and a pseudo-randomly
chosen target at one of eight target locations evenly spaced on a ring
of radius 8 cm. Only one target appeared per trial. In all data, only the
center-out reaches (those from the center point to the periphery) were
analyzed.

The specific trial timeline proceeded as follows: the trial began
when the green reach target (either center point or one of the
peripheral targets) appeared on the screen. As this was a direct-reach
paradigm, the target appearance was the subject’s “go” cue, and after
a short reaction time, the subject moved the gray cursor to the green
target. The reach was successful if the gray cursor was held within a
demand box 4-cm wide around the reach target. The cursor had to
remain within the acceptance window for a hold period of 500 ms,
after which a reward was given (a tone for human subjects, and a tone
and drop of juice for the monkey). If that success criterion was not
satisfied within 3,000 ms, the trial was considered a failure and timed
out. After either a trial success or failure, an inter-trial interval of 40
ms was imposed before the beginning of a new trial. The cursor was
controlled by the subject using one of three modes: real reaching, OPS
prosthetic reaching, and BMI prosthetic reaching, as described in the
next paragraph. During all of these control modes, the subject (mon-
key and human) was allowed free movement of his/her limb [as has
been done previously in BMI literature, for example Carmena et al.
(2003); Serruya et al. (2002); Taylor et al. (2002)]. Because the
subject only saw the cursor (the real arm was hidden from view), the
subject remained motivated to complete the task by the reward
structure, which rewarded successful control of the cursor. Although
there was a sensory discrepancy between the visual feedback and the
real arm’s proprioception (in prosthetic trials), previous motor neuro-
science work (Radhakrishnan et al. 2008) and previous BMI literature
(Carmena et al. 2003; Serruya et al. 2002; Taylor et al. 2002) suggest
that this confound is minor and does not seriously affect task learning.
Whether the true arm is restrained or allowed to reach, there is still a
proprioceptive confound, so this potential limitation is not specifically
of the OPS or of this study but rather of all able-bodied animal or
human BMI studies. We discuss this aspect of the experimental design
in more depth in the DISCUSSION.

There are three modes by which the subject controlled the gray
cursor: real reaching, OPS prosthetic reaching, and BMI prosthetic
reaching. In real reaching, the gray cursor reflected the kinematics of
the true underlying arm reach. These data are that are typically
collected for offline prosthetic decode analysis, and they were used for

Fig. 2. Experimental rig that can be used both for OPS and real neural. Brain
machine interface (BMI) experiments. A human (shown in gray) or monkey
subject reaches (red trace) in a 3-D volume obscured from view. An overhead
position tracker tracks endpoint kinematics. Control PCs process those data
and render the subject’s real reach (in control trials) or a prosthetic decoded
reach (in OPS or BMI trials, red trace). Two monitors (blue) project a stereo
3-D image onto mirrors (virtual 3-D environment shown at right). Also
displayed is a the subject’s reach target (green sphere).
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training the parameters of the prosthetic decode algorithms. Alhough
other training paradigms have been used (Hochberg et al. 2006), we
chose this simple training method to parallel existing offline and
online literature. In BMI prosthetic reaching (monkey only), neural
activity was recorded from the motor cortex, and those data were
decoded into kinematics which controlled the gray cursor. In OPS
prosthetic reaching mode (monkey and human subjects), synthetic
neural activity was generated from the kinematics of the subject’s
arm, and that neural activity was then decoded with a decoding
algorithm into control commands for the gray cursor. The specifics of
recording, generating synthetic activity, and decoding are detailed
below.

The parallel between OPS and BMI control modes is detailed in
Fig. 3. In Fig. 3, left and right, the subjects make a real reach (a; red
trace) and then corresponding neural activity (b) is recorded [synthetic
neural activity generated from the real reach in OPS mode (left) and
real neural activity corresponding to the real reach in BMI mode
(right)]. Those data are then input to the decode algorithm (c), which
decodes the (possibly synthetic) neural activity into kinematics to
control the gray cursor, which is rendered back to the subject (d). The
decoded reach trajectory will differ from the subject’s intended arm
reach, due to noise (from neural spiking) and algorithmic model
mismatch (e.g., the Kalman filter only approximately models the
dependency of the neural activity on kinematics). The subject modi-
fies his/her behavioral strategy so that the prosthetic movement will
mimic, as closely as possible, the desired reach trajectory. Thus both
OPS and BMI modes offer a means to study the relevance of feedback
control in neural prosthetic system use.

We also tested two variants of the center-out prosthetic reaching
task. In the first, the “continuous” task variant, prosthetic reaches were
made both for center-out reaches to the peripheral targets and for the
reaches returning to the center target. We collected full data sets from
this task in the human OPS, and there was a mildly frustrating “drift”
effect that could occur, where, over many reach trials, the cursor
would become increasingly offset from the true arm reach. Although
this never created a problem for the data (performance was robust to
this effect), it was reported by some subjects to be frustrating. As
such, we developed a second task variant. In the “interleaved” task
variant, the reaches returning to the center target were controlled by
the real arm kinematics. This interleaving removed the potentially
frustrating drift effect. The center-out reaches (which are the only
reaches analyzed) remained entirely under prosthetic control. Al-
though in eventual neural prosthesis system use the “return to center”
may be controlled by the system itself, this interleaved variant was a
simple way to keep the subject engaged in the task and to avoid

confusion. We ran human subjects in both OPS continuous and OPS
interleaved. We ran the monkey on BMI continuous and BMI inter-
leaved, which presented no difficulty, since the monkey had been
highly trained using real neural activity in exactly this continuous
paradigm with this BMI controller. For the monkey in OPS mode, we
only ran OPS interleaved, as the moderately frustrating effects re-
ported by human users (with OPS continuous) would require more
extensive training with the monkey, and that variant is of unclear
additional merit on top of the interleaved task.

For each of these variants, we ran five full experiments. Here we
first describe the full experimental structure and how it allowed fitting
and testing of numerous decode models; the particulars of task
training are described in Human experiments and Animal experiments.
A full experiment is a block structure designed as follows. First, the
subject (human or monkey) performed 1 block of 200 trials in real
reach mode. These 200 real reaches and the corresponding neural
recordings are used to train the decoding models (Kalman filters with
different temporal bin widths). The subject was given a roughly 2-min
break, during which online prosthetic control mode (either OPS or
BMI) was switched on. The subject then performed 7 blocks of 100
prosthetic reaches each, where there was a short 15-s break between
blocks. These 7 blocks of 100 reaches were then repeated again in a
different order. Thus a “full experiment” included roughly 1,600
reaches, 200 real reaches followed by 2 runs of 7 �100 reaches.
Typically this took subjects about an hour. This experimental structure
allowed an algorithm choice or be changed. As discussed, here we are
interested in optimizing performance based on the temporal bin width
of the Kalman filter decode algorithm. Accordingly, we chose seven
bin widths, 25, 50, 100, 150, 200, 250, and 300 ms, and we had the
subjects do two blocks with each bin width (1 block of 100 reaches
per 7-block run). We randomized the order of the blocks (within the
7-block run) to control for any learning effects. Each of the nine
human subjects ran one full experiment (either OPS continuous or
OPS interleaved, save for subject PN, who ran each on different days),
and thus we have five full experiments each of human OPS continuous
and human OPS interleaved. The monkey ran all 15 full experiments
(5 each of monkey BMI continuous, monkey BMI interleaved, and
monkey OPS interleaved). From the real reaches that comprise the
first block of the experiment, we are able to run all offline decoders,
so the offline analyses were built from each subject’s real reaching
blocks.

