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Abstract
We derive the Expectation Propagation algorithm updates for approximating the
posterior distribution on intensity in a conditionally inhomogeneous gamma in-
terval process with a Gaussian Process prior (GP IGIP), a model which appeared
in [1].

1 Expectation Propagation Algorithmic Details

Like the Laplace approximation, Expectation Propagation (EP) is a posterior approximation method
[2] that creates a Gaussian approximation (or another exponential family distribution) to the true
posterior. EP has been found to be superior to Laplace in many contexts (e.g. [3]). EP considers
global posterior information via iterative local likelihood approximations, whereas Laplace uses
information only at the mode of the posterior, setting that mode as the mean of the approximate
posterior and the curvature at that point as the covariance. Thus, if the mode does not give an
accurate summary of the posterior distribution, Laplace may be ineffective. We will not cover the
details of EP here; see [4] for implementation notes and further explanation of EP applied to GP.
In the context of this problem, we have a GP prior on the intensity function {x(t)} and the condition-
ally IGIP likelihood. For model selection (be that modal hyperparameter selection or approximate
integration over hyperparameters), we are interested in the model posterior p(θ | y) ∝ p(y | θ)p(θ),
which requires the intractable data evidence p(y | θ) =

∫

x
p(y | x, θ)p(x | θ)dx. We would like

to use EP to evaluate this data evidence. However, since EP makes iterative updates at each site xi,
running EP on the vector x is cumbersome and inherits the computational burdens previously dis-
cussed (for example, doing rank one updates to the full n-by-n covariance matrix are still necessary).
Instead, we can exploit more problem specifics to make EP feasible on a much lower dimensional
integral. To do so, we will step away from x, the quantity of interest, and return to the original
gamma interarrival distribution fz(z) ∼ Γ(γ). We define z with zi =

∫ yi

yi−1

x(u)du, and then the
observed event times y have conditional distribution:

p(y | z) =

N
∏

i=1

p(yi | yi−1, zi) =

N
∏

i=1

γγ

Γ(γ)
z

γ−1
i exp{−γzi}. (1)

Then, we can equivalently write the data evidence, our quantity of interest, as p(y | θ) =
∫

z
p(y |

z, θ)p(z | θ)dz. Importantly, the data evidence is equivalent1 , but the integral is over the N dimen-
sional vector z (number of time events), not the n dimensional integral x (number of time points).

1Since the gamma likelihood truncates our distribution over the nonnegative orthant, there is a minor dif-
ference in the integral over x and the integral over z. This difference arises because truncating z is not the
same as individually truncating the elements of x that sum to z. This minor discrepancy, we believe, is much
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Again, {x(t)} is a GP in continuous time with a fixed mean and stationary kernel Kx(τ), that is
{x(t)} ∼ N (µ,Kx(τ)). Conveniently, the vector z is also Gaussian distributed (since each zi is a
linear transformation of {x(t)}). Then, we have z ∼ N (m,Π), where mi = (yi−1 − yi)µ. If we
choose the squared exponential (SE) kernel for Kx(τ), namely:

K(ti − tj) = σ2
fexp

{

−κ

2
(ti − tj)

2

}

+ σ2
vδij , (2)

then Π will have the form:

Π =
{

Kz(i, j)
}

i,j∈{1,...,N} where Kz(i, j) =

∫ yi

yi−1

∫ ji

yj−1

Kx(u − v)dudv (3)

= σ2
f

∫ yi

yi−1

∫ yj

yj−1

exp

{

−κ

2
(u − v)2

}

+ σ2
vδu−vdudv.

Define ỹi = yi

√

κ
2 and erf(u) =

∫ u

0
2√
π
exp(−v2)dv. By this definition,

∫

erf(u)du = uerf(u) +
1√
π
exp(−u2), which can be carried through Eq. 3 to yield the (lengthy but computationally simple)

expression:

Kz(i, j) =
σ2

f

√
π

κ

[

(ỹi − ỹj)erf(ỹi − ỹj) +
1√
π

exp{−(ỹi − ỹj)
2} − (ỹi − ỹj−1)erf(ỹi − ỹj−1)

− 1√
π

exp{−(ỹi − ỹj−1)
2} − (ỹi−1 − ỹj)erf(ỹi−1 − ỹj) −

1√
π

exp{−(ỹi−1 − ỹj)
2}

+(ỹi−1 − ỹj−1)erf(ỹi−1 − ỹj−1) +
1√
π

exp{−(ỹi−1 − ỹj−1)
2}

]

+

σ2
v

[

(yi − yj)+ − (yi−1 − yj)+ − (yi − yj−1)+ + (yi−1 − yj−1)+

]

, (4)

where the notation (·)+ , max(·, 0). It is important to note in the details above that only the event
times yi appear, and thus this covariance matrix is calculated in O(N 2) time and memory, and the
larger n is never required.
We have now constructed the distributions p(y | z) and p(z) ∼ N (m,Π). EP approximates the
true posterior p(z | y) with the normal distribution

q(z | y) ,
1

ZEP

p(z)

N
∏

i=1

ti(zi) = N (µ,Σ) where ti(zi) , Z̃iN
(

µ̃i, σ̃
2
i

)

. (5)

The EP implementation, and from that the calculation of data evidence, is typical for GP (see [4]).
The only step particular to this problem is that of fitting a local (unnormalized) Gaussian to the
product of the ith cavity distribution q−i(zi) and the ith likelihood p(yi | yi−1, zi). By the standard
Kullback-Leibler minimization, we must match the first and second moments (and zeroth, for good
measure) of q̂(zi) , ẐiN

