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n that low-frequency fluctuations in both respiratory volume and cardiac rate can
induce changes in the blood-oxygen level dependent (BOLD) signal. Such physiological noise can obscure the
detection of neural activation using fMRI, and it is therefore important to model and remove the effects of
this noise. While a hemodynamic response function relating respiratory variation (RV) and the BOLD signal
has been described [Birn, R.M., Smith, M.A., Jones, T.B., Bandettini, P.A., 2008b. The respiration response
function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage
40, 644–654.], no such mapping for heart rate (HR) has been proposed. In the current study, the effects of RV
and HR are simultaneously deconvolved from resting state fMRI. It is demonstrated that a convolution model
including RV and HR can explain significantly more variance in gray matter BOLD signal than a model that
includes RV alone, and an average HR response function is proposed that well characterizes our subject
population. It is observed that the voxel-wise morphology of the deconvolved RV responses is preserved
when HR is included in the model, and that its form is adequately modeled by Birn et al.'s previously-
described respiration response function. Furthermore, it is shown that modeling out RV and HR can
significantly alter functional connectivity maps of the default-mode network.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Functional neuroimaging using MRI (fMRI) relies on the use of
blood-oxygen level dependent (BOLD) contrast to depict brain regions
that respond to task-induced activation or are functionally connected
to other regions (Bandettini et al., 1992; Biswal et al., 1995; Kwong
et al., 1992; Ogawa et al., 1992). BOLD contrast results from hemo-
dynamically-driven changes in tissue and vessel oxygenation and is
therefore an indirect measure of cerebral metabolism. Unfortunately,
physiological processes such as cardiac pulsatility and respiration can
also cause changes in cerebral blood flow, thereby inducing substantial
fluctuations in the BOLD signal that may confound inferences made
about neural processing from analyses of BOLD signals.

Pulsatility of blood and cerebrospinal fluid (CSF) due to cardiovas-
cular processes causes artifacts that tend to spatially localize near
ventricles, sulci, and large vessels (Dagli et al., 1999; Glover et al.,
2000). Respirationmay be accompanied by bulk motion of the head as
well as modulation of the magnetic field by thoracic and abdominal
movement, and the noise induced in fMRI is more spatially global
(Glover et al., 2000). Accordingly, a number of methods have been
developed to de-noise fMRI time series by filtering out signals that are
time-locked to the cardiac and respiratory phase waveforms, mea-
rights reserved.
sured by a photoplethysmograph and pneumatic belt, respectively
(Deckers et al., 2006; Glover et al., 2000; Hu et al., 1995).

Breathing can also cause adifferent formof BOLDcontrast, thought to
result from modulation of blood flow and CO2 in the brain in the
presence of ongoing basal metabolism and corresponding vasomotor
regulation (Birn et al., 2006; Corfield et al., 2001; Kastrup et al., 1999a;
Kastrup et al., 1999b; Kastrup et al., 1999c; Kastrup et al., 1998; Liu et al.,
2002; Nakada et al., 2001). Subtle variations in breathing depth and rate
that occur naturally during rest can therefore account for a significant
amount of variance in the BOLD signal which, importantly, affects
widespread regions of gray matter (Birn et al., 2006; Wise et al., 2004).
These low-frequency variations in respirationvolume (RV) are especially
problematic for studies of task-free resting state, as their spectra overlap
with the frequency range of functionally connected networks (b0.1 Hz)
(Cordes et al., 2001). Indeed, including RV as a nuisance covariate in a
regression model can alter functional connectivity maps of the default-
mode network (Birn et al., 2006). Birn et al. further showed that the
linear transfer functionmappingbetweenRV and theBOLD signal iswell
modeled by a biphasic curve with a predominantly negative deflection,
having an overall duration of approximately 30 s (Birn et al., 2008b).

A recent study suggested that heart rate (HR) fluctuations may be
another source of resting state BOLD signal variance (Shmueli et al.,
2007). By including time-shifted HR time series in a general linear
model, Shmueli et al. found that they explained an additional 1% of
BOLD signal variance beyond RV and RETROICOR regressors. The brain
regions in which HR explained additional variance were not
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concentrated entirely around large vessels, but included gray matter
and were sometimes co-localized with regions showing significant
correlations with RV. In addition, they observed that HR was
negatively correlated with the BOLD signal time series at time lags
ranging from 6–12 s, and positively correlated at time lags of 30–42 s.
This observation indicates the possibility of a more complex temporal
relationship between HR and the BOLD signal than is described by
cross-correlation. To date, however, a cardiac-related hemodynamic
response function has not been studied or even proposed.

In the present study, a linear systems model is employed to relate
both RV and HR fluctuations to components of the BOLD signal time
series. RV and HR impulse responses are simultaneously deconvolved
on a voxel-wise basis using one session of resting state data, and their
predictive power is evaluated using a separate session of resting state
data from the same subject. One primary aim is to determine whether
a convolution model that includes both RV and HR can explain
significantly more variance than a model that includes RV alone.
Allowing HR to enter the model through a convolution, rather than
time-shifted correlations, permits the discovery of a more flexible and
accurate mapping between HR and the BOLD signal.

A secondaim is to characterizeboth theRVandHR impulse responses
resulting from the simultaneous deconvolution. Even if the inclusion of
HR explains significantly more variance, it is not known whether the
nature of the mapping varies widely across the affected regions of the
brain, orwhether a single average response can serve as a representative
mapping formost voxels. ThedeconvolvedRV impulse response is alsoof
interest; although an average RV impulse response has been character-
ized (Birn et al., 2008b), it is not known whether interactions between
respiratory and cardiac processes would result in a regionally diverse RV
impulse response when HR is also included in the model.

A third aim is to examine the impact of the proposedmodel's RV and
HR corrections on functional connectivitymaps of one particular resting
state network, the default-mode network (DMN). The DMN comprises a
set of regions that exhibit low-frequency correlated signals in task-free
resting state (Greicius and Menon, 2004; Raichle et al., 2001), and
collectively down-regulate during a wide range of cognitively demand-
ing tasks (Binder et al., 1999; Gusnard et al., 2001; Mazoyer et al., 2001;
McKiernan et al., 2003; Shulman et al., 1997). Quantitative measure-
ment of connectivity in networks such as the DMN is increasingly
employed to draw inferences about behavior (Clare Kelly et al., 2008;
Daselaar et al., 2004; Hampson et al., 2006), development (Damoiseaux
et al., 2008; Thomason et al., 2008), and dysfunction (Garrity et al.,
2007; Greicius et al., 2007; Greicius et al., 2004; Uddin et al., 2008);
therefore, the reduction of physiological noise that might confound
delineation of the network's neural characteristics is critical.

