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Abstract— By decoding neural activity into useful behavioral
commands, neural prosthetic systems seek to improve the
lives of severely disabled human patients. Motor decoding
algorithms, which map neural spiking data to control pa-
rameters of a device such as a prosthetic arm, have received
particular attention in the literature. Here, we highlight several
outstanding problems that exist in most current approaches
to decode algorithm design. These include two problems that
we argue will unlikely result in further dramatic increases
in performance, specifically spike sorting and spiking models.
We also discuss three issues that have been less examined
in the literature, and we argue that addressing these issues
may result in dramatic future increases in performance. These
include: non-stationarity of recorded waveforms, limitations
of a linear mappings between neural activity and movement
kinematics, and the low signal to noise ratio of the neural
data. We demonstrate these problems with data from 39
experimental sessions with a non-human primate performing
reaches and with recent literature. In all, this study suggests that
research in cortically-controlled prosthetic systems may require
reprioritization to achieve performance that is acceptable for a
clinically viable human system.

I. INTRODUCTION
In recent years, advances in neural technologies have

enabled the creation of neural prosthetic systems (variously
called neural interfaces, brain-machine interfaces, or BMI)
that aim to help severely disabled human patients. There
are many medical, scientific, and engineering challenges in
developing such systems [1]–[5], and all neural prosthetic
systems share in common a signal processing backend. This
backend takes as input raw voltage waveforms from multi-
electrode recordings (or other technologies), and it produces
as output a control signal such as kinematic parameters to
control a prosthetic arm. Along this signal flow, there are
two major steps: first, raw voltage must be separated into
spike trains from single or multiple neural units, called “spike
sorting”; second, these spike trains must be processed by
a decoding algorithm to produce behavioral control signals.
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Both of these steps have been well studied: spike sorting [6]–
[8] and decode algorithms [5], [9]–[23]. These works have
delivered important proofs of concept that brain-machine in-
terfaces can translate neural signals into physical commands.
However, moving to a clinically viable system will require
several significant developments. These developments exist
at all stages: in the recording technologies [24], the sig-
nal processing backend, and prosthetic end effectors such
as robotic arms and computer interfaces [25]. This study
introduces several problems in the signal processing domain.

First, the field must better understand how the recorded
signals change over time, as there has been much work
suggesting various levels of stability in recorded neural ac-
tivity over time [26], [27] - discussed in Section III-A below.
Next, noisy spike trains must be meaningfully processed into
neural firing rates or other quantities appropriate for input
into decode algorithms; we address this potential problem in
Section III-B below. Decode algorithms calculate a mapping
between physical behavior and neural activity. We introduce
unresolved questions in these models in Section III-C below.
Further, a large problem may be fundamental limitations
in the data - discussed in Section III-D. These limitations
exist due to an insufficient signal to noise ratio in the
limited number of neural channels available, as well as model
mismatch (e.q., many algorithms assume linear mappings to
model nonlinear relationships). Other limitations may also
exist in experimental design and algorithmic testing, and we
discuss those potential issues in Section III-E. Many of these
aspects of BMI performance can interact in complex ways.
However, as a starting point in this study, we will address
them individually.

II. METHODS
A. Animal Task and Neural Recordings

Animal protocols were approved by the Stanford Uni-
versity Institutional Animal Care and Use Committee. We
trained a rhesus monkey (Macaca mulatta), monkey L, in
a standard reaching paradigm that has been extensively
reported elsewhere [25], [28], [29]. We give a short overview
here. We implanted a 96-electrode Utah electrode array
(Blackrock Microsystems, Salt Lake City, UT) into premotor
cortex. The array was implanted 10 months prior to the
experiments, showed substantial neural activity, and contin-
ued to do so for several months after the experiments1. The
monkey is trained to make instructed reaches to a number
of points (28 peripheral targets at 4 radial distances from

1Previous reports discuss the same monkey. Here we use a newer implant
(same technology) and a very similar experimental paradigm.



the central target, uniformly distributed in 7 directions) on a
vertical screen. Monkey L begins with his hand on a target
at the screen center. After a brief hold time, a peripheral
target appears, indicating the goal of his reach. Restrictions
on reaction time ensure that the monkey will reach quickly
and accurately to the peripheral target, then receiving a juice
reward [28]. This experiment was performed on 39 days over
a period of 7 weeks. Prior to this time, this monkey had been
heavily trained on similar tasks for several years. Here we
analyze the first hour of data from each day, with an average
of 1655 reaches per dataset.

