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GAUSSIAN DISTRIBUTION

Gaussian density in one dimension

g(x;µ, σ) :=
1√
2πσ

exp
(
− (x− µ)2

2σ2

)

I µ = expected value of x, σ2 = variance, σ = standard
deviation

I The quotient x−µ
σ

measures deviation of x from its expected
value in units of σ (i.e. σ defines the length scale)

Gaussian density in d dimensions
The quadratric function

− (x− µ)2

2σ2 = −1
2

(x− µ)(σ2)−1(x− µ)

is replaced by a quadratic form:

g(x;µµµ,Σ) :=
1√

2π det(Σ)
exp
(
−1

2

〈
(x−µµµ),Σ−1(x−µµµ)

〉)

The Gaussian Distribution

Chris Williams, School of Informatics, University of Edinburgh
Overview

• Probability density functions

• Univariate Gaussian

• Multivariate Gaussian

• Mahalanobis distance

• Properties of Gaussian distributions

• Graphical Gaussian models

• Read: Tipping chs 3 and 4

Continuous distributions
• Probability density function (pdf) for a continuous random variable X

P (a ≤ X ≤ b) =

∫ b

a
p(x)dx

therefore
P (x ≤ X ≤ x + δx) " p(x)δx

• Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2
exp−

{
(x − µ)2

2σ2

}

shorthand notation X ∼ N(µ, σ2)

• Standard normal (or Gaussian) distribution Z ∼ N(0,1)

• Normalization ∫ ∞

−∞
p(x)dx = 1
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• Cumulative distribution function

Φ(z) = P (Z ≤ z) =

∫ z

−∞
p(z′)dz′

• Expectation

E[g(X)] =

∫
g(x)p(x)dx

• mean, E[X]

• Variance E[(X − µ)2]

• For a Gaussian, mean = µ, variance = σ2

• Shorthand: x ∼ N(µ, σ2)
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PARAMETRIC MODELS

Models
A model P is a set of probability distributions. We index each distribution by a
parameter value θ ∈ T ; we can then write the model as

P = {Pθ|θ ∈ T } .

The set T is called the parameter space of the model.

Parametric model
The model is called parametric if the number of parameters (i.e. the dimension of
the vector θ) is (1) finite and (2) independent of the number of data points.
Intuitively, the complexity of a parametric model does not increase with sample size.

Density representation
For parametric models, we can assume that T ⊂ Rd for some fixed dimension d. We
usually represent each Pθ be a density function p(x|θ).
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MAXIMUM LIKELIHOOD ESTIMATION

Setting

I Given: Data x1, . . . , xn, parametric model P = {p(x|θ) | θ ∈ T }.
I Objective: Find the distribution in P which best explains the data. That means

we have to choose a "best" parameter value θ̂.

Maximum Likelihood approach
Maximum Likelihood assumes that the data is best explained by the distribution in P
under which it has the highest probability (or highest density value).

Hence, the maximum likelihood estimator is defined as

θ̂ML := arg max
θ∈T

p(x1, . . . , xn|θ)

the parameter which maximizes the joint density of the data.
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ANALYTIC MAXIMUM LIKELIHOOD

The i.i.d. assumption
The standard assumption of ML methods is that the data is independent and
identically distributed (i.i.d.), that is, generated by independently sampling
repeatedly from the same distrubtion P.

If the density of P is p(x|θ), that means the joint density decomposes as

p(x1, . . . , xn) =

n∏

i=1

p(xi|θ)

Maximum Likelihood equation
The analytic criterion for a maximum likelihood estimator (under the i.i.d.
assumption) is:

∇θ
( n∏

i=1

p(xi|θ)
)

= 0

We use the "logarithm trick" to avoid a huge product rule computation.
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LOGARITHM TRICK

Recall: Logarithms turn products into sums

log
(∏

i

fi

)
=
∑

i

log(fi)

Logarithms and maxima
The logarithm is monotonically increasing on R+.

Consequence: Application of log does not change the location of a maximum or
minimum:

max
y

log(g(y)) 6= max
y

g(y) The value changes.

arg max
y

log(g(y)) = arg max
y

g(y) The location does not change.
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ANALYTIC MLE

Likelihood and logarithm trick

θ̂ML = arg max
θ

n∏

i=1

p(xi|θ) = arg max
θ

log
( n∏

i=1

p(xi|θ)
)

= arg max
θ

n∑

i=1

log p(xi|θ)

Analytic maximality criterion

0 =

n∑

i=1

∇θ log p(xi|θ) =

n∑

i=1

∇θp(xi|θ)
p(xi|θ)

Whether or not we can solve this analytically depends on the choice of the model!
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EXAMPLE: GAUSSIAN MEAN MLE

Model: Multivariate Gaussians
The model P is the set of all Gaussian densities on Rd with fixed covariance matrix
Σ,

P = {g( . |µ,Σ) |µ ∈ Rd} ,
where g is the Gaussian density function. The parameter space is T = Rd.

MLE equation
We have to solve the maximum equation

n∑

i=1

∇µ log g(xi|µ,Σ) = 0

for µ.
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EXAMPLE: GAUSSIAN MEAN MLE

0 =

n∑

i=1

∇µ log
1√

(2π)d|Σ|
exp
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)

=

n∑

i=1

∇µ
(

log
( 1√

(2π)d|Σ|

)
+ log

(
exp
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)

=

n∑

i=1

∇µ
(
−1

2

〈
(xi − µ),Σ−1(xi − µ)

〉)
= −

n∑

i=1

Σ−1(xi − µ)

Multiplication by (−Σ) gives

0 =

n∑

i=1

(xi − µ) ⇒ µ =
1
n

n∑

i=1

xi

Conclusion
The maximum likelihood estimator of the Gaussian expectation parameter for fixed
covariance is

µ̂ML :=
1
n

n∑

i=1

xi
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EXAMPLE: GAUSSIAN WITH UNKNOWN COVARIANCE

Model: Multivariate Gaussians
The model P is now

P = {g( . |µ,Σ) |µ ∈ Rd,Σ ∈ ∆d} ,

where ∆d is the set of positive definite d × d-matrices. The parameter space is
T = Rd ×∆d.

ML approach
Since we have just seen that the ML estimator of µ does not depend on Σ, we can
compute µ̂ML first. We then estimate Σ using the criterion

n∑

i=1

∇Σ log g(xi|µ̂ML,Σ) = 0

Solution
The ML estimator of Σ is

Σ̂ML :=
1
n

n∑

i=1

(xi − µ̂ML)(xi − µ̂ML)t .
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CLASSIFICATION



ASSUMPTIONS AND TERMINOLOGY

In a classification problem, we record measurements x1, x2, . . ..

We assume:

1. All measurements can be represented as elements of a Euclidean Rd.

2. Each xi belongs to exactly one out of K categories, called classes. We express
this using variables yi ∈ [K], called class labels:

yi = k ⇔ "xi in class k"

3. The classes are characterized by the (unknown!) joint distribution of (X, Y),
whose density we denote p(x, y). The conditional distribution with density
p(x|y = k) is called the class-conditional distribution of class k.

4. The only information available on the distribution p is a set of example
measurements with labels,

(x̃1, ỹ1), . . . , (x̃n, ỹn) ,

called the training data.
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CLASSIFIERS

Definition
A classifier is a function

f : Rd [K] ,

i.e. a function whose argument is a measurement and whose output is a class label.

Learning task
Using the training data, we have to estimate a good classifier. This estimation
procedure is also called training.

A good classifier should generalize well to new data. Ideally, we would like it to
perform with high accuracy on data sampled from p, but all we know about p is the
training data.

Simplifying assumption
We first develop methods for the two-class case (K=2), which is also called binary
classification. In this case, we use the notation

y ∈ {−1,+1} instead of y ∈ {1, 2}
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SUPERVISED AND UNSUPERVISED LEARNING

Supervised vs. unsupervised
Fitting a model using labeled data is called supervised learning. Fitting a model
when only x̃1, . . . , x̃n are available, but no labels, is called unsupervised learning.