Methods

Subjects

Participants included 10 right-handed, healthy adults, including 3
females (mean age=31.4 years, SD=13.4). All subjects provided
written, informed consent, and all protocols were approved by the
Stanford Institutional Review Board.

Tasks

Subjects underwent 2 scans during which no intentional task was
performed (“Rest1” and “Rest2”), with respective durations of 12 min
and 8min. Subjects were instructed to relax and close their eyes while
remaining awake. Between the 2 resting state scans, subjects
performed a 10 min event-related Sternberg working memory task,
consisting of 3 back-to-back 5 s trials (0.5 s encoding, 3 s maintenance,
1.5 s probe) followed by 45 s of fixation, i.e. having a mean ISI of 60 s.
Encoding stimuli consisted of 4 uppercase letters in a cross-like
configuration around the center of the screen, and the probe stimulus
was a single lowercase letter presented at the center of the screen.
This task was used only to localize subject-specific seed regions of
interest (ROI) for the resting state connectivity analysis (described
below). No further analysis was performed on these data.

Imaging

Magnetic resonance imaging was performed on a 3.0-T whole-body
scanner (Signa, rev 12M5, GEHealthcare Systems,Milwaukee,WI) using
a custom quadrature birdcage head coil. Head movement was
minimized with a bite bar. Thirty oblique axial slices were obtained
parallel to the AC–PC with 4-mm slice thickness, 1-mm skip. T2-
weighted fast spin echo structural images (TR=3000 ms, TE=68 ms,
ETL=12, FOV=22 cm, matrix 192×256) were acquired for anatomical
reference. A T2⁎-sensitive gradient echo spiral in/out pulse sequence
(Glover and Lai, 1998; Glover and Law, 2001) was used for functional
imaging (TR=2000 ms, TE=30 ms, flip angle=77°, matrix 64×64, same
slice prescription as the anatomic images). A high-order shimming
procedure was used to reduce B0 heterogeneity prior to the functional
scans (Kim et al., 2002). Importantly, a frequency navigation correction
was employed during reconstruction of each image to eliminate blurring
from breathing-induced changes inmagnetic field; no bulk misregistra-
tion occurs from off-resonance in spiral imaging (Pfeuffer et al., 2002).

Physiological monitoring

Heart rate and respiration were monitored at 40 samples/s using
the scanner's built in photoplethysmograph placed on the left hand
index finger and a pneumatic respiratory belt strapped around the
upper abdomen, respectively. A file containing cardiac trigger times
and respiratory waveforms was generated for each scan by the
scanner's software. Values in the respiratory waveform were con-
verted to a percentage of the full scale (difference between the
maximum andminimum belt positions measured over the scan). Only
the fractional variations in the waveform, rather than the absolute
amplitude values, are of importance in the current study.

fMRI data analysis

Motion analysis
Motion parameters were calculated using methods described in

Friston et al. (1996). Coregistration, however, was not performed since
(1) motion was expected to be minimal because a bite-bar was used,
(2) coregistration causes unintended smoothing across voxels, which
would interfere with our voxel-wise analysis, and (3) estimation of
coregistration parameters can be biased by activation in tasks that
evoke large, widespread signal changes (Freire and Mangin, 2001).
Therefore, it was important to verify that intra- and inter-scan motion
was minimal. We calculated the maximum peak-to-peak excursion,
root mean square (RMS) fluctuation, and task-correlated motion for
the 3 translational and 3 rotational motion parameter time series
within each scan (rotations were converted to worst-case translations
by multiplying by 65 mm, an average head radius; Thomason and
Glover, 2008). Summary statistics are reported as the maximum of
these values over the 6 axes of motion.

Pre-processing
Functional images were pre-processed using custom C and Matlab

routines. Pre-processing included slice-timing correction using sinc
interpolation, spatial smoothing with a 3D Gaussian kernel
(FWHM=5mm), and removal of linear and quadratic temporal trends.
Spatial normalization to a standard template was not performed, to
avoid blurring; all computations were done in the original subject-
space, and voxels were maintained in their original dimensions
(3.4375 mm×3.4375 mm×4 mm). The first 7 temporal frames were
discarded to allow the MR signal to equilibrate.
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Following pre-processing, data were corrected for cardiac pulsa-
tility and respiratory motion artifacts using RETROICOR (Glover et al.,
2000). Thus, the RV and HR results presented in the current study
represent noise contributions beyond those merely synchronous with
the cardiac and respiratory cycles.

Extraction of RV and HR
The respiratorywaveform recordedby thepneumatic belt is related in

a complex manner to the subject's tidal breathing volume and other
pulmonary characteristics. Nevertheless, a measure that is loosely
associatedwith tidal volume, andhypothetically BOLDsignalmodulation,
canbe extracted fromthiswaveform invariousways. Birn et al. calculated
the respiration volume per unit time (RVT), defined as the difference
between the maximum and minimum belt positions at the peaks of
inspiration and expiration, divided by the time between the peaks of
inspiration (Birn et al., 2006). Here, a measurement is proposed (referred
to as RV) that is based on computing the standard deviation of the
respiratorywaveform on a slidingwindowof 3 TRs (6 s) centered at each
desired TR sampling point. Specifically, the value of the RV time series
assigned to the kth TRwas computed by taking the standard deviation of
the raw respiratorywaveform over the 6 s time interval defined by the (k
−1)th, kth, and (k+1)th TRs. Thus, RV(k) is essentially a sliding-window
measure related to the inspired volume over time. This measure is
simpler and more robust to noise than RVT, as it calculates the RMS
average fluctuation over a window rather than taking a single peak-to-
valley difference, and does not rely on the accuracy of peak detection
required for breath-to-breath computations. However, because differ-
ences between RV and RVT are expected, comparisons between the two
waveformswereperformed (describedbelow). TheHR(k) time serieswas
computed by averaging the time differences between pairs of adjacent
ECG triggers contained in the 6 swindowdefinedby the (k−1)th, kth, and
(k+1)th TRs, and dividing the result into 60 to convert it to units of beats-
per-minute. Fig. 1 depicts examples of RV and HRwaveforms, along with
rawcardiac and respiratorybeltmeasurements, fordata fromonesubject.