This general task structure allows us to study online vs. offline
analyses, BMI vs. OPS mode, continuous vs. interleaved, in humans
vs. monkey. To clarify, in RESULTS we show 10 different types of
prosthetic decode analysis: offline human OPS continuous, offline

Fig. 3. OPS and BMI schematic. Left: OPS mode. A healthy human subject or a monkey (human shown) makes real arm reaches in a 3-D reaching environment
(a) (see Fig. 2). Recorded kinematics of that real reach are used to generate synthetic neural activity (b), which is then input to the Kalman filter neural decode
algorithm (c). Decode algorithm decodes synthetic neural activity into physical reaching behavior, and decoded reach is then rendered back to the subject in the
3-D visual environment (d), which allows the subject to bring to bear all of his/her online, closed-loop control strategies to drive a desired reach. Right: BMI
mode. A monkey makes real arm reaches (a). Real neural activity associated with that reach is recorded (b), which is then input to the Kalman filter decode
algorithm (c). Decode algorithm decodes real neural activity into physical reaching behavior, and decoded reach is then rendered back to the monkey in the 3-D
visual environment (d), which allows similar closed-loop control as in OPS mode. It is important to note that the OPS mode of the left can be used both by a
human and a monkey (this will provide an important validation of the OPS).
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human OPS interleaved, offline monkey OPS interleaved, offline
monkey BMI continuous, offline monkey BMI interleaved, online
human OPS continuous, online human OPS interleaved, online mon-
key OPS interleaved, online monkey BMI continuous, and online
monkey BMI interleaved. These data sets are categorized explicitly in
Table 1. These permutations allow us to perform a breadth of
comparisons and controls to answer the key questions of this study. In
the following two sections, we describe particular protocols used for
the monkey and human subjects only (not shared across monkeys and
humans as the above task and hardware details are).

Human experiments. Human protocols were approved by the Stan-
ford University Institutional Review Board. Nine healthy adult human
subjects performed the reaching tasks in both real reach and OPS
modes as described above. These subjects reached in the experimental
apparatus previously described. Five subjects performed a full exper-
iment (200 real reaches plus 2 blocks of 100 reaches at each of 7 bin
widths, as described above) of the OPS continuous task, and five
subjects (4 new subjects, and 1 repeated from the OPS continuous)
performed a full experiment of the OPS interleaved task.

Across all experiments, in OPS and real reach modes, human
subjects required very little training (only a few trials, which are not
included in the results and analysis) to understand the task and control
the cursor well. During real reaching trials (200 reaches), which are
used both for training the decode algorithm and for offline analysis,
we asked the subjects to reach to the targets at a comfortable, normal
speed. Since the virtual path of the cursor matches perfectly the true
kinematics of the arm, the subjects had no trouble performing these
reaches with 100% accuracy. We then paused the task and informed
subjects that they were being switched into prosthesis mode for
several blocks of 100 reaches, where the virtual reach would not
perfectly match their true underlying reach. We asked the subjects to
try to maintain the same reach speed and accuracy as in their previous
reaches, and we enforced the time-to-target timeout if subjects took
too long to reach (3,000 ms, as previously noted). Depending on the
bin width being used, subjects were more or less able to acquire the
targets successfully and quickly (these performance differences are
the results of the OPS).

These human experiments provide considerable data for testing the
difference between offline and online (OPS) analyses in terms of the

subject’s ability to exploit feedback control to improve prosthetic
reaching performance.

Animal experiments. Animal protocols were approved by the Stan-
ford University Institutional Animal Care and Use Committee. We
trained one adult male monkey (Macaca mulatta, monkey L) to
perform center-out reaches as already described. Unlike humans,
monkeys were motivated to complete the reaches with a juice reward.
During experiments, the monkey sat in a custom chair (Crist Instru-
ments, Hagerstown, MD) with the head braced. Hand position record-
ing and experimental control were as previously described.

To enable BMI trials, a 96-channel silicon electrode array (Black-
rock Microsystems, Salt Lake City, UT) was implanted straddling
dorsal premotor (PMd) and motor (M1) cortex (right hemisphere), as
estimated visually from local landmarks, contralateral to the reaching
arm. Surgical procedures have been described previously (Churchland
et al. 2006; Hatsopoulos et al. 2004; Santhanam et al. 2006). Neural
signals were monitored on each channel and high-pass filtered. A
threshold level of �4.5 times root mean square voltage was estab-
lished for each channel, and all threshold crossings were recorded as
“spike times.” Spike sorting was not performed, as our previous
experiments indicated that doing so did not significantly alter perfor-
mance to justify the additional computational load [Chestek et al.
(2009); see also, Fraser et al. (2009); Herzfeld and Beardsley (2010);
Santhanam et al. (2004)].

The monkey was trained over several months on the reaching
task and BMI continuous task variant (Gilja et al. 2010). For the
interleaved task variant, in both the OPS and BMI modes, the
monkey quickly learned this task in a few days of training, as it
was only a minor extension of his well-trained continuous BMI
behavior. Multiple data sets of each task were collected. For the
continuous BMI task, the monkey completed five full experimental
sessions (wherein each 200-trial block with an individual bin width
was presented twice in pseudo-random order, as described above)
across 3 days, and those sessions are denoted as L20091215.C3.1,
L20091217.C3.1, L20091217.C3.2, L20091217.C3.3, and L2009
1218.C3.1. For the interleaved BMI task, the monkey completed
all five experimental sessions across 2 days, and those sessions are
denoted as L20091218.IRR3.1, L20091220.IRR3.1, L20091220.IRR3.2,
L20091220.IRR3.3, and L20091220.IRR3.4. For the interleaved OPS
task variant, the monkey completed all five full experimental sessions
in a single day, and those sessions are denoted as L20091221.IRR2.1,
L20091221.IRR2.2, L20091221.IRR2.3, L20091221.IRR2.4, and
L20091221.IRR2.5. To preserve trials, real reach trials were only run
once per day for the monkey, not in each experiment.

These animal experiments provide considerable data for again
testing the difference between offline and online analyses (whether
comparing to BMI online or OPS online). Further, this data allows us
to test the extent to which the OPS paradigm accurately reflects the
trends of real BMI mode.

Generating synthetic neural activity. There are many behavioral
features correlated with motor cortical spiking activity, including
features of the arm (hand position and velocity, muscle activity,
forces, joint angles, etc.), features of the reach (smoothness, etc.), and
features of the eye (visual reference frames, etc.) [see Todorov (2000)
for extensive references and discussion]. In this work, we recorded
endpoint kinematics of the subject’s arm, and we used these data to
produce reasonable simulated neural spike trains that were then
decoded into kinematics for controlling the prosthetic cursor.

Certainly generating synthetic neural data requires some uncom-
fortable assumptions about neural tuning and spiking. While synthetic
neural activity has been used in the past in prosthesis studies (Brock-
well et al. 2004; Kemere et al. 2004; Srinivasan and Brown 2007;
Srinivasan et al. 2007, 2006; Ventura 2008), we are particularly
interested here in creating a simulation system that translates well into
a real neural system. Much care is needed both in construction and in
interpretation (discussed more fully in the DISCUSSION) to ensure the
legitimacy of the results. Accordingly, our approach was to pick as

Table 1. Categorization of the data sets

Categorization of the data sets collected and analyzed in the study. Results
show online (first and third rows in table and blue in figures) and offline
analysis (second and fourth rows in table and red in figures), human and
monkey subjects (middle and right columns in table), synthetic and real neural
data (identical to OPS and BMI modes, top two and bottom two rows in table),
and finally the continuous and interleaved task variants (grouped within each
cell of this table). These permutations allow us to perform a breadth of
comparisons and controls to answer the key questions of this study.
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simple a construction as possible that resulted in decoded reaches
(both online and offline) that were qualitatively similar to our core
experience in real neural prosthetic experiments (Cunningham et al.
2009, 2008; Kemere et al. 2004; Santhanam et al. 2006; Yu et al.
2007).

To begin, we used cosine-tuning models (Georgopoulos et al. 1986;
Moran and Schwartz 1999) to map kinematics to neural firing rates.
Under this tuning model, each neuron was defined by a tuning vector,
a minimum firing rate, and a maximum firing rate (these last 2 are
equivalent to setting a mean rate and a depth of modulation). First, we
chose a population size of 96 neurons (equivalent to the 96 electrode
channels of real neural data that we recorded with the array). For each
of these synthetic neurons, we sampled tuning vectors uniformly from
the unit 3-D sphere, for both position and velocity (so these tuning
vectors corresponded to “preferred position” and “preferred velocity”
vectors). We sampled minimum firing rates uniformly between 0 and
20 spikes per second, and we sampled maximum firing rates uni-
formly between that neuron’s minimum rate and 100 spikes per
second, in line with motor cortical neuron behavior we have previ-
ously observed (Churchland et al. 2010; Churchland and Shenoy
2007; Cunningham et al. 2009). These firing rates were then put
through a spiking process, which we chose to be a simple Poisson
process with rate equal to the firing rate in each time bin t. This is also
a standard choice in literature (Dayan and Abbott 2001; Schwartz
2004).