Types of supervised learning methods

I Classification: Labels are discrete, and we estimate a classifier f : Rd [K],

I Regression: Labels are real-valued (y ∈ R), and we estimate a continuous
function f : Rd R. This functions is called a regressor.
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A VERY SIMPLE CLASSIFIER

Algorithm

1. On training data, fit a Gaussian into each class (by MLE).
Result: Densities g(x|µ⊕,Σ⊕) and g(x|µ	,Σ	)

2. Classify test point according to which density assigns larger value:

yi :=

{
+1 if g(xi|µ⊕,Σ⊕) > g(xi|µ	,Σ	)

−1 otherwise

Resulting classifier

I Hyperplane if Σ⊕=Σ	 = constant · diag(1, . . . , 1) (=isotropic Gaussians)

I Quadratic hypersurface otherwise.
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A VERY SIMPLE CLASSIFIER
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Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d − 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|ωi) and the
boundaries for the case P (ω1) = P (ω2). In the 3-dimensional case, the grid plane
separates R1 from R2.

wi =
1

σ2
µi (52)

and

wi0 =
−1

2σ2
µt

iµi + ln P (ωi). (53)

We call wi0 the threshold or bias in the ith direction. threshold

bias
A classifier that uses linear discriminant functions is called a linear machine. This

linear
machine

kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = gj(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

wt(x − x0) = 0, (54)

where

w = µi − µj (55)

and

x0 =
1

2
(µi + µj) − σ2

‖µi − µj‖2
ln

P (ωi)

P (ωj)
(µi − µj). (56)

This equation defines a hyperplane through the point x0 and orthogonal to the
vector w. Since w = µi − µj , the hyperplane separating Ri and Rj is orthogonal to
the line linking the means. If P (ωi) = P (ωj), the second term on the right of Eq. 56
vanishes, and thus the point x0 is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P (ωi) #= P (ωj),
the point x0 shifts away from the more likely mean. Note, however, that if the variance
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Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.
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DISCUSSION

Possible weakness
1. Distributional assumption.

2. Density estimates emphasize main bulk of data. Critical region for
classification is at decision boundary, i.e. region between classes.

Consequence

I Classification algorithms focus on class boundary.

I Technically, this means: We focus on estimating a good decision surface (e.g. a
hyperplane) between the classes; we do not try to estimate a distribution.

Our program in the following

I First develop methods for the linear case, i.e. separate classes by a hyperplane.

I Then: Consider methods that transform linear classifier into non-linear ones.

I Finally: Discuss a family of classification methods that are non-linear by
design.
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MEASURING PERFORMANCE: LOSS FUNCTIONS

Definition
A loss function is a function

L : [K]× [K] [0,∞) ,

which we read as

L : (true class label y, classifier output f (x)) 7−→ loss value .

Example: The two most common loss functions

1. The 0-1 loss is used in classification. It counts mistakes:

L0-1(y, f (x)) =

{
0 f (x) = y
1 f (x) 6= y

2. Squared-error loss is used in regression:

Lse(y, f (x)) := ‖y− f (x)||22

Its value depends on how far off we are: Small errors hardly count, large ones
are very expensive.
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RISK

Motivation
It may be a good strategy to allow (even expensive) errors for values of x which are
very unlikely to occur

Definition
The risk R(f ) of a classifier f is its expected loss under p, that is,

R(f ) := Ep[L(y, f (x)] =

∫
L(y, f (x))p(x, y)dxdy =

K∑

y=1

∫
L(y, f (x))p(x, y)dx .

When we train f , we do not know p, and have to approximate R using the data:

The empirical risk R̂n(f ) is the plug-in estimate of R(f ), evaluated on the training
sample (x̃1, ỹ1), . . . , (x̃n, ỹn):

R̂n(f ) :=
1
n

n∑

i=1

L(ỹi, f (x̃i))
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NAIVE BAYES CLASSIFIERS



BAYES EQUATION

Simplest form

I Random variables X ∈ X and Y ∈ Y, where X,Y are finite sets.

I Each possible value of X and Y has positive probability.

Then
P(X = x, Y = y) = P(y|x)P(x) = P(x|y)P(y)

and we obtain

P(y|x) =
P(x|y)P(y)

P(x)
=

P(x|y)P(y)∑
y∈Y P(x|y)P(y)

It is customary to name the components,

posterior =
likelihood× prior

evidence

In terms of densities
For continuous sets X and Y,

p(y|x) =
p(x|y)p(y)

p(x)
=

p(x|y)p(y)∫
Y p(x|y)dy
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BAYESIAN CLASSIFICATION

Classification
We define a classifier as

f (x) := arg max
y∈[K]

P(y|x)

where Y = [K] and X = sample space of data variable.

With the Bayes equation, we obtain

f (x) = arg max
y

P(x|y)P(y)

P(x)
= arg max

y
P(x|y)P(y)

If the class-conditional distribution is continuous, we use

f (x) = arg max
y

p(x|y)P(y)
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BAYES-OPTIMAL CLASSIFIER

Optimal classifier

I In the risk framework, the best
possible classifier is the one which
minimizes the risk.

I Which classifier is optimal depends
on the chosen cost function.

Zero-one loss
Under zero-one loss, the classifier which
minimizes the risk is the classifier

f (x) = arg max
y

P(x|y)P(y)

from the previous slide. When computed
from the true distribution of (X, Y), this
classifier is called the Bayes-optimal
classifier (or Bayes classifier for short).

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2

Bayes Optimal Classifier

..
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FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.3.
Since the generating density is known for each class,
this boundary can be calculated exactly (Exercise 2.2).
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EXAMPLE: SPAM FILTERING

Representing emails

I Y = { spam, email }
I X = Rd

I Each axis is labelled by one possible word.

I d = number of distinct words in vocabulary

I xj = number of occurences of word j in email represented by x

For example, if axis j represents the term "the", xj = 3 means that "the" occurs three
times in the email x. This representation is called a vector space model of text.

Example dimensions
george you your hp free hpl ! our re edu remove

spam 0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

With Bayes equation

f (x) = argmax
y∈{spam,email}

P(y|x) = argmax
y∈{spam,email}

p(x|y)P(y)
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NAIVE BAYES

Simplifying assumption
The classifier is called a naive Bayes classifier if it assumes

p(x|y) =

d∏

j=1

pj(xi|y) ,

i.e. if it treats the individual dimensions of x as conditionally independent given y.

In spam example

I Corresponds to the assumption that the number of occurrences of a word carries
information about y.

I Co-occurrences (how often do given combinations of words occur?) is
neglected.
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ESTIMATION

Class prior
The distribution P(y) is easy to estimate from training data:

P(y) =
#observations in class y

#observations

Class-conditional distributions
The class conditionals p(x|y) usually require a modeling assumption. Under a given
model:

I Separate the training data into classes.

I Estimate p(x|y) on class y by maximum likelihood.
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LINEAR CLASSIFICATION



HYPERPLANES

x1

x2

H

vH

Hyperplanes
A hyperplane in Rd is a linear subspace of
dimension (d − 1).

I A R2-hyperplane is a line, a R3-hyperplane is
a plane.

I As a linear subspace, a hyperplane always
contains the origin.

Normal vectors
A hyperplane H can be represented by a normal
vector. The hyperplane with normal vector vH is
the set

H = {x ∈ Rd | 〈x, vH〉 = 0} .
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WHICH SIDE OF THE PLANE ARE WE ON?

H

vH

x

cos θ · ‖x‖
θ

Distance from the plane

I The projection of x onto the direction of vH has
length 〈x, vH〉 measured in units of vH, i.e. length
〈x, vH〉 /‖vH‖ in the units of the coordinates.

I Recall the cosine rule for the scalar product,

cos θ =
〈x, vH〉
‖x‖ · ‖vH‖

.

I Consequence: The distance of x from the plane is
given by

d(x,H) =
〈x, vH〉
‖vH‖

= cos θ · ‖x‖ .

Which side of the plane?

I The cosine satisfies cos θ > 0 iff θ ∈ (−π2 , π2 ).

I We can decide which side of the plane x is on using

sgn(cos θ) = sgn 〈x, vH〉 .
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AFFINE HYPERPLANES

x1

x2 H

vH

w · ‖vH‖

Affine Hyperplanes

I An affine hyperplane Hw is a hyperplane
translated (shifted) by a vector w, i.e.
Hw = H + w.