Deconvolution of RV and HR
The time series of a voxel (y) is modeled as the sum of RV

convolved with an unknown RV filter (hr) and HR convolved with an
unknown HR filter (hh), plus a noise term (ɛ):

y = Xrhr + Xhhh + e ð1Þ

where hr~N(0,Kr), hh~N(0,Kh), and ɛ~N(0,σɛ
2I). Xr and Xh refer to the

convolution matrices defined by RV and HR, respectively, and Kr, Kh,
and σɛ

2 will be defined below.
Fig. 1. Example of physiological time courses for 1 subject, showing (A) respiration belt measu
Note that (A, B) are displayed on a different time scale than (C, D).
By defining the filters hr and hh to be Gaussian processes (which
here, since time is discretized, can be considered Gaussian random
vectors), temporal smoothness is enforced while allowing greater
flexibility in shape compared to approaches such as constraining the
filters to lie in the span of pre-specified basis functions; an
appropriate basis set for describing the RV and HR impulse responses
was not known a priori. The use of Gaussian process priors for
deconvolution has previously been applied in the fMRI literature in
the context of estimating the hemodynamic response function (HRF)
to task activation (Casanova et al., 2008; Goutte et al., 2000; Marrelec
et al., 2003a,b, 2004), where it was demonstrated to better capture
features of the HRF, such as the post-stimulus undershoot, than sets
of Gamma and Gaussian basis functions (Goutte et al., 2000).

The model (1), which will be referred to as the RVHR model, can be
written more compactly as y=Xh+ɛ, where X=[Xr,Xh] and h=[hr,hh]T.

Then h~N(0,K) with K = Kr 0
0 Kh

� �
, and the maximum a posteriori

(MAP) estimate of h is

hMAP = argmax
h

p y; hð Þ = argmax
h

p hjyð Þ = XTX + σ2
e K

−1� �−1
XTy ð2Þ

(see Appendix A). The covariance matrices Kr and Kh describe the
degree of correlation between points in hr and hh as a function of their
distance, and are defined here as

KR½ �ij = KH½ �ij = σ2
f exp −

i−jð Þ2
2l2

 !
: ð3Þ

This form, known as the squared exponential kernel, is a standard
choice in the use of Gaussian processes for regression (Rasmussen and
Williams, 2006). The length scale l governs the degree of smoothness
imposed on the deconvolved filter (increasing l will produce more
slowly-varying filters) and the kernel variance σ f

2 regulates the
distance from which values of h depart from its mean (which is 0 in
this case).

One might choose to optimize all 3 hyperparameters (l, σ f
2, and

σɛ
2) at each voxel by maximizing the associated likelihood function.

However, to reduce the degrees of freedom and potential for
overfitting (and to increase computational efficiency), the values l=2
and σ f

2=1 were fixed for all voxels; σɛ
2 at the ith voxel was then set

equal to the sample variance of the ith voxel time series. These values
were selected from preliminary experiments in which optimization of
the likelihood function over all 3 hyperparamters was performed
using a nonlinear conjugate gradient method (using a MATLAB
implementation by Rasmussen, 2006) where it was observed that
rements, (B) the calculated RV, (C) cardiac cycle with triggers, and (D) the calculated HR.



Table 1
Summary of subject motion within and across the 2 resting state scans (‘Rest1’ and
‘Rest2’)

Summary of subject motion

Subj Drift RMS Inter-scan
driftRest1 Rest2 Rest1 Rest2

1 1.69 0.54 0.18 0.12 1.99
2 0.86 0.84 0.14 0.08 1.01
3 0.67 0.46 0.06 0.05 1.25
4 0.89 0.86 0.15 0.09 1.22
5 0.82 0.49 0.09 0.04 0.98
6 0.41 0.59 0.08 0.05 1.49
7 0.27 0.24 0.04 0.04 0.87
8 0.39 0.33 0.04 0.04 0.64
9 0.81 0.44 0.09 0.06 1.21
10 0.53 0.28 0.05 0.04 0.82
AVE 0.73 0.51 0.09 0.06 1.15

Values are specified in mm, and refer to the maximum over all 6 motion parameters.

Table 2B
Correlations between RV and HR during the 2 resting state scans

Subj Correlation

Rest1 Rest2

1 0.20 −0.04
2 0.05 0.11
3 0.19 0.18
4 0.23 0.16
5 0.33 0.34
6 0.12 0.06
7 0.17 0.15
8 0.28 0
9 0.02 0.11
10 0.27 0.26
AVE 0.19 0.13

Table 3

860 C. Chang et al. / NeuroImage 44 (2009) 857–869
the distributions of l and σf
2 estimates were centered at these values.

When fixing l and σf
2, the estimate σɛ

2 was proportional (and close) to
the sample variance of y. It was observed that the goodness of fit and
resulting deconvolved filters were similar when fixing the hyperpara-
meters or when allowing all 3 to vary, although fixing the hyperpara-
meters (particularly l) tended to produce more slowly-varying filters.

Both hr and hh were additionally constrained to begin and end at 0,
in accordancewith the assumption that the hemodynamic response to
sudden fluctuations in either RV and HR has a finite rise time and that
the influence ultimately decays away (see Appendix B for details of the
implementation). Both hr and hh were assigned durations of 30 s (15
points).

A reduced model in which the HR input is absent was also
implemented. In this RV model,

y = Xrh̃r + ẽ; ð4Þ

where the assumptions and estimation of h̃r are as described in the
RVHR model. We also consider a model in which the RV filter at every
voxel was defined to be the “respiratory response function” (RRF)
defined by Birn et al. (2008b); this will be referred to as the RRF model.