Mathematically, we say that neuron k had tuning vector c(k),
maximum firing rate �max

(k) , and minimum firing rate �min
(k) . Then, we

defined xt to be the kinematic parameters of the arm in time bin t,
where xt � �6 a vector of 3-D position and velocity of the hand. The
xt was suitably scaled such that the range of kinematics exhibited by
the subject produced firing rates within the range of minimum and
maximum firing rates. We defined �t

(k)� �K and yt � ��
K to be the

neural firing rates and spiking activities at time bin t [each element
�t

(k)of �t and yt
(k) of yt corresponding to the firing rate and number of

spikes of each of the K � 96 synthetic neurons being generated]. With
these definitions, we write:

�t
(k) � (�max

(k) � �min
(k) )c(k) · xt � �min

(k) (1)

yt��t � Poisson�h(�t)� (2)

where c(k)· xt represents the inner product between these two vectors,
and the function h(�t) clips the rate �t to 0 if the argument is negative
and otherwise equals the argument �t [as is commonly done in
literature (Chase et al. 2009), although given our parameter choices,
this clipping rarely occurred]. In the first generation of the OPS
system, we created this tuning to both 3-D position and 3-D velocity
kinematics, as has been reported considerably in literature (Georgo-
poulos et al. 1986; Moran and Schwartz 1999). While this produced
reasonable decoded behavior offline, online use was not qualitatively
similar to real prosthetic use. With strong position dependence, users
immediately developed a strategy of moving the hand to the virtual
location of the target and then holding that position. Because there
was position tuning information, eventually the cursor would acquire
the target for a full hold period. This behavior was qualitatively very
different from the observed behavior in monkey BMI experiments,
where subjects make several online adjustments to the real reach and
are rarely able to successfully acquire a target by holding a hand
position for a period of time. To correct this qualitatively inappropri-
ate effect, we removed the position dependence in the simulated
neurons. Instead, firing rate was only tuned to velocity [so x and
corresponding c(k) are now only 3-D, including 3-D velocity terms].
With this model, the qualitative behavior of OPS users was highly
similar to that of a monkey using a real BMI. After substantial testing
to ensure that other unrealistic strategies were not developed, we
determined that this simple model was adequate for testing the decode
implications of the Kalman filter bin width. We note that other
possibilities for noise generation could include adding noise sources

to either the firing rate or to the spike trains themselves (to model
recording noise sources, for example), but we leave those enhance-
ments to future work.

Here we note two important facts about this choice of spiking
model. First, this spiking model does not match the decode algorithm,
in the sense that the Kalman filter is not an optimal decoder of neural
activity generated in this way. Indeed, the Kalman filter is also not an
optimal decoder of real neural activity, as the Kalman filter does not
exactly model the real neural system. Second, it is important to note
that we do not claim that this is what the neural system is actually
doing, but instead it is a choice that allows us to study the OPS
framework and the relevance of feedback control to the design of
neural prosthetic systems.

Finally, this method for generating synthetic neural activity can be
extended in a number of ways previously seen in literature [e.g.,
Srinivasan and Brown (2007); Srinivasan et al. (2007, 2006)], but the
simple velocity-tuned model was so qualitatively and quantitatively
similar to real BMI mode that we were satisfied with this straightfor-
ward choice.

Decoding neural activity. We decoded neural activity using the
Kalman filter, as has been used for neural prosthetic algorithms
previously (Kim et al. 2008; Wu et al. 2002, 2004, 2006). It is
important to note that this algorithm can be used both in online and
offline contexts. In the online case, at each time point, the decoded
kinematics controlled the cursor, which the subject could see, use as
feedback, and react to. In the offline case, the neural (or synthetic
neural) activity was collected during real reaches (when the cursor
matches the arm kinematics) and later decoded offline. By using
identical decode algorithms (and parameter settings, etc.), we can
effectively study the difference between online and offline control.
The Kalman filter [introduced in Kalman (1960)] stipulates a linear
dynamical system for arm movements (often called the prior or the
trajectory model), which says that kinematics at time t should look
something like kinematics at time t � 1, i.e., smoothness. The model
also stipulates a linear observation model for neural activity, which
says that observed neural spiking is a noisy linear transformation of
intended kinematics. As before, we define xt to be the kinematic
parameters of the arm in time bin t, where xt � �7, a vector of 3-D
position and velocity of the hand (plus a bias/offset term). We also
define yt � �K to be the neural activity at time bin t (each element of
yt corresponding to the activity of each of the K � 96 neurons being
recorded). The Kalman filter then assumes the following linear dy-
namical system:

xt � Axt�1 � wt (3)

yt � Cxt � qt (4)

where A � �p�p and C � �K�p represent the state and observation
matrices, and wt and qt are additive, independent Gaussian noise
[denoted wt � N (0, W) and qt � N (0, Q)]. Such a model is standard
for Kalman filtering, and it allows very fast inference (decoding) of
kinematics from neural activity. Furthermore, the parameters
{A,C,W,Q} can also be quickly and exactly learned from training data
[the standard details of which are left to the references of Kalman
(1960); Kim et al. (2008); Wu et al. (2002, 2004, 2006)].

Intuitively, the Kalman filter starts from kinematics at the begin-
ning of the trial and proceeds iteratively through time, updating its
estimates of arm state and error covariance at every time step t. These
steps are entirely based on mathematical properties of the Gaussian,
and the algorithm is fast and stable. Again, this is precisely the context
that has been used for online and offline neural prosthetic algorithms
previously (Kim et al. 2008; Wu et al. 2002, 2004, 2006).

One important feature to note within the above description is the
time bin t. Since the above dynamical system is discrete time, we must
choose a window of time over which to integrate neural activity for
our prosthetic decode. This time, which we call the “decode integra-
tion bin width” or just “bin width,” is a key parameter that can be

Innovative Methodology

1938 CLOSED-LOOP SIMULATOR FOR BRAIN-MACHINE INTERFACES

J Neurophysiol • VOL 105 • APRIL 2011 • www.jn.org

 on M
ay 6, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


chosen by the experimenters. As noted in the introduction, previously
published offline analysis has suggested that a 200- to 300-ms bin
width is optimal (Wu et al. 2006), but this choice has not been
validated online. We will see that different settings of this parameter
can have a large performance effect both qualitatively and quantita-
tively. Thus optimizing performance with respect to this parameter is
an important research question and a valuable test for the OPS, which
we present here.

Performance analysis. Having decoded the neural activity as de-
scribed in the section above, we must now introduce metrics to
quantify the performance of a particular prosthetic mode (task variant,
subject, bin width choice, etc.). Error metrics are numerous and a
subject of study in their own right (Douglas et al. 1999), but here we
chose a few sensible metrics that have been seen previously in
literature. For consistency, we present all metrics as error and not
performance metrics; i.e., lower is always better throughout the
results.

First, for online analysis, failure rate is an obvious and previously
used choice [e.g., Santhanam et al. (2006]). Failure-rate measures the
fraction of trials in which the subject was unable to acquire and hold
the reach target within the allotted time. Second, time-to-target, as
used in Hochberg et al. (2006), measures the amount of time the
subject required to reach the target (for the last time, since the subject
could pass through the target a number of times before holding the
cursor at the target for the required hold period).

While these straightforward performance metrics offer a quantita-
tive view of online performance, they cannot be meaningfully used for
offline decode analysis. Offline decoded reaches rarely reached the
target and never successfully completed a trial (this makes sense with
a noisy decoder in the absence of feedback, which is yet another
suggestion that online analysis should perhaps be prioritized), so
failure rate is a vacuous metric in comparing algorithms or algorith-
mic choices offline. Time-to-target is similarly broken and thus cannot
be used for offline analyses. Standard metrics for offline analysis
include mean-squared error or similar, and correlation coefficient, and
these have been used extensively [see description in Cunningham et
al. (2009)]. With these metrics, one compares the true, natural reach
to the offline decode of that same reach. Unfortunately, these sensible
offline metrics are not useful online, as there is no correct “true reach”
that can be compared.