I We choose w in the direction of vH, i.e. w = c · vH

for c > 0.

Which side of the plane?

I Which side of Hw a point x is on is determined by

sgn(〈x− w, vH〉) = sgn(〈x, vH〉 − c 〈vH, vH〉) = sgn(〈x, vH〉 − c‖vH‖2) .

I If vH is a unit vector, we can use

sgn(〈x− w, vH〉) = sgn(〈x, vH〉 − c) .
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CLASSIFICATION WITH AFFINE HYPERPLANES

H

vH

sgn(〈vH, x〉 − c) < 0

sgn(〈vH, x〉 − c) > 0

c‖vH‖
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LINEAR CLASSIFIERS

Definition
A linear classifier is a function of the form

fH(x) := sgn(〈x, vH〉 − c) ,

where vH ∈ Rd is a vector and c ∈ R+.

Note: We usually assume vH to be a unit vector. If it is not, fH still defines a linear
classifier, but c describes a shift of a different length.

Definition
Two sets A,B ∈ Rd are called linearly separable if there is an affine hyperplane H
which separates them, i.e. which satisfies

〈x, vH〉 − c =

{
< 0 if x ∈ A
> 0 if x ∈ B
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THE PERCEPTRON ALGORITHM



RISK MINIMIZATION

Definition
LetH be the set of all classifiers considered in a given classification problem. The set
H is called a hypothesis space.

For linear classifiers,H = { all hyperplanes in Rd}.
Selecting a classifier
Select f ∈ H which minimizes risk. With zero-one loss:

f ∈ argmin
f∈H

R(f ) = argmin
f∈H

Ep[L(y, f (x))]

We cannot evaluate this expression, since we do not know p.
Note: We write “f ∈ . . .”, rather than “f = . . .”, since there may be more than one minimizer.

Approximation with data: Empirical risk minimization
We approximate the risk criterion by the empirical risk

f ∈ arg min
f∈H

R̂n(f ) = argmin
f∈H

1
n

n∑

i=1

L(yi, f (xi))

If we choose L = L0-1, this minimizes the number of errors on the training data.
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HOMOGENEOUS COORDINATES

Parameterizing the hypothesis space

I Linear classification: Every f ∈ H is of the form f (x) = sgn(〈x, vH〉 − c).

I f can be specified by specifying vH ∈ Rd and c ∈ R.

I We collect vH and c in a single vector z := (−c, vH) ∈ Rd+1.

We now have

〈x, vH〉 − c =
〈(1

x

)
, z
〉

and f (x) = sgn
〈(1

x

)
, z
〉

The affine plane in Rd can now be interpreted as a linear plane in Rd+1. The
d + 1-dimensional coordinates in the representation are called homogeneous
coordinates.
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FITTING A LINEAR CLASSIFIER

Numerical minimization of the empirical risk

Naive strategy:

1. Substitute the parametrization of f
into R̂n(f ) (evaluated on the training
data).

2. Minimize with respect to z by
numerical optimization.

Problem: R̂n(f ) is piece-wise constant.

16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

-2

0

2

4

-2

0

2

4

0

100

-2

0

2

4

0

100

-2

0

2

4

-2

0

2

4

0

5

-2

0

2

4

0

5

-2

0

2

4

-2

0

2

4

0
1
2
3

-2

0

2

4

0
1
2
3

-2

0

2

4

-2

0

2

4

0

5

10

-2

0

2

4

0

5

10

y1
y1

y1y1

y2
y2

y2 y2

y3 y3

y3 y3

solution
region

solution
region

solution
region

solution
region

a2a2

a2a2

a1 a1

a1 a1

Jp(a)

Jq(a) Jr(a)

J(a)

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

Solution region
The solution region is set of vectors z which achieve zero training error.

I If the training data is linearly separable, the solution region is a cone in Rd+1.

I Otherwise, the solution region is empty.
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THE PERCEPTRON CRITERION

Perceptron cost function

I Error rate not suited for numerical
optimization.

I Strategy: Approximate R̂n(f ) by a
piece-wise linear function.

The approximation

CP(f ) :=

n∑

i=1

I{f (x̃i) 6= ỹi}
∣∣∣∣
〈

z,
(

1
x̃i

)〉∣∣∣∣

is called the Perceptron cost function.

16 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lower right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”batch

training to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and η(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

Cost functions
The more general theme is that we substitute R̂n by a cost function C : H R+.
A cost function defines a training strategy as

training method = cost function + minimization algorithm
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PERCEPTRON ALGORITHMS

The Perceptron
A linear classifier obtained by minimizing the Perceptron cost function is called a
Perceptron.

Algorithm
Repeat until CP(zk) = 0:

zk+1 := zk − α(k)∇CP(zk)

where k enumerates iterations.

Step size
The step size parameter α is called the learning rate. Common choices are

α(k) = 1 or α(k) =
1
k
.
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THE GRADIENT ALGORITHM

Gradient of the cost function

∇zCP(z) =

n∑

i=1

I{fH(x̃i) 6= ỹi} ∇z
∣∣〈z,

(
1
x̃i

)〉∣∣ =

n∑

i=1

I{f (x̃i) 6= ỹi} · sgn
(〈

z,
(

1
x̃i

)〉)
·
(

1
x̃i

)

=

n∑

i=1

I{f (x̃i) 6= ỹi} · (−ỹi)

(
1
x̃i

)
.

Effect for a single training point
Step k: x̃ (in class -1) classified incorrectly

x̃Hk

vk
H

vk
H − x̃

Step k + 1

x̃

vk+1
H = vk

H − x̃

Simplifying assumption: H contains originPeter Orbanz · Statistical Machine Learning 39 / 523



DOES THE PERCEPTRON WORK?

The algorithm we discussed before is called the batch Perceptron. For learning rate
α = 1, we can equivalently add data points one at a time.

Alternative Algorithm
Repeat until CP(z) = 0:

1. For all i = 1, . . . , n: zk := zk + ỹi

(
1
x̃i

)

2. k := k + 1

This is called the fixed-increment single-sample Perceptron, and is somewhat
easier to analyze than the batch Perceptron.

Theorem: Perceptron convergence
If (and only if) the training data is linearly separable, the fixed-increment
single-sample Perceptron terminates after a finite number of steps with a valid
solution vector z (i.e. a vector which classifies all training data points correctly).
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MAXIMUM MARGIN CLASSIFIERS



MAXIMUM MARGIN IDEA

Setting
Linear classification, two linearly separable classes.

Recall Perceptron

I Selects some hyperplane between the two classes.

I Choice depends on initialization, step size etc.

Maximum margin idea
To achieve good generalization (low prediction error), place the hyperplane “in the
middle” between the two classes.

More precisely
Choose plane such that distance to closest point in each class is maximal. This
distance is called the margin.
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GENERALIZATION ERROR

Possible Perceptron solution
Good generalization under a specific

distribution (here: Gaussian) Maximum margin solution

Example: Gaussian data
I The ellipses represent lines of constant standard deviation (1 and 2 STD respectively).

I The 1 STD ellipse contains∼ 65% of the probability mass (∼ 95% for 2 STD;∼ 99.7% for 3 STD).

Optimal generalization: Classifier should cut off as little probability mass as
possible from either distribution.

Without distributional assumption: Max-margin classifier

I Philosophy: Without distribution assumptions, best guess is symmetric.

I In the Gaussian example, the max-margin solution would not be optimal.
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SUBSTITUTING CONVEX SETS

Observation
Where a separating hyperplane may be placed depends on the "outer" points on the
sets. Points in the center do not matter.

In geometric terms
Substitute each class by the smallest convex set which contains all point in the class:
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SUBSTITUTING CONVEX SETS

Definition
If C is a set of points, the smallest convex set containing all points in C is called the
convex hull of C, denoted conv(C).

Corner points of the convex set are called extreme points.

Barycentric coordinates
Every point x in a convex set can be represented as a
convex combination of the extreme points {e1, . . . , em}.
There are weights α1, . . . , αm ∈ R+ such that

x =

m∑

i=1

αiei and
m∑

i=1

αi = 1 .

The coefficients αi are called barycentric coordinates of x.

e1

e2 e3

x

α1

α2

α3
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CONVEX HULLS AND CLASSIFICATION

Key idea
A hyperplane separates two classes if and only if it separates their convex hull.