Evaluation
For each subject, voxel-wise deconvolution of hr, hh, and h̃r was

performed on the Rest1 scan; the generalizability of the deconvolved
filters, as well as model comparison, was evaluated by applying the
models to the Rest2 scan. For the RVHR model, RV and HR time series
were extracted from the Rest2 physiological data and convolved with
the RV and HR voxel-wise impulse responses obtained from Rest1,
forming 2 unique covariates for each voxel. A linear regression against
Table 2A
Summary (mean±SD) of RV and HRmeasures from the 2 resting state scans (‘Rest1’ and
‘Rest2’)

Respiratory and cardiac fluctuations

Subj RV HR

Rest1 Rest2 Rest1 Rest2

1 14.8±4.5 4.5±4.0 70.9±2.4 68.9±2.0
2 12.2±2.5 19.0±3.4 63.6±2.9 68.2±3.6
3 15.3±4.2 19.3±4.4 69.2±6.6 64.9±3.6
4 19.8±4.8 22.2±4.2 47.6±2.6 46.8±3.2
5 16.5±7.3 16.9±8.8 49.7±3.9 48.5±2.5
6 17.0±4.3 13.7±3.1 57.3±2.5 60.4±2.3
7 13.6±3.5 18.1±4.7 55.6±1.7 56.9±1.6
8 17.9±2.7 20.3±3.1 57.3±3.7 55.1±3.5
9 13.1±3.5 13.9±3.5 78.8±3.5 79.6±4.0
10 13.2±4.7 14.8±5.6 62.3±2.8 61.7±2.5
AVE 15.3±4.2 17.9±4.5 61.3±3.3 61.1±2.9

RV is a percentage of inspired volume per second, and HR is in terms of beats per second.
these covariates was performed for each voxel's Rest2 time series,
providing both a fitted response and a residual error value as well as a
residual time series, whichwill be referred to as the “corrected” signal.
The same was performed for the RV model, in which the voxel-wise
impulse responses from the RV model obtained from Rest1 were
convolved with the RV waveform from Rest2 to obtain a single unique
covariate for each voxel. The same was also performed using the RRF
as the impulse response for every voxel (RRF model). The significance
of variance explained by each model, as well as by the RV and HR
components of the RVHR model, was computed using an F-test.

The variance explained by the RVHR, RV, and RRF models was
compared for 3 pairs of models: (1) RVHRNRV, (2) RVHRNRRF, and (3)
RVNRRF. The aim of the first test was to determine whether modeling
RV and HR has a significant effect beyond modeling RV alone; the aim
of the second test was to compare the full model to the current
standard (modeling only RV, using a canonical response function); the
aim of the third test was to determine whether using voxel-wise RV
impulse response functions is more effective than using a canonical RV
impulse response. Comparisons (1) and (2) were computed using an
F-test; since the two models in comparison (3) are of the same
complexity, the difference between correlation coefficients from the 2
models was tested for significance. This was performed by transform-
ing the r values to Fisher Z values, normalizing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= n−3ð Þp

(here
with n=233 frames), and assessing the significance under the
standard normal distribution (Dowdy and Wearden, 1991).

Resting state functional connectivity
Functional connectivity maps of the DMN were compared before

and after correction with the RRF, RV, and RVHR models. A DMN
Variance explained by the RRF, RV, and RVHR models, as well as by the RV and HR
components of the RVHR model

Variance explained

Subj RRF RV RVHR RVHR: RV RVHR: HR

%
Brain

%Var
mean±SD

%
Brain

%Var
mean±SD

%
Brain

%Var
mean±SD

%Var
mean±SD

%Var
mean±SD

1 10.6 9.2±2.8 28.1 10.4±3.2 39.2 13.3±4.5 7.9±4.7 6.4±5.1
2 5.2 8.9±2.2 21.5 11.4±4.5 55.1 17.4±8.2 4.4±5.5 13.4±8.4
3 20.3 9.4±2.6 22.8 9.4±2.5 62.1 17.1±7.6 5.1±3.9 12.1±7.6
4 12.5 10.3±3.6 21.6 12.5±6.1 33.3 14.5±6.3 8.2±7.0 6.7±5.6
5 57.3 17.2±7.8 75.7 20.5±9.5 81.6 25.6±11.6 15.6±11.4 3.2±7.7
6 8.3 8.6±2.0 2.4 8.4±2.0 7.9 10.5±2.6 3.8±3.3 6.7±3.6
7 6.1 7.9±1.5 8.1 8.5±1.9 48.2 14.0±4.8 3.0±2.9 11.9±4.9
8 32.4 11.9±4.9 18.4 10.9±4.5 34.2 13.7±5.3 7.9±6.2 6.1±5.8
9 29.4 11.1±4.2 32.0 11.1±3.9 42.6 14.0±5.3 9.1±5.1 5.7±5.2
10 65.3 15.9±6.1 52.0 13.8±4.7 49.0 18.4±7.2 8.5±6.5 10.2±6.9
AVE 24.8 11.0±3.8 28.3 11.7±4.3 45.3 15.8±6.3 7.4±5.6 8.2±6.1

The percentage of brain for which the indicated model explained a significant
(pb0.0001; F-test) portion of signal variance is provided, along with the percent
signal variance explained by the model (averaged across the set of significant voxels).



Fig. 2. Maps of the percent signal variance explained in Rest2 by the RRF, RV, and RVHR models, shown for 3 subjects.
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functional connectivity map was obtained for individual subjects by
extracting the average time series from a seed ROI in the posterior
cingulate cortex (PCC)/precuneus (a central node of the DMN (Greicius
et al., 2003; Greicius and Menon, 2004; Raichle et al., 2001)) and
correlating it against every voxel in the brain. The seed ROI was
defined as the intersection of a template anatomical PCC/precuneus
Fig. 3. Maps of the percent signal variance explained in Rest2 by the RV (top line) and HR (bo
Fig. 2.
(MarsBar AAL atlas; http://www.sourceforge.org/marsbar) with the
subject's deactivation map in the WM task (thresholded at rb−0.2).
The template PCC/precuneus ROI was normalized to the subject's
average functional image over the Rest1 scan using SPM5 (http://
www.fil.ion.ucl.ac.uk/spm). The procedure of extracting a seed time
series and correlating it with all voxels was performed on the Rest2
ttom line) components of the RVHR model, for the same 3 subjects and slices shown in

http://www.sourceforge.org/marsbar
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Table 4
Percentage of voxels (relative to the total number of voxels in the brain) with
significantly greater variance (pb0.0001; F-test) explained by the indicated model
comparison