To meaningfully compare offline analysis with online analysis (the
first major point of this work), we require a metric that is suitable both
in the offline and the online context. As the subject was always
motivated to move closer to the target during a reach (whether in OPS,
BMI, or real reaching mode), we can consider the distance to the
target. We define mean-integrated-distance-to-target as the average
distance to the target during the time course of the subject’s reach. On
trial i, if we call the target position ptarg

(i) and the position at time t
during the trial pt

(i), the error E(i) for trial i can be written mathemat-
ically as:

E(i) �
1

T (i)�
t�1

T (i)

�pt
(i) � ptarg

(i) � (5)

where T(i) is the length of trial i. Using the mean distance instead of
total distance is sensible because offline and online trials have char-
acteristically different temporal lengths (since offline trials are based
on real reaches, these are generally quicker than online, noisy pros-
thetic trials). It is important to note that, when comparing offline and
online performance (and BMI vs. OPS mode performance), less will
be made of absolute differences in performance between offline and
online (and BMI vs. OPS modes); rather, we are mostly interested in
the optimal parameter settings that are suggested by different pros-
thetic modes.

Mean-integrated-distance-to-target is by no means the only metric
possible for comparing offline and online trials, so we here give a
context for why we believe this metric to be appropriate. First, since

the actual task rewards movement of the cursor to the target both in
offline and online settings, having a metric that considers the target is
sensible. One might reasonably consider other metrics that compare
the prosthetic reach to some true arm kinematics such as an “ideal”
real arm reach (perhaps gleaned from real reaching trials). However,
the subject is not rewarded for having a particular kinematic profile,
the reward is for task success, i.e., acquiring the target. Quantifying
prosthetic reach error based on a quantity that is unknown to the
subject and only somewhat related to task success does not seem
appropriate. Put another way, a subject using a BMI might develop a
different success strategy (changing his/her kinematics, for example),
and “ideal reach” metrics could arbitrarily penalize such a strategy.
On the other hand, the distance to target is sensible because, by task
design, we know that the subject is always trying to reduce this
distance, and thus motivation and performance are aligned.

Finally, we note that each of these metrics was calculated on a per
trial basis, and thus we could calculate average statistics and confi-
dence intervals. Throughout the results we use 95% confidence
intervals, calculated via the binomial distribution for failure-rate
analyses and Gaussian distributions for time-to-target and mean-
integrated-distance-to-target analyses (Zar 1999). These performance
analyses give us all the quantification necessary to analyze the results
gathered via previous methods.

RESULTS

The results are composed of three pieces, which we describe
here in brief to help the reader navigate the section. We begin
by showing the raw performance data across subjects. These
data will demonstrate that all subjects using the OPS and BMI
modes show significant performance differences when using
different bin widths of a Kalman filter decode algorithm. In
other words, the raw data show that the bin width does have
meaningful performance implications and further that this
prosthetic setup is a meaningful way to investigate those
implications. Next, we make the first major point of this study:
offline analysis does not provide an accurate picture of online
performance. The data show significant differences in the
shape of these performance curves based on offline or online
(BMI/OPS) modes, thereby suggesting very different algorith-
mic parameter choices. Finally, we make the second point of
this study: the monkey BMI data, the human OPS data, and the
monkey OPS data all show similar performance trends. This
importantly indicates that, at least when it comes to this one
critical algorithm parameter, the OPS framework can stand as
a reasonable proxy to real BMI mode.

Online prosthetic data. We begin by showing the perfor-
mance for both humans and monkey in the online prosthetic
modes, both BMI and OPS. In Fig. 4, we show the error for the
human subjects; left shows the OPS continuous task variant,
and right shows the human OPS interleaved variant. Within a
given column, A�C shows the same data analyzed with a
different error metric: failure rate (A), time to target (B), and
mean integrated distance to target (C). Each of these metrics is
described in METHODS. As a reminder, this third metric, mean
integrated distance to target, is required to compare offline and
online analyses. In A�C, each faint line denotes the average
error of a particular human subject over the course of that
subject’s full experiment. For example, in Fig. 4A, right, the
light green trace shows the average failure rate of subject JH at
each of the bin widths. We see that, at a bin width of 200 ms
(subject JH did 200 reaches at this bin width, per the block
structure protocol described above), subject JH failed to ac-
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quire and hold the target on roughly 60% of trials. Since we are
particularly interested in average error at a bin width (and less
interested in intersubject differences other than to confirm that
the trend is the same in all subjects), in dark blue we plot the
average across all subjects, along with 95% confidence inter-
vals (as described in METHODS). This color scheme is consistent
in Fig. 4, A�C.

First and foremost, it is immediately apparent in Fig. 4,
A�C, that in the human OPS, shorter integration bin widths
lead to lower error in the online setting. The raw data give
confidence that there are meaningful performance differences
across this algorithm parameter. By performing a linear regres-
sion to the data in Fig. 4, A�C (binomial noise model for
failure rates in A; gaussian noise model for other error metrics
in B and C), we can calculate the confidence level that each
panel is indeed a positive sloping line (i.e., shorter is better).
For the human OPS continuous, those values are as follows: A:
P � 10�4; B: P � 10�4; C: P � 10�4. For the human OPS
interleaved, those values are as follows: A: P � 10�4; B: P �
10�4; C: P � 10�4. Thus with high confidence we can say

that the human OPS indicates that shorter integration bin
widths will lead to higher online performance.

There are a few salient features to point out in this data.
First, it is encouraging that all error metrics suggest a similar
trend in the data, giving us confidence that we are looking at a
real trend and not an artifact of the summary metric. This fact
will also become useful when we compare offline to online
OPS, which we can only do with the metric of Fig. 4C (since
failure rate and time to target are not meaningful in offline
analysis, as previously described). Second, it is encouraging
that the data are rather insensitive to the human OPS continu-
ous or OPS interleaved task variants (Fig. 4, left and right).
Recall that the interleaved variant was introduced to prevent
user frustration. The data robustness to that frustration indi-
cates that it was not critical to subject performance and did not
invalidate the data. Third, it is encouraging to see that subjects
performed rather similarly compared with one another. If there
were substantial intersubject differences, more investigation
might be required. However, in both OPS continuous and OPS
interleaved, we had a few experienced subjects (subjects JC,

Fig. 4. Performance metrics for human OPS
decode trials. Left: continuous task variant.
A: failure rate, the percentage of trials where
the subject did not successfully acquire and
hold the reach target. B: time to target, the
time required to reach the target for successful
trials. In A and B, data from 5 subjects are
shown in light colors. Average of all trials is
shown in dark blue. This average shows in
both cases a significant linear trend indicating
that smaller bin widths will lead to better
performance. C: to compare offline and online
data, we use a third metric: integrated dis-
tance to target (failure rate and time to target
cannot be calculated for offline data, as offline
failure rate approaches 100% without online
feedback, which is again telling of the inap-
propriateness of offline analysis). This metric
is normalized by trial length (total trial time).
Right: interleaved task variant. These show
the same metrics as the left, reinforcing with
another task variant these trends. In A�C,
95% confidence intervals (A: binomial distri-
bution; B and C: Gaussian) are shown as error
bars.
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PN, and VG, who had run several thousand trials in this task on
days prior to the data collection) and several naive subjects
(subjects MF, SK, CC, JH, KS, and RT, who had not run the
task before their full experiment). As no difference between
these groups is apparent, we are also given confidence that
there are not significant learning/training effects that need to be
controlled in this data. Thus in summary, Fig. 4 tells us that
shorter bin widths will lead to lower error rates and further that
this is a highly robust effect in the human OPS.

In Fig. 5, we repeat the same presentation as in Fig. 4, but for
the monkey subject instead of the human subjects. As dis-
cussed in METHODS, here there is only one subject who per-
formed many full experiments (as opposed to the human
subjects, who each did one full experiment). Accordingly, Fig.

5 shows faint lines corresponding to individual full experi-
ments, and the dark blue corresponds to the average error
across all experiments. Note also that there are now three
columns: monkey BMI continuous, monkey BMI interleaved,
and also monkey OPS interleaved (these choices discussed in
METHODS). As in the human data, the findings are largely the
same. In online prosthetic mode, across two task variants,
BMI/OPS mode, and three error metrics, this data indicate that
shorter integration bin widths will lead to higher prosthetic
performance. As previously noted in the METHODS, we note that
less will be made of absolute differences in performance
between offline vs. online and OPS vs. BMI; rather, we are
mostly interested in the optimal parameter settings that are
suggested by different prosthetic modes.