Next: We have to formalize what it means for a hyperplane to be "in the middle"
between to classes.
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DISTANCES TO SETS

Definition
The distance between a point x and a set A the Euclidean distance between x and the
closest point in A:

d(x,A) := min
y∈A
‖x− y‖

In particular, if A = H is a hyperplane, d(x,H) := min
y∈H
‖x− y‖.

A

d(x,A)

x

d(x,H)
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MARGIN

Definition
The margin of a classifier hyperplane H given two training classes X	,X⊕ is the
shortest distance between the plane and any point in either set:

margin = min
x∈X	∪X⊕

d(x,H)

Equivalently: The shortest distance to either of the convex hulls.

margin = min{d(H, conv(X	)), d(H, conv(X⊕))}

Idea in the following: H is "in the middle" when margin maximal.
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LINEAR CLASSIFIER WITH MARGIN

Recall: Specifying affine plane
Normal vector vH.

〈vH, x〉 − c

{
> 0 x on positive side
< 0 x on negative side

Scalar c ∈ R specifies shift (plane through origin if c = 0).

Plane with margin
Demand

〈vH, x〉 − c > 1 or < −1

{−1, 1} on the right works for any margin: Size of margin determined by ‖vH‖. To
increase margin, scale down vH.

Classification
Concept of margin applies only to training, not to classification. Classification works
as for any linear classifier. For a test point x:

y = sign (〈vH, x〉 − c)
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SUPPORT VECTOR MACHINE

Finding the hyperplane
For n training points (x̃i, ỹi) with labels ỹi ∈ {−1, 1}, solve optimization problem:

min
vH,c

‖vH‖

s.t. ỹi(〈vH, x̃i〉 − c) ≥ 1 for i = 1, . . . , n

Definition
The classifier obtained by solving this optimization problem is called a support
vector machine.
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WHY minimize ‖vH‖?
We can project a vector x (think: data point) onto the direction of vH and obtain a
vector xv.

direction of vH

x
H

xv
θ

I If H has no offset (c = 0), the Euclidean distance of x from H is

d(x,H) = ‖xv‖ = cos θ · ‖x‖ .

It does not depend on the length of vH.
I The scalar product 〈x, vH〉 does increase if the length of vH increases.
I To compute the distance ‖xv‖ from 〈x, vH〉, we have to scale out ‖vH‖:

‖xv‖ = cos θ · ‖x‖ =
〈x, vH〉
‖vH‖
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WHY minimize ‖vH‖?
If we scale vH by α, we have to scale x by 1/α to keep 〈vH, x〉 constant, e.g.:

1 = 〈vH, x〉 =
〈
αvH,

1
α

x
〉
.

A point x′ is precisely on the margin if 〈x′, vH〉 = 1.
Look at what happens if we scale vH:

H

vH

x

‖x′‖ = 1
2

H

vH
x

‖x′‖ = 1
2

Points x′ precisely on the margin are on these lines
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DISTANCE WITH OFFSET

H

vH

x

c
‖vH‖

〈x,vH〉−c
‖vH‖

〈x,vH〉
‖vH‖

x H

vH

For an affine plane, we have to substract the offset. The optimization algorithm can also rotate the vector
vH, which rotates the plane.
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SUPPORT VECTORS

Definition
Those extreme points of the convex hulls
which are closest to the hyperplane are
called the support vectors.

There are at least two support vectors, one
in each class.

Implications

I The maximum-margin criterion focuses all attention to the area closest to the
decision surface.

I Small changes in the support vectors can result in significant changes of the
classifier.

I In practice, the approach is combined with "slack variables" to permit
overlapping classes. As a side effect, slack variables soften the impact of
changes in the support vectors.
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DUAL OPTIMIZATION PROBLEM

Solving the SVM opimization problem

min
vH,c

‖vH‖

s.t. ỹi(〈vH, x̃i〉 − c) ≥ 1 for i = 1, . . . , n

is difficult, because the constraint is a function. It is possible to transform this
problem into a problem which seems more complicated, but has simpler constraints:

max
ααα∈Rn

W(ααα) :=

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjỹiỹj 〈x̃i, x̃j〉

s.t.
n∑

i=1

ỹiαi = 0

αi ≥ 0 for i = 1, . . . , n

This is called the optimization problem dual to the minimization problem above. It is
usually derived using Lagrange multipliers. We will use a more geometric argument.
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CONVEX DUALITY

Sets and Planes
Many dual relations in convex optimization can be traced back to the following fact:

The closest distance between a point x and a convex set A is the maximum over the
distances between x and all hyperplanes which separate x and A.

d(x,A) = sup
H separating

d(x,H)

x

A

H
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DERIVING THE DUAL PROBLEM

Idea
As a consequence of duality on previous slide, we can find the maximum-margin
plane as follows:

1. Find shortest line connecting the convex hulls.

2. Place classifier orthogonal to line in the middle.

Convexity of sets ensures that this classifier has correct orientation.

As optimization problem

min
u∈conv(X	)
v∈conv(X⊕)

‖u− v‖2
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BARYCENTRIC COORDINATES

Dual optimization problem

min
u∈conv(X	)
v∈conv(X⊕)

‖u− v‖2

As points in the convex hulls, u and v can be represented by barycentric coordinates:

u =

n1∑

i=1

αix̃i v =

n1+n2∑

i=n1+1

αix̃i (where n1 = |X	|, n2 = |X⊕|)

The extreme points suffice to represent any point in the sets. If x̃i is not an extreme point, we can set αi = 0.
Substitute into minimization problem:

min
α1,...,αn

‖
∑

i∈X	

αix̃i −
∑

i∈X⊕

αix̃i‖2
2

s.t.
∑

i∈X	

αi =
∑

i∈X⊕

αi = 1

αi ≥ 0
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DUAL OPTIMIZATION PROBLEM

Dual problem

‖
∑

i∈X	

αix̃i −
∑

i∈X⊕

αix̃i‖2
2 = ‖

∑

i∈X	

ỹiαix̃i +
∑

i∈X⊕

ỹiαix̃i‖2
2

=

〈
n∑

i=1

ỹiαix̃i ,

n∑

i=1

ỹiαix̃i

〉
=
∑

i,j

ỹiỹjαiαj 〈x̃i, x̃j〉

Note: Minimizing this term under the constraints is equivalent to maximizing

∑

i

αi − 1
2

∑

i,j

ỹiỹjαiαj 〈x̃i, x̃j〉

under the same constraints, since
∑

i αi = 2 is constant. That is just the dual problem
defined four slides back.

Peter Orbanz · Statistical Machine Learning 59 / 523



COMPUTING c

Output of dual problem

v∗H := v∗ − u∗ =

n∑

i=1

ỹiα
∗
i x̃i

This vector describes a hyperplane through the origin. We still have to compute the offset.

Computing the offset

c∗ :=
maxỹi=−1 〈v∗H, x̃i〉+ minỹi=+1 〈v∗H, x̃i〉

2

Explanation

I The max and min are computed with respect
to the vH plane containing the origin.

I That means the max and min determine a
support vector in each class.

I We then compute the shift as the mean of the
two distances.

0
0

arg maxyi=−1 〈vH, x̃i〉

arg minyi=+1 〈vH, x̃i〉
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RESULTING CLASSIFICATION RULE

Output of dual optimization

I Optimal values α∗i for the variables αi

I If x̃i support vector: α∗i > 0, if not: α∗i = 0

Note: α∗i = 0 holds even if x̃i is an extreme point, but not a support vector.

SVM Classifier
The classification function can be expressed in terms of the variables αi:

f (x) = sgn

(
n∑

i=1

ỹiα
∗
i 〈x̃i, x〉 − c∗

)

Intuitively: To classify a data point, it is sufficient to know which side of each
support vector it is on.
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SOFT-MARGIN CLASSIFIERS

Soft-margin classifiers are maximum-margin classifiers which permit some points
to lie on the wrong side of the margin, or even of the hyperplane.

Motivation 1: Nonseparable data
SVMs are linear classifiers; without further modifications, they cannot be trained on
a non-separable training data set.