B. Neural Prosthetic Decoding
In the results that follow, we will demonstrate the quality

of decoding neural activity based on different segmentations
of the neural data. Accordingly, we need a method with
which to decode neural activity into action so that we can
compare performance of different signal processing tech-
niques. We describe those methods briefly here, where we
refer to blocks of the general signal flow for a BMI, as shown
in Fig. 1.

To extract spike trains from raw voltage, neural units were
isolated off-line using a PCA-based spike sorting algorithm
[30], and quality was assessed by hand using the waveforms
and clusters in principle component space. Units were la-
beled single unit, contaminated single-units (with waveforms
from other neurons), and multi-units. For analyses using
threshold crossings only, all events that crossed a threshold
of three times rms noise were used; more explanation can be
found in [29]. All of these threshold crossings were classified
as single or multi-units in the full spike sorting analysis.

First, we use a simple maximum likelihood (ML) decoder,
as seen in [15], [25]. This method uses training data to build
an expectation, for reaches to each of the reach targets, of the
number of spikes recorded from each neuron. Given test data,
the ML decoder evaluates the likelihood (under a Poisson
noise model) and picks the reach condition with the largest
value (hence maximum likelihood) as the decoded reach. The
percentage of reach conditions correctly decoded is reported
as overall performance [25].

ML decoding makes a discrete choice. In some cases,
we also want to decode moment-by-moment parameters of
the subject’s reach. To do this, we use the popular linear
decoder (LD), which assumes that movement is a linear
combination of recorded neural activity. Using least squares,
the movement can be decoded from neural activity, and
common metrics such as root-mean-squared-error (RMS) or
correlation coefficient can be used to determine the quality of
decode [28], [29]. A third common approach is the Kalman
filter [31], which stipulates a linear relationship between
physical behavior over time and between neural activity and
physical behavior [14], [29].

III. RESULTS AND DISCUSSION
Here we discuss the problems we highlighted in the

introduction, and we demonstrate these problems in our
experimental data and recent publications.
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Fig. 1. Block diagram of a typical BMI illustrating potential areas
for improvement. The lower feedback loop illustrates aspects of neural
adaptation that can be engaged only in closed-loop experiments.

A. Spike Sorting

Spike sorting is a major challenge in neural signal ex-
traction, both for basic neuroscience studies and for neural
prosthetic systems [6]–[8]. We discuss here the importance of
isolating single neuron activity, and the instability of neural
recordings over time.

1) Single Unit Activity: When studying the properties of
individual cells, it is important to isolate “single units” with
accurate spike sorting. Often, recorded neural activity that
likely arises from multiple cells is excluded from analysis,
despite the fact that such activity typically comprises a
substantial portion of recorded neural activity. For example,
from a single dataset, we differentiated all neural events
into 205 clusters. Of these 205 neural units, only 53 came
from well-isolated or somewhat contaminated units (units
with clearly differentiated waveforms that were either not
adjacent to other waveforms in voltage and PCA space
(well isolated) or adjacent but clearly distinct (somewhat
contaminated). The remaining 152 neural units were clas-
sified as likely multi-unit. Table I shows the percent correct
for a ML decode of reach directions from single unit only
and multi-unit activity. Also, adding multi-unit activity to
single unit activity increases performance from 74% to 82%.
Therefore, it seems clear that multi-units should be included
in prosthetic decoders, despite being “unclean” isolations in
a basic science sense.

