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Supplemental Figure 1. Population PSTHs. Each panel plots the average firing rate 
(across all neurons) for the condition with the strongest preparatory response (red), the 
condition with the weakest preparatory response (green) and two intermediate conditions 
(intermediate shades). Such conditions were found separately for each neuron. They were 
then averaged after normalizing each neuron’s activity by its maximum rate (results were 
similar without normalization). Analysis was restricted to include only neurons with 
robust preparatory tuning and robust peri-movement tuning (see Experimental 
Procedures, same restriction criteria as for Figure 4). Despite this restriction, peri-
movement tuning appears quite weak in the population averages, especially by the time 
of movement onset. This is because averaging was segregated by each neuron’s 
preparatory preference, which on average bore little resemblance to its peri-movement 
preference. What would otherwise be strong peri-movement tuning is thus averaged out.  
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Supplemental Figure 2. Illustration of how PCA is used to construct the peri-movement 
space. For illustration, analysis is restricted to data from four conditions (4 reach 
directions at the greater distance and instructed speed) and from three neurons (B29, B12 
and B16). A. The four conditions are plotted in a traditional task space based on target 
location. For reference, the other three conditions at that distance are shown with dotted 
symbols. For this illustration these are not considered further. B. Illustration of the matrix 
‘T’ containing peri-movement responses, and of how PCA is applied. The matrix T (left) 
is of size 4!3t, where t is the number of measured time-points. PCA approximates this 
matrix as the product of two matrices: a 4!2 matrix of scores (Tred) and a 2!3t matrix of 
PCs (gray). This product, added to the across-condition mean (a 1!3t vector, gray) 
provides an excellent approximation (not shown) to T. Critically, the PC scores now 
provide the location of each condition in a 2-D space. Each location indicates how the 
two PCs need to be weighted so that their sum approximates the relevant row of T. C. 
Locations of the four conditions in the peri-movement space, as determined by the PC 
scores. The peri-movement space is certainly related to the task space in A; the PC scores 
will correlate with target location. Yet the condition locations in C are a non-linear 
transformation of those in A. It is thus possible for the PD to perform better in one space 
than in the other. 
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Supplemental Figure 3. Array locations in monkey J: the first in caudal PMd (left) the 
second in surface M1 and perhaps extending into caudal PMd (right). The photograph 
was taken immediately prior to array implantation. Previous single-electrode penetrations 
were largely within the area spanned by the two arrays, but also progressed deeper in the 
central sulcus and the lateral bank of the precentral dimple. Microstimulation of this 
region produced movements primarily of the upper arm and shoulder, occasionally of the 
wrist and arm, and rarely of the leg and arm. 
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Supplemental Figure 4. Illustration of how PSTHs were smoothed for improved 
visualization. The top and bottom rows show data for neurons J36 and J142. From left to 
right, panels show PSTHs computed with standard filtering, PSTHs computed using 
additional filtering (see below), and the residuals (the difference between the standard-
filtered version and the version with additional filtering). 
 For the PSTHs in panels A&D, we computed the mean firing rate as a function of 
time in the usual way. We convolved each spike with a Gaussian kernel of width 20 ms, 
and averaged across all trials recorded for a given condition. The mean firing rate was 
computed three times: time-locked to target onset, the go cue, and movement onset. To 
allow the eye to visually follow an individual condition’s response throughout the trial, 
the firing rates for these three epochs were spliced together. Gray bars at the bottom of 
each panel show the region over which we interpolated/smoothed the firing rate between 
two epochs. Note that the segment that is time-locked to the go cue actually occurs earlier 
than the go cue itself. This was done because firing rates typically changed rapidly 
between the go cue and movement onset, and we did not want the same change in firing 
rates to be represented twice. 
 Panels B&E were computed using an additional smoothing step. Instead of using 
a temporal filter (which exploits the fact that different times cannot be arbitrarily 
different from one another) we used principal component analysis (PCA) to exploit the 
fact that different conditions cannot be arbitrarily different from one another (note that 
this is a different use of PCA from that employed elsewhere in this study, and has an 
unrelated goal). To apply smoothing, we compiled a cxt data matrix, where each row 
contained the response of that neuron for one condition across all times. We then 
decomposed this matrix into its principal components (PCs), and then reconstructed the 
data using the first six principal components. This procedure preferentially discards high-
frequency events that are unique to one of the 27 conditions (and thus more likely to 
result from sampling error). Something similar could of course be obtained by using a 
broader temporal filter, but that could come at the cost of losing real high-frequency 
aspects of the response. An advantage of our method is that it does not remove high-
frequency aspects of the response if they are shared among a number of conditions (see 
especially the bottom row).  
 Panels C&F plot residuals. For example, each trace in C is the difference between 
the corresponding traces in A and B. The fact that the residuals are small, and largely 
uncorrelated either with one another or with themselves over time, indicates that the 
smoothing method is indeed preferentially discarding sampling noise. For comparison, 
across all neurons for monkey N, the average residual was 7% (and was typically lower 
for recordings with higher signal-to-noise). Thus, the smoothing method impacts the data 
minimally, and largely discards exactly those features (those that are uncorrelated across 
time or conditions) most likely to be noise. 
 A known drawback of temporal smoothing is that one can no longer interpret the 
similarity of firing rates at nearby times as an indication that a given feature is real; 
smoothness has been imposed, and can no longer be used to judge signal-to-noise. By 
analogy, a straightforward drawback of our method is that response similarity across 
conditions can no longer be used to judge whether a feature is real. Figure 3F of the main 
text provides a good example: the small undulations of firing rate with time during the 
delay period are shared across conditions. Although they may indeed be real, they are just 