Motivation 2: Robustness
I Recall: Location of SVM classifier depends on position of (possibly few)

support vectors.

I Suppose we have two training samples (from the same joint distribution on
(X, Y)) and train an SVM on each.

I If locations of support vectors vary significantly between samples, SVM
estimate of vH is “brittle” (depends too much on small variations in training
data). −→ Bad generalization properties.

I Methods which are not susceptible to small variations in the data are often
referred to as robust.
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SLACK VARIABLES

Idea
Permit training data to cross the margin, but impose cost which increases the further
beyond the margin we are.

Formalization
We replace the training rule ỹi(〈vH, x̃i〉 − c) ≥ 1 by

ỹi(〈vH, x̃i〉 − c) ≥ 1−ξi

with ξi ≥ 0. The variables ξi are called slack variables.

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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SOFT-MARGIN SVM

Soft-margin optimization problem

min
vH,c,ξ

‖vH‖2 + γ

n∑

i=1

ξ2
i

s.t. ỹi(〈vH, x̃i〉 − c) ≥ 1−ξi for i = 1, . . . , n

ξi ≥ 0, for i = 1, . . . , n

The training algorithm now has a parameter γ > 0 for which we have to choose a
“good” value. γ is usually set by a method called cross validation (discussed later).
Its value is fixed before we start the optimization.

Role of γ
I Specifies the "cost" of allowing a point on the wrong side.

I If γ is very small, many points may end up beyond the margin boundary.

I For γ →∞, we recover the original SVM.
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SOFT-MARGIN SVM

Soft-margin dual problem
The slack variables vanish in the dual problem.

max
ααα∈Rn

W(ααα) :=

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjỹiỹj( 〈x̃i, x̃j〉 +
1
γ
I{i = j})

s.t.
n∑

i=1

ỹiαi = 0

αi ≥ 0 for i = 1, . . . , n

Soft-margin classifier
The classifier looks exactly as for the original SVM:

f (x) = sgn

(
n∑

i=1

ỹiα
∗
i 〈x̃i, x〉 − c

)

Note: Each point on wrong side of the margin is an additional support vector
(α∗i 6= 0), so the ratio of support vectors can be substantial when classes overlap.
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INFLUENCE OF MARGIN PARAMETER

γ = 100000 γ = 0.01

Changing γ significantly changes the classifier (note how the slope changes in the
figures). We need a method to select an appropriate value of γ, in other words: to
learn γ from data.
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TOOLS: OPTIMIZATION METHODS



OPTIMIZATION PROBLEMS

Terminology
An optimization problem for a given function f : Rd → R is a problem of the form

min
x

f (x)

which we read as "find x0 = arg minx f (x)".
A constrained optimization problem adds additional requirements on x,

min
x

f (x)

subject to x ∈ G ,

where G ⊂ Rd is called the feasible set. The set G is often defined by equations, e.g.

min
x

f (x)

subject to g(x) ≥ 0

The equation g is called a constraint.
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TYPES OF MINIMA

-3 -2 -1 1 2

-5

5

-2 2 4

-10

-5

5

10

15

20

25

global, but not local

local

global and local

Local and global minima
A minimum of f at x is called:

I Global if f assumes no smaller value on its domain.

I Local if there is some open neighborhood U of x such that f (x) is a global
minimum of f restricted to U.
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OPTIMA

Analytic criteria for local minima
Recall that x is a local minimum of f if

f ′(x) = 0 and f ′′(x) > 0 .

In Rd,

∇f (x) = 0 and Hf (x) =
( ∂f
∂xi∂xj

(x)
)

i,j=1,...,n
positive definite.

The d × d-matrix Hf (x) is called the Hessian matrix of f at x.

Numerical methods
All numerical minimization methods perform roughly the same steps:

I Start with some point x0.

I Our goal is to find a sequence x0, . . . , xm such that f (xm) is a minimum.

I At a given point xn, compute properties of f (such as f ′(xn) and f ′′(xn)).

I Based on these values, choose the next point xn+1.

The information f ′(xn), f ′′(xn) etc is always local at xn, and we can only decide
whether a point is a local minimum, not whether it is global.
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CONVEX FUNCTIONS

Definition
A function f is convex if every line segment
between function values lies above the graph of f .

x

f (x)

Analytic criterion
A twice differentiable function is convex if f ′′(x) ≥ 0 (or Hf (x) positive
semidefinite) for all x.

Implications for optimization
If f is convex, then:

I f ′(x) = 0 is a sufficient criterion for a minimum.

I Local minima are global.

I If f is strictly convex (f ′′ > 0 or Hf positive definite), there is only one
minimum (which is both gobal and local).
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GRADIENT DESCENT

Algorithm
Gradient descent searches for a minimum of f .

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, . . .
xn+1 := xn − f ′(xn)

3. Terminate when | f ′(xn)| < ε.

x

f (x)

f (x)

f ′(x)

x0x1x2xopt
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NEWTON’S METHOD: ROOTS

Algorithm
Newton’s method searches for a root of f , i.e. it solves the equation f (x) = 0.

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, . . .

xn+1 := xn − f (xn)/f ′(xn)

3. Terminate when | f (xn)| < ε.

x

f (x)

f (x)

f ′(x)
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BASIC APPLICATIONS

Function evaluation
Most numerical evaluations of functions (

√
a, sin(a), exp(a), etc) are implemented

using Newton’s method. To evaluate g at a, we have to transform x = g(a) into an
equivalent equation of the form

f (x, a) = 0 .

We then fix a and solve for x using Newton’s method for roots.

Example: Square root
To eveluate g(a) =

√
a, we can solve

f (x, a) = x2 − a = 0 .

This is essentially how sqrt() is implemented in the standard C library.
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NEWTON’S METHOD: MINIMA

Algorithm
We can use Newton’s method for minimization by applying it to solve f ′(x) = 0.

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, . . .

xn+1 := xn − f ′(xn)/f ′′(xn)

3. Terminate when | f ′(xn)| < ε.

x

f (x)

f (x)

f ′(x)
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MULTIPLE DIMENSIONS

In Rd we have to replace the derivatives by their vector space analogues.

Gradient descent

xn+1 := xn −∇f (xn)

Newton’s method for minima

xn+1 := xn − H−1
f (xn) · ∇f (xn)

The inverse of Hf (x) exists only if the matrix is positive definite (not if it is only
semidefinite), i.e. f has to be strictly convex.

The Hessian measures the curvature of f .

Effect of the Hessian
Multiplication by H−1

f in general changes the direction of
∇f (xn). The correction takes into account how∇f (x)
changes away from xn, as estimated using the Hessian at xn.

Figure: Arrow is∇f , x + ∆xnt is Newton step.

9.5 Newton’s method 485

PSfrag replacements

x

x + ∆xnt

x + ∆xnsd

Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT ∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x!.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x!, a very good choice
is P = ∇2f(x!). When x is near x!, we have ∇2f(x) ≈ ∇2f(x!), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x!) = 0 near x we obtain

∇f(x + v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x! (so the optimality conditions almost hold),
the update x + ∆xnt should be a very good approximation of x!.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x! of the minimization problem is characterized by f ′(x!) = 0, i.e., it is
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NEWTON: PROPERTIES

Convergence

I The algorithm always converges if f ′′ > 0 (or Hf positive definite).

I The speed of convergence separates into two phases:
I In a (possibly small) region around the minimum, f can always be

approximated by a quadratic function.
I Once the algorithm reaches that region, the error decreases at quadratic

rate. Roughly speaking, the number of correct digits in the solution
doubles in each step.

I Before it reaches that region, the convergence rate is linear.

High dimensions

I The required number of steps hardly depends on the dimension of Rd. Even in
R10000, you can usually expect the algorithm to reach high precision in half a
dozen steps.

I Caveat: The individual steps can become very expensive, since we have to
invert Hf in each step, which is of size d × d.
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NEXT: CONSTRAINED OPTIMIZATION

So far
I If f is differentiable, we can search for local minima using gradient descent.

I If f is sufficiently nice (convex and twice differentiable), we know how to speed
up the search process using Newton’s method.

Constrained problems

I The numerical minimizers use the criterion∇f (x) = 0 for the minimum.

I In a constrained problem, the minimum is not identified by this criterion.