The complexity of the spike sorting process has substantial
power implications for integrated circuits that may be used
as part of future clinical systems to transmit wireless neural
data from the patient [24], [32], [33] since it changes the
number of bits required per channel for full waveforms
versus threshold crossings. This may be partially alleviated
by small process technologies or novel powering methods,
but is still likely to be a substantial concern. This raises the
question, does full spike sorting produce a large improvement
in decode performance over threshold based systems? Table I
shows a performance comparison between PCA based spike
sorting, using all single and multi-units (third row) and a
single threshold per channel (3 times RMS noise, fourth
row). While small increases in performance can be important
to users, using sorted spikes instead of thresholds produces
a surprisingly small improvement of 7%. Also, the threshold
number represents a base level performance which could
likely be improved by setting the thresholds optimally on a



TABLE I
DECODE PERFORMANCE BY UNIT TYPE.

Number Decode Performance
of Units ML Decode1 Correlation Coeff.2

Single units3 53 74% 0.86
Multi-units 152 79% 0.91
All sorted units 205 82% 0.92
Thresholds4 96 75% 0.89
1 Note that chance ML decode accuracy is 1/7, or 14%.
2 Correlation coefficient based on a linear decoder.
3 Includes definite and high-confidence single units.
4 Standard thresholding at 3 times RMS noise.

per-channel basis. Further, two thresholds per channel could
also substantially make up the difference in performance
without requiring full broadband data. The optimal may
resemble [34], in which bits of resolution are distributed to
channels based on information content.

2) Waveform Shape Instability: While there is evidence
that neurons themselves maintain stable tuning properties at
least over the course of a day [28], there is significant doubt
about the stability of the raw voltage recordings of those
neurons over the same time periods (due to changing position
of the electrodes with respect to the neurons, or similar)
[26], [27]. If these recordings are not stable, accurate spike
sorting will require additional sophistication to track neural
units over the course of minutes, hours, and days [35].

Fig. 2 shows the dramatic effect of this instability on
decode performance. We fix a decode algorithm to the
population recorded on an array on the first day of recording.
We fix both the maximum likelihood parameters and the
spike-sorting projections (waveform shapes) across seven
weeks. Performance falls precipitously after only a few days,
which must be due to changes in the recorded neural activity
(the signal processing backend has been held constant). This
suggests that nonstationarity will be a substantial problem
in future clinical systems. Human systems to date have used
daily calibration by skilled technicians [36], but this approach
will not economically scale to broad use.

Fig. 3 shows how much a recording can change over the
course of a single experimental recording session. While the
average change in waveform shape is small (many remain
within +/- 5% of their time zero size) several neurons indeed
change their waveforms significantly over just one hour (e.g.
red growing by 25% and the blue shrinking by 25%). The av-
erage absolute change was 0.3%/min. Looking at the slopes
in absolute voltages, the average change was 1 µV/min,
but changes above 5 µV/min were observed on several
units. Examination over even greater time spans may reveal
even greater excursions. More accurately characterizing these
changes requires analysis of multi-week wireless recordings

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
rc

en
t c

or
re

ct
 (1

 o
f 7

)

Time (days)

Sorted units (b), thresholds (m)

Fig. 2. Decoder performance (ML accuracy) determined by generating
spike sorting templates and maximum likelihood coefficients from the first
day of the experiment, and applying those models across 7 weeks of similar
experiments. Sorted data shown in blue, threshold data shown in magenta;
dotted lines indicate data that was re-fit on each experimental day.
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Fig. 3. Waveform change over one hour for 23 example neurons. Change
is normalized to the size of the initial waveform.

[37] from additional animals2. These waveform changes
can and do cause serious spike sorting difficulties. Fig. 4
shows a single unit that remained well isolated over several
weeks (uncontaminated units like this are rare). The tuning
curves in the second row suggest this is the same neuron,
despite substantial waveform changes. More commonly, as
shown in the third row, a unit that is initially well isolated
disappears over days into multi-unit activity. Since spike-
sorting algorithms rely on waveform shape, these instabilities
may confound spike sorting significantly over the course of
several hours, and certainly across days.