as likely to result from sampling error (especially because firing rate is low at that time). 
Their consistency across conditions is not necessarily an indication of their reliability. 
 To simplify interpretation, in this study we used the additional smoothing method 
only for visualization purposes (i.e., for plotting PSTHs). This aids visualization both 
directly, and by minimizing the confusion that results when many lines cross repeatedly 
due to small amounts of noise. All other analyses were based on conventionally-
smoothed data (as in A,D) without the additional smoothing step. That said, the results of 
all analyses were virtually identical regardless of whether additional smoothing was first 
applied. 
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Supplemental Figure 5. Illustration of why, for a linear dynamical system, preparatory 
tuning ought to be captured by a PD in peri-movement space. This illustration is based on 
the simulated data from Figure 8 of the main text. For visualization, only the first 6 
conditions are plotted. A more formal explanation can be found in the supplemental text. 
A. Illustration of how we compiled matrices. The height of each dot indicates the value of 
that element. The matrix X(0) captures the initial state for all conditions and both units, 
and is of size c!n where c is the number of conditions and n is the number of neurons 
(6!2 in the present case). The matrix R captures the evolution of peri-movement activity 
for both units and is c!nt, (6!2t in the present case) where t is the number of time-points. 
Applying PCA to R yields the scores, a c!k matrix where k is the reduced dimensionality 
(2 in the present case). Those scores give the location of each condition in the k-
dimensional peri-movement space. Because the scores are a linear transformation of R, 
which is a linear transformation of X(0), the scores will be a linear transformation of 
X(0). That transformation will be invertible so long as information has not been lost (so 
long as the dynamics don’t involve a rapid decay to zero) and so long as k is large enough 
(k=2 is sufficient in the present case but k=1 would not be). B. Illustration of why the 
above facts imply that preparatory tuning can be captured by a PD in the peri-movement 
space. As discussed above, X(0) and the principal component scores are related by a 
linear transformation. Each column of the k!k matrix that captures that transformation 
defines a preferred direction in the peri-movement space (in the present case there are 
two 2-dimensional PDs). The initial rate of unit 1 for a given condition can then be found 
by multiplying the PD for unit 1 by the scores for that condition (i.e., the location of that 
condition in the peri-movement space). This is analogous to having a preferred direction 
in velocity space, except the space is defined by the principal component scores rather 
than directly via a behavioral measurement (see Supp. Fig. 2).



Supplemental Text: explanation of how a PD in peri-movement space can capture 
preparatory activity for a time-varying linear dynamical system (please see Supp. Fig 5 
for a less formal illustration of the derivation below). 