Fig. 5. Performance metrics for monkey BMI and human OPS decode trials. Left: BMI continuous task variant. A: failure rate, the percentage of trials where
the subject did not successfully acquire and hold the reach target. B: time to target, the time required to reach the target for successful trials. In A and B, data
from 5 subjects are shown in light colors. Average of all trials is shown in dark blue. This average shows in both cases a significant linear trend indicating that
smaller bin widths will lead to better performance. C: to compare offline and online data, we use a third metric: integrated distance to target (failure rate and
time to target cannot be calculated for offline data, as offline failure rate approaches 100% without online feedback, which is again telling of the inappropriateness
of offline analysis). This metric is normalized by trial length (total trial time). Middle: BMI interleaved task variant. These show the same metrics as the left,
reinforcing with another task variant these trends. Right: OPS interleaved task variant. The monkey can also run the OPS task with synthetic neural data. Right
shows the same metrics as left and middle, and these metrics all show similar trends. By comparing BMI and OPS within subject on the same task (middle and
right), we have an indication that the OPS is providing a valuable proxy to real neural prosthetic systems. In A�C, 95% confidence intervals (A: binomial
distribution; B and C: Gaussian) are shown as error bars.
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By performing a linear regression to the data in Fig. 5, A�C
(binomial noise model for failure rates in panels Fig. 5A;
gaussian noise model for other error metrics in Fig. 5, B and
C), we can calculate the confidence level that each panel is
indeed a positive sloping line (i.e., shorter is better). For the
monkey BMI continuous, those values are as follows: A: P �
10�4; B: P � 0.07; C: P � 10�4. For the monkey BMI
interleaved, those values are A: P � 0.01; B: P � 10�3; C:
P � 10�4. For the monkey OPS interleaved, those values are
as follows A: P � 10�4; B: P � 10�4; C: P � 10�4. Thus
with high confidence we can say that the monkey BMI and
OPS, like the human OPS, indicate that shorter integration bin
widths will lead to higher online performance.

Comparing online analysis to offline analysis. With the
several different variants of online prosthetic tasks (OPS vs.
BMI, monkey vs. human, continuous vs. interleaved), and with
the real reach trials that each subject performed as part of the
experiment, we now demonstrate the difference between of-
fline and online analysis of neural prosthetic systems. We
noted in the previous section that the online data indicate
strongly that shorter bin widths will lead to lower error. As a
reminder, Figs. 4C and 5C show an error metric that can be
calculated for both offline and online data. Accordingly, we
took the real reaches from each subject during these experi-
ments, and we ran offline analysis as has been previously seen
in much literature (Artemiadis et al. 2007; Brockwell et al. 2004;
Brown et al. 1998; Carmena et al. 2005; Chestek et al. 2007; Eden
et al. 2004; Gao et al. 2002; Hatsopoulos et al. 2004; Kim et al.
2006; Lebedev et al. 2005; Mulliken et al. 2008; Paninski et al.
2004; Serruya et al. 2002; Shakhnarovich et al. 2006; Shoham et
al. 2005; Taylor et al. 2002; Wessberg et al. 2000; Wu et al. 2004,
2006; Wu and Hatsopoulos 2008; Yu et al. 2007). The offline
analysis consists of taking the neural data from a real reaching
trial and running the Kalman filter with a given bin width,
thereby producing a decoded reach from the recorded neural
data alone. Because these data are offline, the same neural
activity can be decoded at each bin width; that is, only one
block is needed for every seven that were needed for the online
analysis.

In Fig. 6, we show this offline analysis in red. Again, left
is the human OPS continuous task, and right is the OPS
interleaved. For clarity of illustration, we only show the
average data (not the individual experiments, which were
shown as faint traces in Figs. 4 and 5). The dark red points
and confidence intervals (95%) represent the distribution of
the error at each bin width. In dark red, we fit a quadratic
polynomial to the data. In faint red, we show the linear
regression to that same data. In blue, we show in the same
way the distribution of the online data analysis. Note that
these points and confidence intervals are exactly the same as
the points and intervals from Fig. 4C (without the connect-
ing line segments). In dark blue, we show the linear regres-
sion to the data, and in faint blue we show the quadratic fit.
In both columns, the dark blue line entirely obscures the
quadratic fit (the quadratic term is nearly 0).

Again, a few salient features appear. First, online (blue) has
consistently lower error than offline (red). This is not surpris-
ing, as the subjects’ access to feedback information in the
online case should unambiguously improve performance.
Nonetheless, it is a sanity check for the data and error metric.
Second, and more importantly, we see that the offline error
analysis has a characteristic “U-shape” indicating a perfor-
mance optimum at 100- to 150-ms bin widths, adding more
evidence that offline and online analyses may not agree. We
note that the U-shape in offline errors makes intuitive sense
[and has been shown elsewhere (Wu et al. 2006)]: integrate too
little neural data (short bin widths), and the estimate is
swamped by noise; integrate too much neural data (long bin
widths), and the system updates the decoded cursor too slowly.
Some optimal tradeoff between these two extremes (i.e., a
U-shape) seems reasonable. Contrasting these U-shapes to the
blue lines in Fig. 6 (online, where shorter bin widths give lower
error), the online case may also make intuitive sense: indeed
shorter bin widths lead to a noisier estimate, but the critical
presence of feedback control allows the user to compensate for
that noise, resulting in lower error. On the other hand, longer
bin widths still result in a slowly updating prosthesis, so this

Fig. 6. Comparing offline analysis to online analysis in human OPS mode. Left: continuous task variant. Blue error bars are replicated from Fig. 4C. Dark blue
line is a linear fit of that data, showing a significant performance trend indicating that shorter bin widths imply better performance. A light blue quadratic fit (not
visibly or statistically different from a line) to the same data is obscured by the linear fit. In red, we perform the same analysis offline, using the real reaching
sets from these users. We perform offline decodes at each bin width, allowing us to generate the same mean integrated distance to target metric. These error bars
are the offline analogs to the blue error bars. Not surprisingly, offline analysis has worse performance than online, since there was no benefit of feedback. More
significantly, however, is the shape of the data. This offline analysis suggests statistically significant performance optima of roughly 100–150 ms. This can be
seen in the significant quadratic fit to the data (dark red). Linear fit (light red) does a clearly poorer job of fitting the data. Note that the characteristic “U-shape”
of the offline data tells a very different story than the online analysis, indicating the important differences between these 2 testing paradigms. Right: interleaved
task variant. Same analysis and implication holds true as in the left.
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slow “hopping” behavior makes feedback control more diffi-
cult and results in relatively higher error.

In Fig. 7, we repeat the presentation of Fig. 6 but for the
monkey instead of humans. Offline analyses are shown in red,
and online analyses are shown in blue. The raw data are
represented with points and confidence intervals, and linear
and quadratic fits are shown. In all online cases, the linear fit
(dark blue) highly overlaps the quadratic fit, although the
quadratic can just be seen in the rightmost column. Again, the
monkey results are consistent with the human results. Online
analysis in blue produces linear fits suggesting that shorter bin
widths produce lower error, whereas the offline analyses pro-
duce characteristic U-shapes indicating a performance opti-
mum around a bin width of 150–200 ms. Note that the monkey
BMI continuous and BMI interleaved offline data (red data at
left and middle) are identical: in real reaching trials, there is no
difference between continuous and interleaved cases, as all
reaches are real. Accordingly, we used the same reaching data
for the left and center panels of Fig. 7. Another interesting note
is that, even disregarding the U-shapes, the linear fits to offline
data are inconsistent: human offline linear analysis says that
shorter bin widths are better (red data in Fig. 6), but monkey
offline linear analysis says that performance either is insensi-
tive to bin width or improves with larger bin widths (red data
in Fig. 7). Contrast that to the simple and consistent story that
is seen across all online (blue) data in Figs. 6 and 7 (and so too
Figs. 4 and 5): shorter bin widths will improve prosthetic
performance. Thus these data strongly suggest that offline
analysis gives an inconsistent and different answer than online
analysis. Since the eventual user mode of neural prostheses is
fundamentally online, this first finding calls into question the
validity of offline analysis in informing prosthetic design
choices.