Model comparison

Subj Model

RVHRNRV (%) RVHRNRRF (%) RVNRRF (%)

1 14.2 33.4 0.8
2 43.9 52.2 3.4
3 49.0 49.5 0.0
4 17.0 26.3 1.8
5 41.7 64.2 5.6
6 5.2 5.6 0.0
7 43.6 46.0 0.0
8 20.5 17.3 0.2
9 15.3 20.3 0.2
10 24.5 16.8 0.0
AVE 27.5 33.1 1.2
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datasets before any physiological noise correction was applied, and
repeated after each of the above corrections (RV, HR, RRF) were
applied, with and without RETROICOR. Group maps of the DMN were
computed by normalizing Fisher-Z transformed correlation maps to a
standard EPI template and entering them into a random-effects
analysis using SPM5 (http://www.fil.ion.ucl.ac.uk/spm).

Comparison of RV vs. RVT
RV and RVT are computed in slightly different ways from the

respiration belt measurements. While RV represents the RMS average
inspired volume over a 6-s sliding window, RVT considers a shorter
interval (breath-to-breath, which tends to be 3–4 s) and accounts
more explicitly for variations in breathing rate by normalizing the
depth by the breath-to-breath time interval. While one might expect
that differences between the RV and RVT waveforms would be minor,
it was important to examine the degree to which results depend on
the choice of one or the other. Therefore, the variance explained by
each model (as described in the above section, “Evaluation”) was also
Fig. 4. Default-mode network for 2 subjects (A and B) without correction (top line), with co
(bottom line).
computed using RVT in place of RV, and the resulting average
deconvolved filters were compared.

Impact of RETROICOR
To gauge the influence of RETROICOR as a pre-processing step, the

RVHR model was also fit to the data without first performing
RETROICOR. DMN connectivity maps were then compared for 3
cases: correction with RETROICOR only, RVHR only, and both RETRO-
ICOR and RVHR. For each correction, changes were quantified by (1)
counting the number of voxels having significant (pb0.05) correlation
with the PCC seed ROI for each correction, and (2) converting the
count into a percentage (with respect to the number of significant
voxels in the uncorrected – that is, without RETROICOR or RVHR –

connectivity maps).

Results

Motion

The estimated motion parameters are summarized in Table 1.
Motion was minimal, as subjects exhibited a mean drift of 1.15 mm
(b1 voxel) across the 2 resting state sessions combined.

RV and HR fluctuations

Summary statistics for the RV and HR measures are shown for
each subject in Table 2A. Over all subjects and both resting state
scans, the mean RV fluctuation was 16.6±4.4%, while HR fluctuated
about 61.2±3.1 beats per minute. RV and HR were only mildly cor-
related (Table 2B).

Resting state variance explained

Table 3 indicates the fraction of voxels (relative to the whole brain)
having significant (pb0.0001) variance explained by the RVHR, RV, and
RRF models in the Rest2 scan. The percentage of signal variance
explained, averaged over the set of significant voxels for each model, is
rrection using the RV model (middle line) and with correction using the RVHR model

http://www.fil.ion.ucl.ac.uk/spm


Fig. 5. Group-level DMN connectivity maps (A) without correction for physiological noise, and (B) with correction using RETROICOR and RVHR. Color bars depict T-values.
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also provided. For all but one subject, the RVHR model explained sig-
nificant variance over a greater spatial extent than theRV andRRFmodels,
and accounted for a larger mean percentage of the signal variance.

Maps depicting the percent signal variance explained at each voxel
for the RRF, RV, and RVHR models in the Rest2 scan are shown for 3
subjects in Fig. 2; the RVHR model is further decomposed into
separate RV and HR components in Fig. 3. Regions correlated with HR
Fig. 6. Deconvolved HR (A) and RV (B) filters from the RVHRmodel, averaged over 10 subjects
function fitted to the average HR filter.
tended to comprise gray matter, and were often disjoint from regions
correlated with RV.

For all subjects, the RVHR model explained significant additional
variance over the RV or RRF models over some extent of the brain.
Percentages of subjects' brains in which the model comparisons (1)
RVHRNRV, (2) RVHRNRRF, and (3) RVNRRF were significant are pre-
sented in Table 4.
. Error bars show the standard error. (C) RRF model from Birn et al. (2008b). (D) Analytic



Fig. 7. Clustering of HR filters across voxels. The mean HR filter for each cluster is shown on the right (C), in decreasing order of cluster size (1= largest, 6=smallest). Color-codedmaps
showing the locations of each cluster for 2 subjects (A, B) are on the left.

864 C. Chang et al. / NeuroImage 44 (2009) 857–869
Impact of voxel-wise correction on the default-mode network

Correcting for RV and HR tended to decrease the overall spatial
extent of DMN connectivity. Fig. 4 shows the functional connectivity of
the PCC for 2 subjects without correction (A), and with correction
using the RV model (B) and RVHR model (C); correction using the RRF
model was similar to (B). Functional connectivity with the PCC tended
to become increasingly focal with correction, though the amount of
change due to each type of correction varied across subjects.
Significant (pb0.05) reductions in connectivity among the set of
initially-connected voxels (i.e. those having rN0.11 (pb0.05) without
correction) occurred for an average of 1.0% (SE=0.3%) of voxels after
the RRF model correction, 5.6% (SE=4.3%) after the RV model
Fig. 8. Maps of the percent signal variance explained by the RRF (top line) an
correction, and 7.6% (SE=3.8%) after the RVHR model correction.
Respective increases were all below 2%. A comparison of group-level
maps before any physiological noise correction (Fig. 5A) and after both
RETROICOR and RVHR corrections (Fig. 5B) shows a reduction of
apparent false-positives, as well as increased connectivity in areas
believed to be canonical nodes of the DMN, such as the medial
prefrontal and anterior cingulate cortices.

Characteristics of the HR filter

Average deconvolved HR and RV filters from the RVHR model
(hr and hh) were computed for each subject from voxels in which the
HR and RV components reached significance (pb0.001) by a t-test on
d RRF–CRF (bottom line) models, for 3 subjects from a separate dataset.