 
Consider a dynamical neural system, with the firing rate of each neuron 

represented by the state x(t), a 1!n vector. Suppose the dynamics of this system are 
captured by,  

xcond(t+1) = xcond (t)W(t) 
where xcond(t) is the evolution of the state for a particular condition, and W(t) is an 

n!n time-varying matrix. If we have c conditions we can write,  
X(t+1) = X(t)W(t) 

where X(t) has dimensions c!n. Now consider the c!nt matrix,  
R = [X(1), X(2) ), X(3)… ] 

and the n!nt matrix,  
F = [W(0), W(0)W(1), W(0)W(1)W(2)… ]. 

We can write 
R = X(0)F 

We can apply singular value decomposition and reduce the dimensionality of the 
l.h.s to k. (If the dimensionality of the system is > k, the equality becomes approximate; if 
the dimensionality is <= k, then it remains exact): 

USVt = X(0)F 
Where U is c!k, S is k!k, and Vt is k!nt. The dimensionality reduction lies in the 

fact that k < c.  
Provided F is full rank, we can take its pseudoinverse, F†, and we know that FF† 

= I (where I is n!n). Thus, 
USVtF† = X(0) 

Let us set the k!n matrix C to be equal to VtF†. Then, 
(US)C = X(0). 

Note that every column of X(0) is the preparatory response of one neuron for all 
conditions (i.e., that neuron’s ‘tuning’). That column is a linear combination (determined 
by the corresponding column of coefficients in C) of the columns of US. Put another 
way, each neuron’s tuning can be captured by a PD (whose direction is given by the 
coefficients of C) in the space described by US. US is the reduced dimensional (c!k) 
representation of R (c!nt). That is, it is the principal component ‘scores’ that result when 
applying PCA to R. This reduced-dimensional representation of R is identical to the 
reduced-dimensional representation of T (T is the matrix, defined in the main text, that 
was used to derive the ‘peri-movement space’). For both R and T, each row gives, for one 
condition, the activity of every neuron at all peri-movement times. The only difference 
between R and T is that in R, we first index through all neurons for time one, whereas in 
T we first index through all times for neuron one. Thus, each neuron’s preparatory 
activity (each column of X(0)) can be accounted for by a linear combination of the 
columns of US (which is reduced-dimensional representation of T). As illustrated in 
Figure 8 and Supp. Fig. 5, this can be though of as explaining the preparatory activity of a 
given neuron via a PD in peri-movement space, defined by the reduced-dimensional 
representation of T or R. 

 



A side point is that, in referring above to US as the reduced-dimensional 
representation of R (i.e., the PC scores) we are assuming that the columns of R are of 
zero mean (in which case US is indeed identical to the principal component scores). R 
will have columns of zero mean if X(0) has columns of zero mean. The implication is 
that, because we are using PCA (which subtracts the mean from every column) to create 
the reduced-dimensional space, the PD in the reduced-dimensional space can only 
account for preparatory activity of zero mean (across conditions). This is naturally 
handled by the model in eqn. 1 of the main text, where the non-zero mean firing rate of 
each neuron is captured by the offset bo. The PD need only account for the difference in 
rate among conditions, and for not the overall average firing rate. 

 



!
Supplemental Experimental Procedures 
 
Task design and behavioral control 

Our basic methods have been described previously (Churchland et al., 2006c). 
Briefly, three adult male monkeys (monkeys A,B and J, Macaca mulatta, ~10 kg) sat in a 
customized chair with head restraint and performed the task on a fronto-parallel screen. 
The hand and eye were tracked optically (accuracy of 0.35 mm and ~1°, 60 and 240 Hz). 
On each task trial, a central touch spot was held (for at least 400 ms) and a reach target 
then appeared. This target initially jittered slightly (2 mm SD) in place, during which 
time the monkey could prepare his reach but was not yet allowed to move his hand. 
Following a variable (~0-1000 ms, the exact range varied across monkeys) delay, jitter 
ceased and the touch spot disappeared, providing the ‘go cue’ for the monkey to execute 
his reach. Monkeys rapidly learned that the jittering target could not be struck, and the 
hand was typically held very steady until the go cue. Allowable reaction times were 100-
500 ms (speed task) and 120-900 ms (maze task). Median reaction times were typically 
~300 ms. Juice reward was delivered after the target was held for 300 ms (speed task) or 
700 ms (maze task). 