Comparing OPS to BMI. The previous section showed that
offline analysis may often be a poor proxy to online use of a
prosthetic system. This effect was apparent in both the OPS
and BMI data across Figs. 6 and 7. Thus the OPS, alongside
BMI mode, has already made clear the importance of feed-

back-control considerations in prosthetic design. While this
first finding is of scientific value, it does not clarify that the
OPS is a strong proxy to BMI mode. We investigate that
question here.

Figure 8 demonstrates the similarity between OPS and BMI
modes in an online setting. In previous analyses, we fit both
lines and parabolas to the collected online and offline perfor-
mance data. Some of those regressions appeared linear, others
“U-shaped.” By investigating the quadratic fit term, we can see
which data support a U-shape conclusion and which support a
linear. Again, this distinction is of critical importance because

Fig. 7. Comparing offline analysis to online analysis in monkey BMI and monkey OPS modes. Left: BMI continuous task variant. Blue error bars are replicated
from Fig. 4C. Dark blue line is a linear fit of that data, showing a significant performance trend indicating that shorter bin widths imply better performance. A
light blue quadratic fit (not visibly or statistically different from a line) to the same data is obscured by the linear fit. In red, we perform the same analysis offline,
using the real reaching sets from these users. We perform offline decodes at each bin width, allowing us to generate the same mean integrated distance to target
metric. These error bars are the offline analogs to the blue error bars. Not surprisingly, offline analysis has worse performance than online, since there was no
benefit of feedback. More significantly, however, is the shape of the data. This offline analysis suggests statistically significant performance optima of roughly
150–200 ms. This can be seen in the significant quadratic fit to the data (dark red). The linear fit (light red) does a clearly poorer job of fitting the data. Note
that the characteristic “U-shape” of the offline data tells a very different story than the online analysis, indicating the important differences between these two
testing paradigms. Middle: BMI interleaved task variant. Same analysis and implication holds true as in the left. Right: OPS interleaved rask variant. Again, the
same analysis and implication holds true as in the left. Taken together, left, middle, and right show that both the BMI and OPS modes tell the same story: shorter
bin widths imply better performance, whereas the offline analyses indicate an incorrect trend that leads to varying and misleading performance optima.

Fig. 8. Summary of online/offline differences; summary of OPS/BMI similar-
ities. In the previous figures, we fit quadratic curves to both the offline and
online performance data. Here, we plot those quadratic regression coefficients
and their 95% confidence intervals. Any confidence interval overlapping 0
should be read as, “these data are not significantly different than a linear
trend.” This figure shows that nearly all online analyses in monkey and human
do not have significant quadratic terms, agreeing with the implication from all
previous data that shorter bin widths lead to better performance. Comparing
that to the red error bars, again the central point is reiterated: online analysis
and offline analysis (whether in real neural data or in synthetic neural data) tell
very different stories. Furthermore, in addition to online and offline being very
different, we see that OPS and BMI are in fact very similar. OPS gives a
valuable means by which to sweep performance based on this algorithmic
parameter.
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the shape of the performance curve makes fundamentally
different statements about how to design a prosthetic system.
We calculate the 95% confidence intervals on the quadratic
regression coefficient for each of the 10 data sets, and we plot
that data in Fig. 8. The blue points and intervals again represent
the online data, and the red represent offline data. Each row
indicates the prosthetic mode (human or monkey, OPS or BMI,
continuous or interleaved). The gray and white stripes serve
only to visually distinguish the rows. The black line denoting
0 allows us to draw the key conclusion from Fig. 8. If a
confidence interval includes 0, then we cannot say with 95%
confidence that the corresponding data is U-shaped; rather we
conclude that shorter bin widths will indeed lead to better
performance.

By considering only the blue data, we see importantly that
all OPS and BMI modes indicate that shorter bin widths are
indeed better. The consistency of these findings indicates that
OPS and BMI modes are indeed valid proxies for one another.
Only one case, the monkey OPS interleaved, does not have a
confidence interval overlapping 0, although it does overlap the
intervals of all other monkey data. In other words, that OPS
quadratic fit term is not statistically significantly different from
the BMI regression terms. Furthermore, if we instead plotted
99% confidence intervals, the interval of this monkey OPS
interleaved case would indeed include 0. Thus this discrepancy
is slight and of minor concern to the interpretation of the data.
Figure 8 restates what was already visible in Figs. 6 and 7: blue
online data across OPS and BMI modes agree.

In addition, this figure emphasizes the prior finding that
offline analysis gives a different answer than online analysis:
the red offline data are all U-shaped with 95% (and indeed
99%) confidence, but the blue online data do not support that
claim, and only show that shorter bin widths are better. This
figure also conveys another troubling aspect of offline analysis,
namely the inconsistency of the findings across different sub-
jects and prosthetic modes (i.e., the red intervals are quite
varied amongst themselves).

This second finding suggests that the OPS may allow rapid
and simpler testing of many algorithmic choices and may be a
better proxy to clinical use than offline data analyses. In this
work, we carefully tested that finding by gathering real BMI
experimental data also, but in the future, careful experimental
design with the OPS may allow many algorithms, parameters,
and indeed prosthetic systems to be optimized without the risk
and difficulty of implanted BMI subjects. Offering the OPS as
an important part of the neural prosthesis design toolkit is the
broad aim of this study. In the DISCUSSION, we discuss other uses
of the OPS, and we give caveats about ways in which the OPS
may not be a valuable proxy to BMI mode. These discussion
points are critical to understanding the role of the OPS in future
neural prosthesis research.

DISCUSSION

At a simple level, our results make three specific scientific
points about optimizing the performance of a neural prosthetic
system by choosing the bin width of a Kalman filter. The first
point, seen in the raw data of Figs. 4 and 5, is that the bin width
of the Kalman filter does indeed have meaningful performance
implications; that is, it is a critical parameter that should be
optimized in a neural prosthetic system. Second, the results

show that offline analysis is a poor representative of online,
closed-loop performance. Figures 6 and 7 show, across a
variety of paradigms, that offline analysis indicates a very
different trend in the data than the actual online usage mode of
a prosthetic system. Third, we see that both the OPS and BMI
suggest that shorter integration bin widths of 25–50 ms will
lead to better performance, presumably reflecting the increased
ability of the subject to incorporate feedback-control strategies.

At a deeper level, our results imply two fundamental find-
ings about the design of neural prosthetic systems. First, we
claim that feedback control is an essential consideration in the
design of these systems, as demonstrated by the fact that offline
analysis of algorithms is an inconsistent and problematic test-
ing scenario. Across Figs. 6, 7, and 8, we see that offline
analyses of various experimental paradigms indicate parabolic
performance curves with error minima anywhere from 100–
200 ms [and previous literature has found even higher optima,
200–300 ms (Wu et al. 2006), although the experimental
paradigm and evaluation metrics were different in that study].
Furthermore, the curvature of these parabolas, in other words
how costly it would be to have a suboptimal parameter setting,
is inconsistent across paradigms, as seen in Fig. 8. Most
troubling, however, is that these varied analyses all disagree
fundamentally with online, closed-loop prosthetic use, which is
in fact the true usage mode of these systems. All online
analyses suggest that performance curves are linear and that
shorter parameter settings are better, which stands in stark
contrast to the parabolic offline implication. Thus the first
finding of this work is to say that offline and online analyses
are very different for neural prosthetic systems and further that
offline is perhaps not adequately realistic to justify its contin-
ued use in the design of prostheses.

The second broad implication of this work is to present the
OPS as a valuable proxy to a real neural prosthetic system. By
replacing recorded neural activity with synthetic neural activ-
ity, the OPS enables analysis of human subjects using an
online, closed-loop prosthetic system. By reproducing the
qualitative behavior of real prosthesis use, we hypothesized
that the OPS would produce similar performance curves as the
real BMI mode. We tested this hypothesis by comparing
humans and a monkey using the OPS to a monkey using a real
BMI, and we found that all reproduce similar performance
trends in the bin-width parameter sweep (Fig. 8 summarizes
this effect). Thus in terms of this specific design question for
decoding algorithms like the Kalman filter, the OPS appears to
be a high-quality approximation to real online BMI use. How-
ever, a bigger question is the extent to which the OPS can be
relied on to generalize to different neural prosthetic design
questions in humans. As is portrayed in Fig. 1, having human
results here (in addition to monkey results) is important to
present a full human BMI simulator that does not require the
resources of invasive human or monkey experiments. Human
results are also important for generalizing the findings of the
OPS to areas that will not necessarily be addressable in
monkeys. The following points discuss in depth a number of
ways in which the OPS will generalize well and a few ways in
which it may not. These points of generalization are natural
steps for future work as well.