Table 5
Variance explained by the RRF and RRF–CRF models on a separate set of 3 subjects
(8 min resting state scan)

Variance explained by average HR model

Subj RRF RRF–CRF

%Brain %Var mean±SD %Brain %Var mean±SD

1 17.5 10.4±3.5 19.0 11.9±3.5
2 0.3 7.6±1.2 34.2 12.3±3.6
3 5.8 8.6±1.9 17.1 14.5±6.1
AVE 7.6 8.9±2.2 23.5 12.9±4.4

The percentage of brain for which the indicated model explained a significant
(pb0.0001; F-test) portion of signal variance is provided, along with the percent
signal variance explained by the model (averaged across the set of significant voxels).

Table 6A
Average percent variance explained by the various models

Comparison of RVT vs. RV

RRF RV RVHR RVHR: RV RVHR: HR

%
Brain

%Var
mean±SD

%
Brain

%Var
mean±SD

%
Brain

%Var
mean±SD

%Var
mean±SD

%Var
mean±SD

RV 24.8 11.0±3.8 28.3 11.7±4.3 45.3 15.8±6.3 7.4±5.6 8.2±6.1
RVT 18.0 10.0±3.1 22.3 10.6±3.6 40.2 14.7±5.8 6.0±4.6 8.6±5.7

The first line (RV) is identical to the final row of Table 3, and the second line (RVT)
indicates the corresponding values when RVT is used instead of RV.
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their respective regression coefficients. The grand average was then
taken, yielding the filters plotted in Figs. 6A, B. The average RV filter
bears a strong resemblance to the RRF (Fig. 6C), while the average HR
filter exhibits a peak at 4 s and a dip at 12 s. The standard error bars for
the average RV and HR filters are comparable and small, indicating
consistency across subjects. To further query the spatial properties of
the HR filters, k-means clusteringwas performed on the voxel-wise HR
filters pooled over all subjects, using 6 clusters and a similaritymetric of
correlation. Fig. 7 shows themeanHRfilter from each cluster, aswell as
the spatial locations of the clusters, for 2 subjects. The clusters
encompassing graymatter hadmean filters resembling the averageHR
filter, indicating minor spatial variability.

Generalization of the average HR filter

To examinewhether the average HR filter obtained from our subject
population is generalizable, it was subsequently applied to a set of 3
subjects from a separate study which had each undergone one 8 min
resting state scan. An analytic function (CRF(t), for “cardiac response
function”) was fit to the curve as the sum of a Gamma and a Gaussian:

CRF tð Þ = 0:6t2:7e−t=1:6−16 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 9ð Þp exp −

1
2

t−12ð Þ2
9

 !
ð5Þ

(Fig. 6D), and this function was used as the HR filter for all voxels.
Two models were then evaluated on each of the 3 subjects' resting
state scans: (1) the RRF model, as described previously; and (2) the
“RRF–CRF” model, in which the HR time series, convolved with CRF
(t), was included as a covariate in the linear model. The RRF was used
as the RV filter for each voxel since a separate scan was not available
for deconvolving voxel-wise RV responses without bias, and because
the RRF has been established both in the present study and in Birn
et al. (2008b) to well model the transfer function between RV and
Fig. 9. Deconvolved HR and RVT filters from the RVHR model, when RVT wa
the BOLD signal. Maps of the variance explained by each model are
shown for 2 subjects in Fig. 8. Including HR convolved with CRF(t)
contributed a significant amount of variance in all subjects' resting
state scans (Table 5), suggesting that CRF(t) is perhaps a generalizable
transfer function between HR and the BOLD signal.

Consistency of the RV filter

Strong correlations were obtained between estimates of the RV
filter resulting from the RVHR and RV models; that is, voxel-wise
estimates of hr and h̃r were highly consistent despite the inclusion of
HR in the RVHRmodel. Themean correlation across the set of voxels in
which significant variance (pb0.001) was accounted for by both the
RV and RVHRmodel was r=0.97 (SD=0.05); evenwhen restricting the
analysis to the set of voxels having a significant (pb0.001) HR
component in the RVHR model, strong correlations were maintained
(r=0.93, SD=0.10). Similar generalization performance between the
RV and RRF models reflects the fact that hr and h̃r were also well
correlated with the RRF (r=0.74, SD=0.11 between h̃r and the RRF).

Comparison of RV vs. RVT

The RV and RVT waveforms were correlated (mean r=0.61, SD=0.1
over the Rest2 scans of all 10 subjects). Minor differences were found
in the shapes of the average filters when RVT was used instead of RV
(Fig. 9), though in comparing Figs. 9A and 6A, it was observed that the
error bars for each time point were slightly smaller when RVwas used.
Differences in the percentage variance explained when RVT was used
instead of RV are shown in Tables 6A, 6B. While differences were again
minor, there was a trend towards greater average variance explained
when RV was used.

Impact of RETROICOR

Fig. 10 reveals how the extent of DMN connectivity changed after
correction using RETROICOR, RVHR, and both RETROICOR and RVHR. It
s used instead of RV. Curves depict the average (±SE) over 10 subjects.



Fig. 10. Default-mode network changes due to correction with RETROICOR, RVHR, and
both RETROICOR and RVHR. Bar height indicates the mean percent change in the extent
of voxels having significant (pb0.05) DMN connectivity following the indicated
corrections. The sign of each bar reveals the direction of change (negative=smaller
connectivity extent; positive=larger connectivity extent).

Table 6B
Model comparison

Model

RVHRNRV (%) RVHRNRRF (%) RVNRRF (%)

RV 27.5 33.1 1.2
RVT 25.4 31.3 0.6

The first line (RV) is identical to the final row of Table 4, and the second line (RVT)
indicates the corresponding values when RVT is used instead of RV.
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is apparent that (1) applying RETROICOR alone influenced the
outcome of DMN connectivity slightly, (2) connectivity changes due
to RVHR were much greater than those induced by applying RETRO-
ICOR (pb0.05), and (3) the extent (volume) of change due to applying
RETROICOR before RVHR was similar to that of applying RVHR alone
(pN0.05; n.s.). Fig. 11 illustrates the connectivity maps for one subject.