(

µ̂i, σ̂
2
i

)

to the moments of q−i(zi)p(yi | yi−1, zi). In detail:

Ẑi =

∫ ∞

0

q−i(zi)p(yi | yi−1, zi)dzi (6)

µ̂i =
1

Ẑi

∫ ∞

0

ziq−i(zi)p(yi | yi−1, zi)dzi (7)

σ̂2
i =

1

Ẑi

∫ ∞

0

z2
i q−i(zi)p(yi | yi−1, zi)dzi − µ̂2

i . (8)

smaller than the error introduced by including density outside the nonnegative orthant, as does the Laplace
approximation.

2



Considering the first in detail:

Ẑi =

∫ ∞

0

1√
2πσ−i

exp
{

− 1

2σ2
−i

(zi − µ−i)
2
} γγ

Γ(γ)
z

γ−1
i exp

{

−γzi

}

dzi

=
γγ

Γ(γ)
exp

{1

2
σ2
−iγ

2 − µ−iγ
}

∫ ∞

0

z
γ−1
i

1√
2πσ−i

exp
{

− 1

2σ2
−i

(zi −
(

µ−i − γσ2
−i)

)2
}

dzi

=
γγ

Γ(γ)
exp

{1

2
σ2
−iγ

2 − µ−iγ
}

Ēr(zi)

(

z
γ−1
i

)

, (9)

where Ē represents the truncated expectation (integrating over the nonnegative half-line instead of
the real line), and r(zi) ∼ N

(

µ−i − γσ2
−i, σ

2
−i

)

. In words, the normalizing constant Ẑi is the
product of a constant and a truncated higher order moment (the (γ − 1)th moment) of a univariate
normal distribution r(zi). By the same logic as Eq. 9, and substituting in for Ẑi,

µ̂i =
Ēr(zi)

(

z
γ
i

)

Ēr(zi)

(

z
γ−1
i

) and σ̂2
i =

Ēr(zi)

(

z
γ+1
i

)

Ēr(zi)

(

z
γ−1
i

) − µ̂2
i . (10)

Thus, the only difficult step in calculating an EP update is that of calculating high order truncated
moments of a univariate normal distribution. There is no closed form expression for non-integer
moments, so we here restrict ourselves to the case of integer values of γ only. If, in a particular
application, it is essential to have non-integer values of γ, these moments can be empirically calcu-
lated, at the cost of both accuracy and speed. For many applications, however, an integer γ should
be adequate.
Though no simple closed form can be derived for truncated higher order integer moments of a normal
distribution, we can recursively calculate these moments. We begin with the truncated moment
generating function from [5]. Given a normal distribution u ∼ N

(

a, b2
)

, and letting c = − a
b
√

π
,

we write:

Ē(uM ) =
1

2

[

M
∑

k=0

(

M

k

)

aM−k(b
√

2)k

∫ ∞

c

( 2√
π

)

vkexp
{

−v2
}

dv

]

. (11)

As suggested in [5], the integral in Eq. 11 can be solved for any k in closed form using integration by
parts and the erf(·) function as previously defined. However, it is tedious and impractical to detail
the result of this integral for all reasonable integers that could be assigned to γ. Instead, for any k,
we can recursively solve this integral (via two consecutive integrations by parts), and we see that:

(k = 0)

[

∫ ∞

c

( 2√
π

)

v0exp
{

−v2
}

dv

]

= 1 − erf(c), (12)

(k = 1)

[

∫ ∞

c

( 2√
π

)

v1exp
{

−v2
}

dv

]

=
1√
π

exp
{

−c2
}

,

(k > 1)

[

∫ ∞

c

( 2√
π

)

vkexp
{

−v2
}

dv

]

= ck−1 1√
π

exp
{

−c2
}

+
1

2
(k − 1)

[

∫ ∞

c

( 2√
π

)

vk−2exp
{

−v2
}

dv

]

.

The integral for any order k can be calculated using only a simple calculation and the (k − 2)th
order of the same integral. For the EP updates, we need the (γ − 1)th, γth, and (γ + 1)th truncated
moments as in Eqs. 9,10. By Eqs. 11,12, we can calculate these moments precisely and in O(γ)
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time, which should for all reasonable purposes be instantaneous. We have shown that this detail
of the EP update is exact and computationally simple (though, as is often the case with EP, care
must be taken to ensure numerical stability). Since all the other details are standard for EP, the
entire EP update then has computational and memory complexity typical for EP, which is O(N 3)
due to the Cholesky factorization required in updating the posterior covariance. Further, since the
gamma likelihood is log concave in zi, EP has only positive site updates (avoiding a known pitfall
of EP, see [6]) and has attractive convergence properties (it has been conjectured that EP with a log
concave likelihood will always converge [4]). Thus, we have developed a stable EP implementation
that operates only on the number of events N instead of the larger n.
Accordingly, we can make a fast approximation of p(y | θ) using either a Laplace approximation or
EP on the transformed variable z. In particular cases, one estimate may do better than others. In our
specific application, we find that EP and Laplace perform similarly when the majority of the prior
mass is in the nonnegative orthant, and that EP sometimes outperforms when this does not hold.
More study is required to understand if EP offers a meaningful improvement in this setting.
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