Some aspects of these instabilities might be particular to
the experimental preparation considered here. However, these
devices were approved for initial human studies [36], are
likely to be used for future human work, and are believed
to be at least as stable (if not more so) than other multi-
electrode technologies due to its ability to move with the
brain rather than being secured to the skull. Accordingly,

2It is possible that some of the change in performance over days is due to
slight differences in connector impedance. However, this likely makes only
a small contribution since the noise across the array was fairly stable (mean
1.1 µVrms, std 0.2 µVrms). Also, there were a few electrodes with highly
similar waveforms across days. At the the same time, waveform changes
on individual electrodes could be dramatic over only a few hours.
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Fig. 4. Example waveforms over days. Panel A shows an isolated unit
changing over time but (usually) remaining well isolated. From left to right,
top panels show the single unit from days 1,5,16,17,34, and 45. Panel B
shows the tuning pattern across 7 angular directions on those days. Panel
C shows a more common example of a waveform shape collapsing into
the multi-unit activity. Waveforms crossing threshold are shown for one
electrode on six consecutive days.

one might consider different strategies going forward to
compensate for these instabilities. This may be substantially
easier in neural prosthetics than basic science because it is
arguably not important to track single units. Perhaps decode
algorithms can be designed by sorting on tuning alone over
time or using simply no spike-sorting algorithm whatsoever
[20]. In any event, since the effect on performance is high,
serious effort to address these instabilities must be commit-
ted.

B. Models for Neural Spiking
Spike trains present analytical challenges due to their

noisy, spiking nature. A common view is that spikes are
generated from a smooth function of time (the firing rate)
and that this function carries a significant portion of the
neural information (vs. the precise spike timing). If so,
decoding neural activity may require accurately estimate
firing rate. There has been extensive work in modeling spike
trains [5], [38]–[42] and estimating firing rates [43]–[47].
While some decode algorithms average over neural activity
in small temporal windows [17], some algorithms use firing
rates or use spiking models directly [18]. Spiking mod-
els are another source of approximation in BMIs. Though
sophisticated firing rate estimation has proven valuable in
basic neuroscience, a recent study found minimal differences
in prosthetic decode performance using different estimators
[29]. Perhaps models for neural spiking, though clearly yet

one more approximation in decoding, may not be a source
of major performance gain for future research.

C. The Mapping between Physical Behavior and Neural
Spiking

To date, essentially all prosthetic decode algorithms (pop-
ulation vectors, linear decoders, Kalman filters, etc.) have
assumed a linear mapping between kinematic parameters of
the arm and neural firing rates (or, in some cases, spiking
activity directly) [5], [9]–[23]. There are a few potential
shortcomings with this linear choice, including the fact that
most algorithms ignore meaningful nonlinearities in neural
data, and the poor generalization of these models.

1) Nonlinearities: There is wide variation in how well
the activity of a neuron can be linearly related to a given
kinematic parameter, shown in Fig. 5. The top panel shows
the average reach speed, and the second panel shows X-
position for reaches to 7 out of 28 targets. These respresent
typical kinematic signals that one would like a linear model
to accurately predict. The middle panel shows that some
neurons that have a strongly linear relationship with speed
given a specific time lag. In general, a subset of neurons
may have a strong linear relationship with a given kinematic
parameter. However, the remaining two panels show firing
rates from four neurons with firing rates that do not have an
obvious linear relationship to any parameter. For example,
activity in the fourth panel comes from two units with long
plateaus of activity that precede and follow movement. The
two bottom units show double peaks, that also have no
obvious linear transformation to kinematic parameters.

One way linear decoders can cope with non-linearities
is to use only units with clear linear relationships and set
other coefficients to low values. In our data, linear decoders
can come within 10% of the optimal error using between
15-29% of the 53 predominantly single units (for x and y
position and velocity). This number was obtained by sorting
individual units for correlation with the various parameters,
and adding them to the decoder until the error was within
10% of its value for the whole ensemble. To achieve this
performance level on all 4 kinematic parameters together,
only 49% of the units were required. More than half the
units were unused. This underutilization may occur because
neurons with nonlinear relationships to behavior provide
a source of model mismatch to linear decoders. However,
model mismatch is not noise; there is possibly information in
these neural units that linear decoding models (like the linear
filter, the population vector, and the Kalman filter) are unable
to exploit. Future algorithmic designs may offer significant
performance improvements by modeling nonlinearities in this
mapping. Also, nonlinearities could be introduced at many
points in the signal flow shown in Figure 1, not just the
mapping considered here.