Discussion

The present study demonstrates that a linear systems model
having both RV and HR inputs can account for substantial fluctuations
in the resting state BOLD signal. The RVHR model explained a
significantly greater fraction of signal variance beyond the RV model,
and over a spatial extent encompassing widespread regions of gray
matter. A HR hemodynamic response function (CRF(t)) is proposed
and is shown to adequately characterize themapping between HR and
the BOLD signal for our subject population. Furthermore, results verify
that the RV response function (RRF) introduced by Birn et al.
represents well the mapping between RV and the BOLD signal, even
when simultaneously accounting for HR. Moreover, removing HR and
RV components from the BOLD signal using our RVHR model can
induce significant changes (region-specific reductions as well as
increases) in resting state network connectivity.

The RV and HR filters were deconvolved using Gaussian process
priors. This yields smooth (and thus physiologically plausible)
response functions, and so presents a suitable approach to the
problem of deconvolving physiological contributions to the BOLD
signal. This method avoids the noise amplification problem of
unconstrained deconvolution which has led others (e.g. Birn et al.,
2008b) to use less straightforward approaches. In addition, the
framework for simultaneous deconvolution employed in the current
study can be directly extended to incorporate additional physiological
or neural inputs that may be of future interest.

In agreement with Shmueli et al., HR was found to contribute
significant additional variance beyond RV in gray matter as well as in
regions expected to be more susceptible to cardiac pulsatility, such as
CSF andmajor vessels (Shmueli et al., 2007). Importantly, as illustrated
in Fig. 3, regions in which the HR component had a significant effect
were often disjoint from regions in which the effects of RV (and RRF)
were significant, indicating differential contributions of HR and RV
effects over space. Variability was observed across subjects with
respect to both magnitude and spatial location of significant HR
effects, and a group analysis did not reveal any particular anatomical
regions that were highly significant for HR. While the mechanism
through which HR could modulate the BOLD signal is not well-
understood, gray matter correlations with HR could be due in part to
neuronal activity linked with changes in levels of arousal.

Deconvolution of the HR response revealed that the majority of
responsive voxels exhibited a peak at around 4 s and an undershoot of
approximately equal magnitude at around 12 s. These features were
remarkably consistent across subjects and anatomical regions, and
generalized well to a separate population of 3 subjects. The use of this
proposed average HR filter (CRF), in conjunction with the average RV
filter (RRF) proposed by Birn et al., may thus present an alternative to
voxel-wise deconvolution for reducing the influence of HR and RV in
the BOLD signal, obviating the need for an additional scan.
However, if obtaining voxel-wise RV and HR filters is desired,
appending a 12 min scan in order to implement the RVHR model on
other functional scanswould be expensive and time-consuming; thus, it
is of interest to knowwhether a shorter scanwill suffice. The stability of
deconvolved HR responses was evaluated for one subject using only the
first 4 min and 8 min of the 12 min Rest1 scan, for voxels in which the
RVHRmodelwas significant (pb0.001). As shown in Fig.12, 8minof data
sufficed to yield responses thatwere highly similar to those from12min.

Voxel-wise estimates of the RV impulse response were only slightly
more effective (and for 3 subjects, less effective) in accounting for
variance in the second resting state scan compared to using the RRF for
all voxels. In addition, the amount of spatial overlap was substantial,
consistentwith the fact thatourdeconvolvedRV impulse responseswere
similar in character to the RRF— even when simultaneously accounting
for HR, and despite the fact that RV (rather than RVT) was used as the
respiration input function. Thisfinding suggests that theRRF is indeed an
effective a priori RV response function,which is further demonstrated by
our result showing that the RRF correction impacts maps of the DMN, a
finding that extends Birn's results from correction based on cross-
correlation (Birn et al., 2006) to use of the RRF (Birn et al., 2008b).
Furthermore, convolving RV with the RRF was shown to fit resting state
data better than a simple cross-correlation; this is somewhat different
from the results of Birn et al. (2008b), who had found that the RRF
accurately modeled BOLD signal changes to cued-breathing paradigms
but did not fit resting state data more effectively than cross-correlation.

We chose to deconvolve RV and HR simultaneously, rather than HR
alone, because (a) RV is known to account for significant portion of the
BOLD signal and it is therefore critical to model it, and (b) possible
interactions between RV and HR may result in different filters than if
either were estimated alone. Respiratory and cardiac processes are
intimately related, and both govern cerebral blood flow and oxygena-
tion and hence BOLD signal changes. Yet, strong correlations were
observed between RV filters deconvolved using the RVHR and RV
models, even for the set of voxels demonstrating a significant HR
component. That modeling HR had a negligible impact on the
deconvolved RV filters suggests a degree of independence between
the way in which RV and HR may propagate into the BOLD signal.

The RVHR corrections altered DMN maps beyond corrections using
RV alone, though both models acted primarily to diminish connectivity
with the PCC. It is not possible to quantify the goodness of network
changes, as there is noground truth forwhich regions ought to comprise
thenetwork, and it is not clear towhat extent previous characterizations
of the DMN reflect physiological, rather than neural, connectivity.
However, “canonical” nodes of the DMN are believed to be those
showing task-correlateddeactivation (Greicius et al., 2003; Raichle et al.,



Fig. 11. Comparison of default-mode network maps with (A) no correction, (B) correction using RETROICOR, (C) correction using the RVHR model, (D) correction using both
RETROICOR and RVHR.
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2001) and reductionof connectivity outside of these regions is viewedas
desirable. In our study, brain regions were not affected uniformly by RV
or RVHR correction; with reference to Fig. 5, connectivity of canonical
nodes such as themedial prefrontal cortex and anterior cingulate cortex
was preserved or increased, whereas regions outside of the network
tended to decrease. Hence, modeling both RV and HR can potentially
reduce the number of false positives in functional connectivity analysis.

Importantly, Figs. 4 and 5 also reveal that the spatial extent of RV
and HR fluctuations overlaps substantially with at least one of the
resting state networks, the DMN. This suggests that data-driven
approaches such as ICA will not be able to fully distinguish between
neural sources of connectivity and those due to physiological
processes such as RV and HR (Birn et al., 2008a), and therefore, that
preprocessing resting state data with the RVHR correction would be
useful, especially when quantification of network extent is desired.