Next steps
We will figure out how the constrained minimum can be identified. We have to
distinguish two cases:

I Problems involving only equalities as constraints (easy).

I Problems also involving inequalities (a bit more complex).
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OPTIMIZATION UNDER CONSTRAINTS

Objective

min f (x)

subject to g(x) = 0

Idea
I The feasible set is the set of points x which satisfy g(x) = 0,

G := {x | g(x) = 0} .

If g is reasonably smooth, G is a smooth surface in Rd.

I We restrict the function f to this surface and call the restricted function fg.

I The constrained optimization problem says that we are looking for the
minimum of fg.
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LAGRANGE OPTIMIZATION

f (x) = x2
1 + x2

2

The blue arrows are the gradients∇f (x) at various

values of x.

f (x)

x2

x1

G

Constraint g.

Here, g is linear, so the graph of g is a (sloped) affine

plane. The intersection of the plane with the

x1-x2-plane is the set G of all points x with g(x) = 0.
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LAGRANGE OPTIMIZATION

f (x)

x2

x1

G

I We can make the function fg given by the constraint g(x) = 0 visible by placing
a plane vertically through G. The graph of fg is the intersection of the graph of f
with the plane.

I Here, fg has parabolic shape.

I The gradient of f at the miniumum of fg is not 0.
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GRADIENTS AND CONTOURS

Fact

Gradients are orthogonal to contour lines.

Intuition
I The gradient points in the direction

in which f grows most rapidly.

I Contour lines are sets along which f
does not change.
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THE CRUCIAL BIT

∇g

(∇f (x0))g

(∇f (x0))⊥

∇f (x0)

{x|g(x) = 0}

x0
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AGAIN, IN DETAIL.

Idea
I Decompose∇f into a component (∇f )g in the set
{x | g(x) = 0} and a remainder (∇f )⊥.

I The two components are orthogonal.

I If fg is minimal within {x | g(x) = 0}, the component
within the set vanishes.

I The remainder need not vanish.

(∇f )g

(∇f )⊥

∇f

{g(x) = 0}

Consequence
I We need a criterion for (∇f )g = 0.

Solution
I If (∇f )g = 0, then∇f is orthogonal to the set g(x) = 0.

I Since gradients are orthogonal to contours, and the set is a contour of g,∇g is
also orthogonal to the set.

I Hence: At a minimum of fg, the two gradients point in the same direction:
∇f + λ∇g = 0 for some scalar λ 6= 0.
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SOLUTION: CONSTRAINED OPTIMIZATION

Solution
The constrained optimization problem

min
x

f (x)

s.t. g(x) = 0

is solved by solving the equation system

∇f (x) + λ∇g(x) = 0

g(x) = 0

The vectors∇f and∇g are D-dimensional, so the system contains D + 1 equations
for the D + 1 variables x1, . . . , xD, λ.
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INEQUALITY CONSTRAINTS

Objective
For a function f and a convex function g, solve

min f (x)

subject to g(x) ≤ 0

i.e. we replace g(x) = 0 as previously by g(x) ≤ 0. This problem is called an
optimization problem with inequality constraint.

Feasible set
We again write G for the set of all points which satisfy the constraint,

G := {x | g(x) ≤ 0} .

G is often called the feasible set (the same name is used for equality constraints).
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TWO CASES

Case distinction
1. The location x of the minimum can be in the

interior of G

2. x may be on the boundary of G.

in(G)

∂G
∇f

x0

lighter shade of blue = larger value of f

x1
∇g(x1)

Decomposition of G

G = in(G) ∪ ∂G = interior ∪ boundary

Note: The interior is given by g(x) < 0, the boundary by g(x) = 0.

Criteria for minimum
1. In interior: fg = f and hence∇fg = ∇f . We have to solve a standard

optimization problem with criterion∇f = 0.

2. On boundary: Here,∇fg 6= ∇f . Since g(x) = 0, the geometry of the problem
is the same as we have discussed for equality constraints, with criterion
∇f = λ∇g.
However: In this case, the sign of λ matters.
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ON THE BOUNDARY

Observation
I An extremum on the boundary is a minimum

only if∇f points into G.

I Otherwise, it is a maximum instead.

Criterion for minimum on boundary
Since∇g points away from G (since g increases
away from G),∇f and∇g have to point in
opposite directions:

∇f = λ∇g with λ < 0

Convention
To make the sign of λ explicit, we constrain λ to
positive values and instead write:

∇f =− λ∇g

s.t. λ > 0

∇f

G

∂G

x1∇g(x1)

∇f
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COMBINING THE CASES

Combined problem

∇f =− λ∇g

s.t. g(x) ≤ 0

λ = 0 if x ∈ in(G)

λ > 0 if x ∈ ∂G

Can we get rid of the "if x ∈ ·" distinction?
Yes: Note that g(x) < 0 if x in interior and g(x) = 0 on boundary. Hence, we always
have either λ = 0 or g(x) = 0 (and never both).

That means we can substitute

λ = 0 if x ∈ in(G)

λ > 0 if x ∈ ∂G

by
λ · g(x) = 0 and λ ≥ 0 .
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SOLUTION: INEQUALITY CONSTRAINTS

Combined solution
The optimization problem with inequality constraints

min f (x)

subject to g(x) ≤ 0

can be solved by solving

∇f (x) = −λ∇g(x)

s.t. λg(x) = 0

g(x) ≤ 0

λ ≥ 0

}
←− system of d + 1 equations for d + 1

variables x1, . . . , xD, λ

These conditions are known as the Karush-Kuhn-Tucker (or KKT) conditions.
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REMARKS

Haven’t we made the problem more difficult?

I To simplify the minimization of f for g(x) ≤ 0, we have made f more
complicated and added a variable and two constraints. Well done.

I However: In the original problem, we do not know how to minimize f , since the
usual criterion∇f = 0 does not work.

I By adding λ and additional constraints, we have reduced the problem to solving
a system of equations.

Summary: Conditions

Condition Ensures that... Purpose

∇f (x) = −λ∇g(x) If λ = 0: ∇f is 0 Opt. criterion inside G
If λ > 0: ∇f is anti-parallel to∇g Opt. criterion on boundary

λg(x) = 0 λ = 0 in interior of G Distinguish cases in(G) and ∂G
λ ≥ 0 ∇f cannot flip to orientation of∇g Optimum on ∂G is minimum
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WHY SHOULD g BE CONVEX?

More precisely
If g is a convex function, then G = {x | g(x) ≤ 0}
is a convex set. Why do we require convexity of G?

Problem
If G is not convex, the KKT conditions do not
guarantee that x is a minimum. (The conditions
still hold, i.e. if G is not convex, they are necessary
conditions, but not sufficient.)

Example (Figure)

I f is a linear function (lighter color = larger
value)

I ∇f is identical everywhere

I If G is not convex, there can be several points
(here: x1, x2, x3) which satisfy the KKT
conditions. Only x1 minimizes f on G.

I If G is convex, such problems cannot occur.

G

∂G

∇f

x0

x1
∇g(x1)

x2

x3
∇g(x3)

G

∂G

∇f

x0

x1
∇g(x1)
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INTERIOR POINT METHODS

Numerical methods for constrained problems
Once we have transformed our problem using Lagrange multipliers, we still have to
solve a problem of the form

∇f (x) = −λ∇g(x)

s.t. λg(x) = 0 and g(x) ≤ 0 and λ ≥ 0

numerically.
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BARRIER FUNCTIONS

Idea
A constraint in the problem

min f (x) s.t. g(x) < 0

can be expressed as an indicator function:

min f (x) + const. · I[0,∞)(g(x))

The constant must be chosen large enough to
enforce the constraint.

x

f (x)

I[0,∞)(x)βt(x)

Problem: The indicator function is piece-wise constant and not differentiable at 0.
Newton or gradient descent are not applicable.

Barrier function
A barrier function approximates I[0,∞) by a smooth function, e.g.

βt(x) := −1
t

log(−x) .
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NEWTON FOR CONSTRAINED PROBLEMS

Interior point methods
We can (approximately) solve

min f (x) s.t. gi(x) < 0 for i = 1, . . . ,m

by solving

min f (x) +

m∑

i=1

βi,t(x) .

with one barrier function βi,t for each constraint gi.
We do not have to adjust a multiplicative constant since βt(x)→∞ as x↗ 0.