2) Generalization: The ability of a model to generalize
to novel conditions is a major concern with any decoding
algorithm. Linear algorithms in particular may generalize
poorly to novel reaches. For example, in the current dataset,
determining an optimum linear filter using 27 out of the 28
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targets and testing on reaches to the remaining target resulted
in a 4x greater squared error on average than training on a
dataset that included reaches to that target. This occurred
despite the fact that the training dataset included 3 other
examples of reaches to the same angle and 6 other reaches
to the same distance. It is notable that many other prosthetic
experiments to date have used highly constrained movement
tasks which may overestimate the ability of linear models to
generalize [17], [48]. While these tests indeed demonstrate
useful signal extraction from cortex, they do not test a
broad range of behavior. Accordingly, it may be that these
constrained experimental settings pose an unrealistic proxy
to the eventual user mode.

A real prosthesis user will desire a broad range of
potentially novel behaviors. An accurate model mapping
physical behavior to neural activity must be able to decode
novel reaching conditions. Moving to unconstrained settings
in three dimensions, with many other types of reaching
- curved, straight, point-to-point, continuous, and more -
there are many possible model mismatches. Further, arbi-
trary movement in three dimensions engages long-studied
questions of reference frames and coordinate transforma-

tions [49], which may complicate things further. In short,
experimental constraints may not translate to a prosthesis
that generalizes to the needs of a human user. Some effort
should be made in vetting all BMI developments with a range
of experimental control (including very little).

D. Limitations on Precision

There is obviously not arbitrarily large information content
in a given number of neural channels. For example, while
the output of a continuous linear decoder can exhibit high
correlation with the actual hand movement, single trials
often decode to erratic reach behavior. Figure 6A shows an
example of actual reaches to one of the 28 targets in the
center out task. A position-based linear decoder trained on
the first half of the dataset predicted reaches in the second
half of the data with a correlation coefficient of R=0.88,
which shows similar performance to other results in the
literature [14], [48]. Reaches decoded by the linear model are
shown in Fig. 6B. While the average correlation is apparent,
the endpoints exhibit a much higher standard deviation (21
mm vs 6 mm) than actual reaches (the red ellipse).

This illustration represents an “offline” linear decode. One
might argue that these incorrect trajectories can be corrected
using feedback in an “online” BCI experiment. However,
online linear models have shown a tendency to move errati-
cally as well [48]. This may place limitations on how closely
spaced potential targets can be and whether undesired targets
can be avoided. Moving from computer control to the control
of a robotic limb would further emphasize this problem.

1) Models for Physical Behavior: One weakness of algo-
rithms like the linear decoder (and population vector) is that
these algorithms do not have an explicit physical behavior
model, and thus all noise in the recorded signal is passed
through to the decoded arm trajectory. In contrast to this
shortcoming, models such as the Kalman filter [31], which
stipulate a model for physical behavior in arm reaches, have
been shown to outperform the linear decoder in a variety
of cases [14], [48]. This success led to extensions that
assume similar models for physical behavior [5], [13], [17],
[18], [21]–[23], [50]. Unfortunately, this class of models for
physical behavior is inappropriate in some ways for reaching
movements.

Specifically, the Kalman filter assumes a linear dynamical
system (xt = Axt−1+v, where v is some noise). Depending
on the matrix A, reaches from this distribution can only
converge to the origin, oscillate, or diverge to infinity, which
conflicts with the reality that the majority of arm reaches
are point-to-point [49]. Fig. 6C shows that this model can
decoded reaches that fail to stop. Overall, the performance
does not appear substantially less erratic than those from
the simple linear decoder. The Kalman filter, like other
linear models, fails to infer the correct reach goal and stop
precisely. These inadequate physical models have been cho-
sen in large part because of their mathematical tractability.
Instead, a model could exploit the deep literature describing
how reaches are actually made in human behavior [49].
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Fig. 6. Panel A shows actual reaches to one of 28 targets measured using
an infrared motion tracking system. Panel B shows the linear decode of
neural activity during those reaches. Panel C shows a Kalman filter decode
of that same activity. Black dots denote the end points of each reach, and
the black ellipse denotes the standard deviation in the X and Y direction.
Note the red end-point variance ellipse is very small in the first panel.