OPS for general system design questions. With our specific
finding that online and offline analyses are fundamentally
different for the Kalman filter bin width, we have demonstrated
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that feedback control and subject interaction are significant
contributors to eventual system performance. This general fact
is a key principle of the field of human/computer interaction
(Adler and Winograd 1992; Winograd and Flores 1987). How-
ever, the role of humans in human/neural-prosthesis interaction
remains largely unexplored [although see the Introduction
where we discuss the relevance of Danziger et al. (2009) to this
question]. The OPS framework allows systematic study of this
important question. Here we describe a few examples of
general design questions that can be studied with the OPS.

First, user interface design for neural prostheses will require
systematic study. For example, in this study, the subject
reached to one of eight targets on a single ring. In a clinical
application, where presumably the goal is to maximize infor-
mation throughput or user experience, how many targets
should be placed on the screen and in what configuration? Our
previous work (Cunningham et al. 2008) addressed this point
algorithmically but that was in an offline setting. Testing this
online in the presence of feedback control is important for user
interface design, but it may also be overly time consuming for
a clinical trial subject. However, the OPS, insomuch as it
involves a human in closed-loop and has similar qualitative and
quantitative performance to a real BMI, can readily be used to
investigate this and similar user interface questions.

Second, offline analyses do not explore the sensitivity of
prosthesis users to noise (neural spiking variability, for exam-
ple). Different systems and algorithms will cope with this noise
in different ways, and it is critical to understand how these
different algorithmic features are managed by human subjects.
In an extreme case, even with an optimal decoder of neural
activity, it is not clear at what level of noise a neural prosthetic
device becomes unusable. For example, an important clinical
question is, “how many recorded neurons are needed to control
a prosthesis?” Such a question has major bearing on transla-
tional efforts. While offline studies often perform “neuron-
dropping” analyses [e.g., Carmena et al. (2003); Li et al.
(2009)] to test the sensitivity of error to neural population size,
these studies cannot investigate the neuron count at which a
user can no longer control the prosthesis in a satisfactory way.
To our knowledge, only one study (Ganguly and Carmena
2009) has done a similar analysis online, and it suggests that
dropping a meaningful percentage of a small number of stable
neurons (that study recorded from 10 and 15 neurons) can have
a highly detrimental effect on relative performance. For larger
populations of neurons and different experimental contexts,
however, this question remains unanswered. The OPS allows
this analysis: we can vary the number of synthetic neurons used
in the decode to find the point at which the human subject can
no longer successfully complete the task. This and the above
features cannot be tested in offline data, when the user cannot
interact with the prosthesis. Furthermore, rigorously testing
this feature in an online, real BMI may be quite difficult given
the rarity of human clinical trials and the frustration that such
a study would cause a monkey subject.

Third, in terms of the clinical utility of a BMI, the OPS
allows customization of the controller based on the specific
user application. For example, BMI signals demonstrated to
date would have difficulty controlling a computer mouse on a
normal operating system without the use of specialized acces-
sibility software [see Hochberg et al. (2006)]. This software
could involve nonlinear mouse acceleration curves (Jellinek

and Card 1990) or multiple-level mouse selections [selecting
once to zoom in and a second time to click (Kumar et al.
2007)]. Such software may be difficult to test in an animal
model due to having many free parameters to sweep and
abstract selection mechanisms that a monkey will not readily
learn. Before using such as system in a human clinical trial, the
OPS can serve as a test bench for developing these interfaces
and testing them at a wide range of potential signal quality.

More generally, again by analogy to human/computer inter-
action, the design of neural prostheses will require systematic
study. In addition, as the field moves towards clinically viable
prostheses, the role of a human in a prosthetic system is
increasingly important. Indeed, recent years have seen the
increased importance of human studies for neural prostheses
(Hochberg et al. 2006; Kim et al. 2008; Leuthardt et al. 2004).
The OPS should help systematize this design process with a
human in closed-loop control. We now discuss more detailed
algorithmic features that the OPS can address.

OPS for specific algorithmic questions. Generating synthetic
neural activity is the key enabler of the OPS, as it allows many
human subjects to be tested without neural implants. However,
generating synthetic neural data is also the principal concern
with the OPS, as this choice calls into question the relevance of
OPS findings for real BMI systems. In RESULTS, we demon-
strated that OPS and BMI modes are consistent for optimizing
the bin width of the Kalman filter, showing that indeed the OPS
can be used as a valuable proxy. Nonetheless, for other algo-
rithmic questions, there remains the risk that the resulting OPS
effects will not translate well into a real neural system. To
address this risk and to help ensure legitimacy of the result, we
here identify four areas in which the OPS will continue to
allow meaningful investigation of algorithmic design.

First, algorithmic models for arm reaching can be meaning-
fully studied with the OPS. The human motor plant imposes
significant constraints on the frequency content, speed, and
extent of a reach. For example, it is known that the motor
system naturally produces smooth movements (Shadmehr and
Wise 2005). This and other constraints have been well studied
in human behavioral studies (Ghahramani and Wolpert 1997;
Shadmehr andWise 2005; Wolpert and Ghahramani 2000;
Wolpert et al. 1995), but they have been largely neglected in
the design of neural prosthetic decode algorithms. Steps in this
direction have been taken to acknowledge the point-to-point
nature of reaches (Kulkarni and Paninski 2008; Mulliken et al.
2008; Srinivasan and Brown 2007; Srinivasan et al. 2007,
2006; Wu and Hatsopoulos 2008; Yu et al. 2007), but the field
has not produced a model for arm reaching that will generalize
to the eventual prosthesis user mode of unconstrained natural
reaching. The Kalman filter used in this study stipulates a
linear prior model for arm reaching (Eq. 3), but this model
appears only in the decode algorithm, not in the generation of
synthetic neural activity. Critically, the generation of synthetic
neural data has no notion of a model of arm reaching. Accord-
ingly, the OPS can be legitimately used to study the online
effect of different algorithmic models for arm reaching, and
performance improvements discovered here should port reli-
ably to real BMI mode.

Second, the OPS can be used to study the algorithmic
mappings from neural activity to kinematics. Many decode
algorithms like the Kalman filter stipulate a linear mapping
from neural activity to kinematic reach parameters (Eq. 4), but
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there are also many approaches that use nonlinear mappings.
Understanding this algorithmic mapping is often considered of
critical importance, but it has not been exhaustively studied
online [although see Li et al. (2009)]. The OPS of this study
generates synthetic neural data via a linear mapping (Eq. 1), so
its current use for this question would be problematic, since the
mapping from kinematics to neural activity is linear by as-
sumption. However, future work can go further and use a
source of synthetic neural signal that is not directly and simply
related to kinematics. We think EMG offers a nice opportunity.
EMG has been shown to have a linear relationship to neural
activity (Santucci et al. 2005), so synthetic motor cortical
neural activity can be reasonably generated from EMG. How-
ever, the connection between kinematics and EMG is by no
means simple [Radhakrishnan et al. (2008), and particularly
Tian and He (2003) discuss the difficulty of predicting kine-
matics from recorded EMG]. Thus by using EMG to create
reasonable synthetic neural activity, we can guarantee a “non-
trivial” relationship between the synthetic neural activity that
we record and the endpoint kinematics that we want to decode.
This approach would allow us to use the OPS to study the
online implications of linear and nonlinear algorithmic map-
pings between kinematics and neural activity.