It is fairly common in the literature to apply a “global signal”
correction, in which a whole-brain average signal is regressed out of
each voxel time series prior to analyzing functional connectivity (e.g.
Di Martino et al., in press; Fair et al., 2008; Fox et al., 2005). While
having the desired effect of making networks more focal, the global
signal represents a mixture of physiological, neural, and movement-
related sources, and regressing it out will unfortunately remove
common signal as well as common noise. Large networks whose
constituent regions exhibit large BOLD signal changes, such as the
DMN, may contribute substantially to the global average. On the other
hand, approaches that model and correct for physiological noise based
on external measures, such as the respiration and cardiac monitoring,
can reduce potential noise in an unbiased way.
Fig. 12. Average correlation (±SD) between voxel-wise RV and HR filters from 4
Because the aim of the current study is to model and remove
physiological noise due to cardiac and respiratory processes beyond
those simply time-locked to the cardiac and respiratory cycles,
correction was initially intended to be applied post-RETROICOR.
Quantitative changes in the spatial extent of variance explained (and
DMN connectivity) when applying the RVHR model with and
without RETROICOR were small; however, such a quantification
does not characterize any possible spatial disparity or ‘goodness’ of
the change, nor does it reveal any overlap between the effects of both
corrections. It is interesting that although the signal components
treated by RETROICOR and RVHR are in a sense distinct (though
having a common physiological origin), the effects from correction
using the 2 methods can be similar, as seen in the DMN for the
subject in Fig. 11. RETROICOR and RVHR produced comparable
changes in the DMN. In this subject, as well as several others,
applying RETROICOR with RVHR produced greater changes in DMN
connectivity (again, mainly reductions) than applying either in
isolation.

The measure of RV proposed here consisted of the sliding-
window standard deviation of the respiratory belt waveform, and
thus relates primarily to changes in inspiration depth over time.
While simpler to compute than RVT (no peak detection in the
respiration waveform is required), the use of a fixed-length sliding
window rather than breath-to-breath intervals is more difficult to
interpret due to its complex dependence on the depth, frequency,
and phase of respiratory cycle within each window, especially when
the breathing rate is slow relative to the window length. However,
RV tended to correlate with RVT in our set of subjects, and the
min versus 12 min of data (left), and 8 min versus 12 min of data (right).
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average RV transfer function agreed with the RVT transfer function
(RRF) of Birn et al. (2008b). In addition, a re-analysis of our data using
RVT instead of RV yielded minor differences in the results. While it is
encouraging that two slightly different quantifications of respiratory
variation from a pneumatic belt waveform can explain similar
variance in the BOLD signal, the optimal way to relate measurements
of chest expansion during breathing to parameters that more
directly mediate BOLD signal change, such as end-tidal CO2, requires
further investigation.

In summary, a canonical HR response function is proposed that, in
conjunction with the RRF and with or without RETROICOR, can result
in significant and widespread reductions of variance in resting BOLD
contrast timeseries when applied in a linear model. The relative
contribution of HR and RV to BOLD fluctuations was not uniform
across subjects; sometimes HR was more prominent than RV, and in
other cases less so. In general, applying RVHR corrections resulted in
diminished spatial extent of the resting state DMN to a greater degree
than with RV corrections alone. This suggests that caution should be
exercised when employing quantitative analyses of resting state
networks without accounting for physiological noise sources from
both cardiac and respiratory functions.
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Appendix A

As described in the text, the model (Eq. (1)) can be written
compactly as y=Xh+ɛ, and a Gaussian process prior is placed on h:
h~N(0,K). In the Bayesian framework, we would like to find h to
maximize p hjyð Þ, which is known as the maximum a posteriori (MAP)
solution. Following Bayes' rule, the posterior distribution of over h is
given by

p hjyð Þ = p yjhð Þp hð Þ
p yð Þ ; ð6Þ

where p(y|h)=N(Xh,σɛ
2I) (I is the identity matrix) and the marginal

likelihood p(y) is independent of h. Including only the terms that are
dependent on h (i.e. the numerator of Eq. (6)), we obtain

p hjyð Þ~exp −
1

2σ2
ε

y−Xhð ÞT y−Xhð Þ
� �

exp −
1
2
hTK−1h

� �
: ð7Þ

Since maximing p(h|y) is equivalent to minimizing − log p(h|y), the
problem reduces to minimizing

−logp hjyð Þ / 1
σ2

ɛ

y−Xhð ÞT y−Xhð Þ + hTK−1h: ð8Þ

Setting the gradient with respect to h of Eq. (8) to 0 and solving for
h yields

hMAP = XTX + σ2
e K

−1� �−1
XTy; ð9Þ

which is the result provided in Eq. (2).

Appendix B

When estimating hr and hh, we wish to enforce the sensible
constraint that both filters begin and end at 0. Optimization theory
offers amethod to incorporate this constraint into theMAP estimate of
Eq. (9), which is based on the KKT conditions and described in many
optimization texts (see, e.g., Boyd and Vandenberghe, 2004). A brief
overview of our treatment follows.

To implement the constraint that hr and hh (which are of length nr
and nh, respectively) each begin and end at 0, we solve the quadratic
optimization problem

minimize
h

1
σ2

e

y−Xhð ÞT y−Xhð Þ + hTRh ð10Þ

subject to Sh=0,
where S is a 4×(nr+nh) selector matrix consisting of ones at the

(1,1), (2,nr), (3,nr+1) and (4,nr+nh) entries and zeros elsewhere, and
R=K−1. The objective function in Eq. (10) results from wishing to
maximize p(h|y) (Eq. (8)). The KKT conditions specify that the optimal
solution satisfies

ShT = 0 ð11Þ

and

2
XTX
σ2

ε
+ R

� �
hT−

2
σ2

ε
XTy + STυT = 0; ð12Þ

where h⁎ and υ⁎ are the optimal primal and dual variables. The
condition (12) results from the fact that the gradient of the Lagrangian
must vanish at h⁎ and υ⁎. Eqs.(11) and (12) define the linear system

2
XTX
σ2

e

+ R
� �

ST

S 0

0
@

1
A hT

υT

� �
=

2
σ2

e

XTy

0

0
@

1
A; ð13Þ

which can be solved efficiently for both h⁎ and υ⁎.
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