2) Data Limitations: Current recording technologies can
record from up to hundreds of individual neurons, which is a
tiny fraction of the many millions involved in arm reaching.
Accordingly, the field is and will continue to be limited in
the amount of information it can record from cortex.

BMI devices using lower SNR sources such as ECoG
often try to maximize information throughput by using an
“indirect” signal source. For example, imagining something
that can be somewhat unrelated to arm movement in order
to generate cursor movement [51]. Cortical BMI’s have
relatively higher SNR, and can attempt a “direct” decode
[3]. For example, [15], [17] decoded movements towards
particular targets, but the number and position of targets
was small, fixed, and known. [48] demonstrated improved
accuracy with humans controlling a computer cursor by using
a training paradigm of reaches that moved very slowly.

Much traction might be gained by restricting the space
of movements that can be decoded from neural activity.
Researchers may consider the field of human motor control
(e.g., [49]), where work has shown fundamental constraints
on the human reaching system. By similarly constraining
the space of movements that can be decoded from neural
activity, some performance improvements may be achieved
using currently available signal sources. By recognizing
that there is not an arbitrary amount of information in the
recorded neural activity, the field can begin to ask meaningful
questions about what actions we may hope to extract from
cortex. Designing decode strategies in this way will be
critical in moving towards a clinically viable system.

E. Experimental Limitations
In this final section we introduce another potential issue

in current prosthetic design, and we discuss why we think
addressing this issue may be a valuable direction for future
investigation. As previously noted, experimental constraints
do not necessarily translate to a prosthetic device that can

generalize well. For example, decoding success is often
determined by how well the decoded arm trajectory matches
the true arm movement that was recorded alongside the
(possibly synthetic) neural activity. Unfortunately, this “of-
fline” approach neglects potentially important features of a
real neural prosthesis, including the prosthetic user’s ability
to modify behavioral strategies to improve control of the
prosthetic device (via the decode algorithm). In other words,
as soon as the prosthesis user sees the prosthetic device act,
he/she will bring to bear all his/her behavioral modification
strategies to attempt to drive a natural, desired reach. In
moving towards a usable prosthesis, experimental paradigms
should be tested in this “online” context in order to provide
a realistic proxy to clinical use. This feature is noted by the
large feedback loop in Fig. 1. The field should investigate the
extent to which the subject can (for a given decode algorithm,
spike sorting approach, or other signal processing choice)
engage feedback mechanisms, learning and adaptation, and
other control strategies to improve decode performance.

IV. CONCLUSIONS
Neural prostheses have received much attention in the last

decade. In this study, we used 39 neural datasets, from a
single monkey making center out reaches day after day, to
examine potential areas for future advances. These analyses
suggest that areas such as single unit spike sorting and
advanced spiking models, while useful to pure neuroscience
research, may not provide dramatic performance increases
in future BMIs. However, there are three areas that we
believe may provide more space for improvement. First, non-
stationarity of neural waveforms must be addressed when
moving towards long term clinical systems. Second, linear
models may not be fully exploiting information available
from particularly non-linear neurons. This may also lead to
observed difficulties in model generalization. Third, erratic
decoded movements cause difficulty in predictably control-
ling a BMI cursor. This shortcoming could be mitigated by
more careful analysis of the neural information content, by
limiting the types of reaches based on the information avail-
able, and by meaningfully testing algorithmic developments
in an online context. In all of these issues, it is of great value
for the field to review and compare available methods at each
step in the BMI signal path, and to design future studies (both
experimental and algorithmic) with those results in mind.
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