Third, we can evaluate very basic assumptions of particular
decode algorithms. In this study, we considered the decode
integration bin width of the Kalman filter. This time window
specifies both the unit of time for output updates (changing the
cursor position) and the unit of time for input integration
(integration of neural activity to use as the decode signal). To
remain specifically within the Kalman filter framework as has
been done in the past, this agreement between update rate and
integration rate is required. However, in practice this assump-
tion can be relaxed. It may be that the difficulty with the large
integration windows has more to do with the hopping or
stroboscopic behavior of the cursor (the slow update rate) than
with the long integration rate. Perhaps maintaining a long
integration rate but making a quicker update rate (smoothly
varying the cursor between two decoded positions, for exam-
ple) could improve performance. Our preliminary investigation
into this question suggests that further performance gains may
be achievable by optimizing jointly the cursor-update-rate/
neural-integration-rate pair. Since this question investigates
human/neural-prosthesis interaction and not specific neural
properties, the OPS is well suited to address this optimization
directly.

Fourth, another basic assumption of a decode algorithm is
the time lags it assumes between recorded neural activity and
movement. This parameter is often optimized in BMI applica-
tions [e.g., Wu et al. (2006); Yu et al. (2007)]. However, much
like the Kalman filter bin width of this study, time lags are
rarely optimized online. Since time lags would be an assump-
tion of the synthetic neural activity in the OPS, discovering the
“true” online optimal time-lag is not likely to be an appropriate
question for the OPS. However, understanding the sensitivity
of this choice is indeed readily testable with the OPS. One can
choose a set of time lags for the synthetic neural activity and
then test performance sensitivity to different optimization strat-
egies (for example, studies have included no time lags, a single
time lag across all neurons, or individual lags per neuron). The
OPS thus enables us to study how important time lags are to
closed-loop performance.

These four examples (by no means the only examples) show
that the OPS paradigm should continue to be valuable to
validate algorithmic advances and translational needs.

OPS for neuroscientific questions. While the OPS may be
viewed primarily as a platform for designing closed-loop
neural prosthetic systems, it can also serve as a tool for
investigating motor neurophysiology. Findings in the applied
BMI context can often offer insight into the normal-function-
ing motor system. As a specific example, we found here that
shorter temporal decode updates (bin widths) lead to smaller
decode error. However, as we note above (the third example in
OPS for specific algorithmic questions), future work should
aim to understand the contribution to BMI decode errors
between the stroboscopic effect of the cursor updates and the
integration of shorter amounts of neural data. This stroboscopic
effect represents a form of noise to the visual system. By
altering that noise independently of other cursor control pa-
rameters, one could study the effects of noise on learning
(Radhakrishnan et al. 2008), reflex adaptation in the motor
system (Franklin and Wolpert 2008), or multimodal sensory
integration (separating visual and proprioceptive contributions)
(Graziano 1999; Sober and Sabes 2003; van Beers et al. 1999).

More generally, the OPS can serve as an experimental
system for motor control studies, and it has interesting con-
nections to that substantial literature [e.g., Shadmehr and Wise
(2005); Wolpert and Ghahramani (2000)]. There has been a
great deal of research using variants of a robotic manipulan-
dum to study perturbations of normal motor control and to
introduce visuomotor discrepancies [see Howard et al. (2009)
for a review]. These studies ask questions ranging from dy-
namic learning in the motor system, to object manipulation, to
limb stiffness measurements: a classic example is subjects
making reaches in the presence of an external force field
(Shadmehr and Mussa-Ivaldi 1994). These and other studies
point to the fact that the introduction of distortions between
intended movement and perceived movement has been a fun-
damental aspect of motor research for many years. The OPS is
a similar system that allows novel 3-D visuomotor perturba-
tions (in particular perturbations that are relevant to the applied
field of neural prostheses) and manipulations of the system’s
underlying dynamics at several levels (at the cursor directly, or
more implicitly in the neural encodings). Thus the OPS should
be applicable to studies of motor control and 3-D motor
adaptation. In addition to the novel perturbations this system
may allow, the OPS may also prove useful as motor control
researchers move towards more freely behaving experimental
paradigms [as has been happening, for example, in motor
electrophysiological studies (Santhanam et al. 2007)]. For
example, due to electrode array shifts and head acceleration
events, recorded neural signals can change abruptly (Santha-
nam et al. 2007). Studying 3-D motor adaptation to such signal
changes in this less constrained context would be beneficial
both scientifically in increasing our understanding of motor
learning and in an applied setting by informing the field which
aspects of motor control are contextually relevant for BMI.
Certainly much caution should be taken in interpreting the
neuroscientific implications of a BMI result, but the OPS
should allow investigation of both applied neural prosthesis
and fundamental motor neurophysiology questions.

Cautionary notes regarding the OPS. The results and our
arguments for more systematic online analysis suggest that the
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OPS should be used to address a variety of neural prosthetic
design choices. However, a number of questions cannot readily
be asked with the OPS, and much care should be taken with
any simulation environment to ensure the legitimacy of any
findings. Here we describe important precautions with the
OPS.

As previously noted, the biggest potential pitfall of this
system is the generation of synthetic neural data. Generating
synthetic neural data or asking design questions carelessly can
lead to tautologies that are uninteresting and potentially mis-
leading. In this work, we specifically optimized the bin width
of the Kalman filter. Since the synthetic neural activity is
generated instantaneously and according to a Poisson likeli-
hood model, the bin-width of the Kalman filter is not related to
how the neural activity is generated. Thus the bin width
optimization was more a question of how the subjects inter-
acted with systems with different noise characteristics. This
question could be and was legitimately investigated with the
OPS, as indeed the real BMI experiments validated. However,
with the same setup, one could propose another hypothesis that
would prove problematic. Consider a hypothesis to test the
plasticity of the mapping between neural activity and kinemat-
ics. Certainly, this is an interesting and important question both
for scientific reasons and for the design of neural prosthetic
systems [e.g., Ganguly and Carmena (2009)]. However, the
answer here is trivial: because we synthetically created a static
mapping between kinematics and neural activity, indeed this
relationship is by definition without plasticity. Therefore, ques-
tions must be asked that do not directly test an assumption of
the generative model for synthetic neural data. Although this
point is perhaps fairly obvious, it is the overarching caveat with
the extensibility of the OPS framework.

Another possible problem with the closed-loop paradigm
regards proprioceptive feedback. As previously noted, there
was a sensory discrepancy between the visual feedback and the
real arm’s proprioception (in prosthetic trials). Whether the
true arm is restrained or allowed to reach (both are regularly
done in the BMI literature), there is still a proprioceptive
confound. Hence, this potential limitation is not specific to the
OPS or this study, but rather to all able-bodied animal or
human BMI studies. Indeed, previous BMI literature such as
Carmena et al. (2003), Serruya et al. (2002), Taylor et al.
(2002), and Velliste et al. (2008) have not reported difficulty
with this proprioceptive error signal, and there is no reason to
expect that it is any more prominent in the OPS than in those
other able-bodied studies. Furthermore, previous neuroscience
research has suggested that this confound is minor: Rad-
hakrishnan et al. (2008) found that proprioception did not
prevent task learning but did somewhat increase task difficulty.
Other work has found that vision is a stronger sensory signal
than proprioception in certain contexts [e.g., Touzalin-Chretien
et al. (2010)], but this question is still debated in the neurosci-
ence community. Thus while this possible limitation is impor-
tant to bear in mind for the OPS and all able-bodied BMI
studies, the significant progress that has been made in this field
even with this proprioceptive confound suggests that the OPS
framework should continue to be useful for aiding in the design
of clinically relevant prostheses.

Summary. The OPS paradigm provides a middle ground
between simple (but low reality) offline testing and more
realistic (but very involved) clinical trials. We showed here

how the OPS can be effectively used to find a surprising result
that stands in contrast to offline analysis and previous litera-
ture: the bin width of the Kalman filter should be decreased in
size for online prosthetic studies. These results showed the
substantial disagreement between offline and online analyses,
and the results showed the substantial similarity between OPS
and BMI modes by using nonhuman prosthetic experiments as
validation. While these findings are valuable in their own right,
the broader message of the work is that offline analysis may be
a poor proxy to eventual system use, and thus the field should
investigate simulation opportunities to create a principled de-
sign engineering process around neural prosthetic systems. In
this example, considering human interaction with the system
was of critical importance, and we speculate that such feedback
control is indeed critical for many other aspects of prosthetic
system design. Ideally, the OPS or similar online simulators
may become a piece of the neural prosthesis researcher’s
toolkit to allow rigorous design before moving to the gold
standards of monkey BMI experiments and human clinical
trials.
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