For the speed task, green and red targets instructed ‘slow’ and ‘fast’ reaches 
(Churchland et al., 2006b). We employed 7 target directions and two target distances (see 
Figure 1C). Reaches were typically quite straight, with a small amount of curvature for 
fast reaches. For the maze task, 1/3 of the conditions involved conventional straight 
reaches with no barriers and 1/3 of the conditions required the reach to curve around one 
or more virtual barriers. These curve-requiring maze configurations were repeated for the 
final 1/3 of conditions, in the presence of additional distractor targets that could not be 
reached (e.g., figure 1D). Reaches were often very similar for the single-target and target-
amid-distractor versions of the same maze, but this was not always the case, and these 
conditions are thus analyzed separately. 

For the speed task, successful reaches were highly stereotyped (Churchland et al., 
2006a, fig. 1), making it sensible to compute the mean firing rate across trials. For the 
maze task, most successful reaches were self-similar, but outliers were occasionally 
present. Subsequent analysis was thus restricted to the subset of trials (typically ~90% of 
all trials) where the horizontal and vertical velocity profiles correlated with those of a 
reference ‘proto-trial’ with r > 0.9. 

 
Neural and EMG recordings 

A total of 310 single-electrode isolations (64, 74, and 172 single-unit isolations 
for monkeys A, B and J) were recorded from caudal PMd, surface M1 and sulcal M1. For 
monkeys A and B, the surface locations of the penetration entry points are shown in 
(Churchland et al., 2006b). For these two monkeys, initial penetrations were guided by 
prior MRI. For monkey J this was deemed unnecessary. In all cases the dura was at some 
point reflected and the location of penetrated area confirmed relative to cortical 
landmarks (e.g., Supplemental Figure 3).  

EMG data were collected as described previously (Churchland et al., 2006c). 
EMG records were filtered, rectified, smoothed and averaged before further analysis. 
Recordings were made from six muscle groups (deltoid, biceps brachii, triceps brachii, 



trapezius, latissimus dorsi, and pectoralis). The triceps were minimally active for 
monkeys A and J and were not recorded. Recordings were often made from multiple 
heads of the same muscle, yielding a total of 6 (monkey A), 11 (monkey B) and 8 
(monkey J) EMG recordings. 

 
Computing the mean firing rate versus time 

Delay-period duration and reaction time were variable, making it impossible to 
compute a single trace of the mean firing rate versus time. We thus computing the mean 
firing rate separately locked to target onset, the go cue, and movement onset. For visual 
presentation (where one wishes to follow a trace through different epochs) we 
interpolated over the gaps between the three epochs (gray bars in Figures 2 and 3). The 
location and duration of the gaps was chosen to minimize discontinuities in firing rate. 
This resulting single trace of firing rate, locked to all three events, was also useful for the 
analysis in Figure 4E, where we needed to sweep time over a greater extent than is 
spanned by a single epoch. All means were computed after smoothing spike trains with a 
20 ms Gaussian. For figures showing the firing rates of single neurons, further smoothing 
was provided using a novel method (Supplemental Figure 4), making it much easier to 
visually follow the firing rate for individual conditions. Additional smoothing was used 
for visualization purposes and not for the central analyses (although results were virtually 
identical if it was used). 

 
Estimating the upper limit of PD performance 

Even under the assumption that a PD (rather than a non-linear model) is 
appropriate, perfect performance of the PD is expected only if 1) one is using the right 
type of space, 2) one is using the right dimensionality, and 3) the data is noise-free. To 
estimate the degree to which the latter two factors degrade performance, we employed a 
PCA-based space derived from the preparatory activity of all neurons (T was c!n with 
each row containing the mean preparatory activity for every neuron). On the assumption 
that this must approximate the right space (whatever one neuron is tuned for, it ought to 
be shared with at least some of the other neurons) the resulting performance (gray traces 
in Figure 6A-D) provides a rough upper limit on performance. This T-matrix also allows 
us to estimate the dimensionality of preparatory activity: depending on the dataset, 7-10 
dimensions were required to capture 90% of the data variance. 
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