Constrained problems: General solution strategy

1. Convert constraints into solvable problem using Lagrange multipliers.

2. Convert constraints of transformed problem into barrier functions.

3. Apply numerical optimization (usually Newton’s method).
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RECALL: SVM

Original optimization problem

min
vH,c
‖vH‖2 s.t. yi(〈vH, x̃i〉 − c) ≥ 1 for i = 1, . . . , n

Problem with inequality constraints gi(vH) ≤ 0 for gi(vH) := 1− yi(〈vH, x̃i〉 − c).

Transformed problem
If we transform the problem using Lagrange multipliers α1, . . . , αn, we obtain:

max
ααα∈Rn

W(ααα) :=

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjỹiỹj 〈x̃i, x̃j〉

s.t.
n∑

i=1

yiαi = 0

αi ≥ 0 for i = 1, . . . , n

This is precisely the "dual problem" we obtained before using geometric arguments.
We can find the max-margin hyperplane using an interior point method.
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RELEVANCE IN STATISTICS

Minimization problems
Most methods that we encounter in this class can be phrased as minimization
problem. For example:

Problem Objective function

ML estimation negative log-likelihood
Classification empirical risk
Regression fitting or prediction error
Unsupervised learning suitable cost function (later)

More generally
The lion’s share of algorithms in statistics or machine learning fall into either of two
classes:

1. Optimization methods.

2. Simulation methods (e.g. Markov chain Monte Carlo algorithms).
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MULTIPLE CLASSES

More than two classes
For some classifiers, multiple classes are natural. We have already seen one:

I Simple classifier fitting one Gaussian per class.

We will discuss more examples soon:

I Trees.

I Ensembles: Number of classes is determined by weak learners.

Exception: All classifiers based on hyperplanes.

Linear Classifiers
Approaches:

I One-versus-one classification.

I One-versus-all (more precisely: one-versus-the-rest) classification.

I Multiclass discriminants.

The SVM is particularly problematic.
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ONE-VERSUS-X CLASSIFICATION

One-versus-all

R1

R2

R3

?

C1

not C1

C2

not C2

I One linear classifier per class.

I Classifies "in class k" versus "not in
class k".

I Positive class = Ck.
Negative class = ∪j 6=kCj.

I Problem: Ambiguous regions (green
in figure).

One-versus-one

R1

R2

R3

?C1

C2

C1

C3

C2

C3

I One linear classifier for each pair of
classes (i.e. K(K−1)

2 in total).

I Classify by majority vote.

I Problem again: Ambiguous regions.
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MULTICLASS DISCRIMINANTS

Linear classifier
I Recall: Decision rule is f (x) = sgn(〈x, vH〉 − c)

I Idea: Combine classifiers before computing sign. Define

gk(x) := 〈x, vk〉 − ck

Multiclass linear discriminant
I Use one classifier gk (as above) for each class k.

I Trained e.g. as one-against-rest.

I Classify according to
f (x) := arg max

k
{gk(x)}

I If gk(x) is positive for several classes, a larger value of gk means that x lies
“further” into class k than into any other class j.

I If gk(x) is negative for all k, the maximum means we classify x according to the
class represented by the closest hyperplane.
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SVMS AND MULTIPLE CLASSES

Problem
I Multiclass discriminant idea: Compare distances to hyperplanes.

I Works if the orthogonal vectors vH determining the hyperplanes are normalized.

I SVM: The K classifiers in multiple discriminant approach are trained on
separate problems, so the individual lengths of vH computed by max-margin
algorithm are not comparable.

Workarounds
I Often: One-against-all approaches.

I It is possible to define a single optimization problem for all classes, but training
time scales quadratically in number of classes.
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MOTIVATION

Classifiers discussed so far
I Both assume linear decision boundary

I Perceptron: Linear separability; placement of boundary rather arbitrary

More realistic data

−2 0 2

−2

0

2
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MOTIVATION: KERNELS

Idea
I The SVM uses the scalar product 〈x, x̃i〉 as a measure of similarity between x

and x̃i, and of distance to the hyperplane.

I Since the scalar product is linear, the SVM is a linear method.

I By using a nonlinear function instead, we can make the classifier nonlinear.

More precisely

I Scalar product can be regarded as a two-argument function

〈 . , . 〉 : Rd × Rd → R

I We will replace this function with a function k : Rd × Rd → R and substitute

k(x, x′) for every occurrence of
〈
x, x′

〉

in the SVM formulae.

I Under certain conditions on k, all optimization/classification results for the
SVM still hold. Functions that satisfy these conditions are called kernel
functions.
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THE MOST POPULAR KERNEL

RBF Kernel

kRBF(x, x′) := exp
(
−‖x− x′‖2

2

2σ2

)
for some σ ∈ R+

is called an RBF kernel (RBF = radial basis function). The parameter σ is called
bandwidth.
Other names for kRBF: Gaussian kernel, squared-exponential kernel.

If we fix x′, the function kRBF( . , x′) is (up to scaling) a spherical Gaussian density on
Rd, with mean x′ and standard deviation σ.

8 CHAPTER 4. NONPARAMETRIC TECHNIQUES
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Figure 4.3: Examples of two-dimensional circularly symmetric normal Parzen windows
ϕ(x/h) for three different values of h. Note that because the δk(·) are normalized,
different vertical scales must be used to show their structure.

p(x)
p(x) p(x)

Figure 4.4: Three Parzen-window density estimates based on the same set of five
samples, using the window functions in Fig. 4.3. As before, the vertical axes have
been scaled to show the structure of each function.

and

lim
n→∞

σ2
n(x) = 0. (18)

To prove convergence we must place conditions on the unknown density p(x), on
the window function ϕ(u), and on the window width hn. In general, continuity of
p(·) at x is required, and the conditions imposed by Eqs. 12 & 13 are customarily
invoked. With care, it can be shown that the following additional conditions assure
convergence (Problem 1):

sup
u

ϕ(u) < ∞ (19)

lim
‖u‖→∞

ϕ(u)
d∏

i=1

ui = 0 (20)

function surface (d=2)

x1

x2

(c)contours (d=2)
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CHOOSING A KERNEL

Theory
To define a kernel:

I We have to define a function of two arguments and prove that it is a kernel.

I This is done by checking a set of necessary and sufficient conditions known as
“Mercer’s theorem”.

Practice
The data analyst does not define a kernel, but tries some well-known standard kernels
until one seems to work. Most common choices:

I The RBF kernel.

I The "linear kernel" kSP(x, x′) = 〈x, x′〉, i.e. the standard, linear SVM.

Once kernel is chosen
I Classifier can be trained by solving the optimization problem using standard

software.

I SVM software packages include implementations of most common kernels.
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WHICH FUNCTIONS WORK AS KERNELS?

Formal definition
A function k : Rd × Rd → R is called a kernel on Rd if there is some function
φ : Rd → F into some space F with scalar product 〈 . , . 〉F such that

k(x, x′) =
〈
φ(x), φ(x′)

〉
F for all x, x′ ∈ Rd .

In other words
I k is a kernel if it can be interpreted as a scalar product on some other space.

I If we substitute k(x, x′) for 〈x, x′〉 in all SVM equations, we implicitly train a
linear SVM on the space F .

I The SVM still works: It still uses scalar products, just on another space.

The mapping φ

I φ has to transform the data into data on which a linear SVM works well.

I This is usually achieved by choosing F as a higher-dimensional space than Rd.
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MAPPING INTO HIGHER DIMENSIONS

Example
How can a map into higher dimensions make class boundary (more) linear?
Consider

φ : R2 → R3 where φ

(
x1

x2

)
:=




x2
1

2x1x2

x2
2




Nonlinear Transformation in Kernel Space

!"

!#

$"

$%

$#
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MAPPING INTO HIGHER DIMENSIONS

Problem
In previous example: We have to know what the data looks like to choose φ!

Solution
I Choose high dimension h for F .

I Choose components φi of φ(x) = (φ1(x), . . . , φh(x)) as different nonlinear
mappings.

I If two points differ in Rd, some of the nonlinear mappings will amplify
differences.

The RBF kernel is an extreme case
I The function kRBF can be shown to be a kernel, however:

I F is infinite-dimensional for this kernel.
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DETERMINING WHETHER k IS A KERNEL

Mercer’s theorem
A mathematical result called Mercer’s theorem states that, if the function k is
positive, i.e. ∫

Rd×Rd
k(x, x′)f (x)f (x′)dxdx′ ≥ 0

for all functions f , then it can be written as

k(x, x′) =

∞∑

j=1

λjφj(x)φj(x′) .

The φj are functions Rd → R and λi ≥ 0. This means the (possibly infinite) vector
φ(x) = (

√
λ1φ1(x),

√
λ2φ2(x), . . .) is a feature map.

Kernel arithmetic
Various functions of kernels are again kernels: If k1 and k2 are kernels, then e.g.

k1 + k2 k1 · k2 const. · k1

are again kernels.
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THE KERNEL TRICK

Kernels in general

I Many linear machine learning and statistics algorithms can be "kernelized".

I The only conditions are:

1. The algorithm uses a scalar product.
2. In all relevant equations, the data (and all other elements of Rd) appear

only inside a scalar product.

I This approach to making algorithms non-linear is known as the "kernel trick".

Peter Orbanz · Statistical Machine Learning 112 / 523



KERNEL SVM

Optimization problem

min
vH,c

‖vH‖2
F + γ

n∑

i=1

ξ2

s.t. yi(〈vH, φ(x̃i)〉F − c) ≥ 1− ξi and ξi ≥ 0

Note: vH now lives in F , and ‖ . ‖F and 〈 . , . 〉F are norm and scalar product on F .

Dual optimization problem

max
ααα∈Rn

W(ααα) :=

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjỹiỹj(k(x̃i, x̃j) +
1
γ
I{i = j})

s.t.
n∑

i=1

yiαi = 0 and αi ≥ 0

Classifier
f (x) = sgn

(
n∑

i=1

ỹiα
∗
i k(x̃i, x)− c

)
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SVM WITH RBF KERNEL

f (x) = sign

(
n∑

i=1

yiα
∗
i kRBF(xi, x)

)

I Circled points are support vectors. The the two contour lines running through
support vectors are the nonlinear counterparts of the convex hulls.

I The thick black line is the classifier.

I Think of a Gaussian-shaped function kRBF( . , x′) centered at each support vector
x′. These functions add up to a function surface over R2.

I The lines in the image are contour lines of this surface. The classifier runs
along the bottom of the "valley" between the two classes.

I Smoothness of the contours is controlled by σ
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DECISION BOUNDARY WITH RBF KERNEL
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The decision boundary runs here.

The decision boundary of the classifier coincides with the set of points where the
surfaces for class +1 and class −1 have equal value.
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UNUSUAL EXAMPLE: GRAPH KERNELS

Terminology
A graph G = (V,E) is defined by two sets:

1. A set of V vertices v1, . . . , vm.

2. A set E of edges, i.e. variables eij ∈ {0, 1}.
eij = 1 means that vi and vj are connected.

The graph is undirected if eij = eji for all pairs of
vertices. (The graphs in the figure are undirected.)

We write G for the set of undirected graphs of
finite size.

Problem setting

I Training data (G̃i, ỹi)i∈[n], where each G̃i is a
graph in G.

I Can we learn a classifier f that classifies an
unlabeled graph G?
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GRAPH-VALUED DATA

Example 1: Social Networks

I Each vertex vj is a user.

I eij = 1 indicates that users i and j are "friends".

This data is graph-valued, but the data set typically consists of a single, very large
graph.

Example 2: Biology
There are dozens of types of graph-valued data in biology. One example is
protein-protein interaction data:

I Each vertex vj is a protein.

I eij = 1 indicates that proteins i and j interact in the given system.

(The graph on the previous slide shows such a data set.)

Graph kernels are designed for problems where we observe a set of graphs.
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COUNTING SUBGRAPHS

Modeling assumption
Graph G is characterized by how often certain
patterns (= subgraphs) occur in G.

Feature map

I Fix a set K of patterns.
Example: All subgraphs of size 3.

I For graphs G ∈ G, define

φF(G) :=
# occurrences of F in G

#subgraphs of size |F| in G

I Define the feature map φ as the vector

φ(G) = (φF(G))F∈K

This is a mapping φ : G → Rd
+.

The dimension is d = |K|.
All subgraphs of size 3
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GRAPH KERNEL

Kernel
The kernel defined by φ is

k(G,G′) :=
〈
φ(G), φ(G′)

〉
=
∑

F∈K
φF(G) · φF(G′)

A large value of k indicates there is a subgraph in K that occurs often in both graphs.

Classification
We can now train an SVM as usual. For training data (G̃1, ỹ1), . . . , (G̃n, ỹn), the
resulting classifier is

f (G) = sgn

(
n∑

i=1

ỹiα
∗
i k(G̃i,G)− c

)
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REMARKS

Other graph kernels

I There are various other ways to define graph kernels. For example, k could
compare G and G′ in terms of the probability that a random walk on G and a
random walk on G′ take the same path. (Such kernels are called random walk
kernels.)

I Each choice of kernel emphasizes a different property in terms of which the
graphs are compared.

More generally: Kernels for non-Euclidean data

I We have used the kernel to transform non-Euclidean data (graphs) so that it fits
into our classification framework.

I There are other, similar methods, e.g. string kernels.

I Note that we have not used the kernel for implicit representation, but rather
compute φ explicitly.
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SUMMARY: SVMS

Basic SVM
I Linear classifier for linearly separable data.

I Positions of affine hyperplane is determined by maximizing margin.

I Maximizing the margin is a convex optimization problem.

Full-fledged SVM

Ingredient Purpose

Maximum margin Good generalization properties
Slack variables Overlapping classes

Robustness against outliers
Kernel Nonlinear decision boundary

Use in practice

I Software packages (e.g. libsvm, SVMLite)

I Choose a kernel function (e.g. RBF)

I Cross-validate margin parameter γ and kernel parameters (e.g. bandwidth)
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MODEL SELECTION AND CROSS

VALIDATION



CROSS VALIDATION

Objective

I Cross validation is a method which tries to select the best model from a given
set of models.

I Assumption: Quality measure is predictive performance.

I "Set of models" can simply mean "set of different parameter values".

Terminology
The problem of choosing a good model is called model selection.
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SPECIFICALLY: SVM

Model selection problem for SVM

I The SVM is a family of models indexed by the margin parameter γ and the
kernel parameter(s) σ.

I Our goal is to find a value of (γ, σ) for which we can expect small
generalization error.

Naive approach

I We could include (γ, σ) into the optimization problem, i.e. train by minimizing
over α and (γ, σ).

I This leads to a phenomenon called overfitting: The classifier adapts too closely
to specific properties of the training data, rather than the underlying distribution.
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OVERFITTING: ILLUSTRATION

Overfitting is best illustrated with a nonlinear classifier.

I The classifier in this example only has a "bandwidth" parameter σ, similar to
the parameter σ of the RBF kernel.

I Small σ permits curve with sharp bends; large σ: Smooth curve.
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TRAINING VS TEST ERROR

Conceptual illustration

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
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(a)

(b)

(c)

(d)
Model Control Parameters

Training Error

Test Error

(e)
Model Control Parameters

Log Probability(Training Data | Control Parameters)

Figure 44.5. Optimization of
model complexity. Panels (a–c)
show a radial basis function model
interpolating a simple data set
with one input variable and one
output variable. As the
regularization constant is varied
to increase the complexity of the
model (from (a) to (c)), the
interpolant is able to fit the
training data increasingly well,
but beyond a certain point the
generalization ability (test error)
of the model deteriorates.
Probability theory allows us to
optimize the control parameters
without needing a test set.

The overfitting problem can be solved by using a Bayesian approach to
control model complexity.

If we give a probabilistic interpretation to the model, then we can evaluate
the evidence for alternative values of the control parameters. As was explained
in Chapter 28, over-complex models turn out to be less probable, and the
evidence P (Data |Control Parameters) can be used as an objective function
for optimization of model control parameters (figure 44.5e). The setting of α
that maximizes the evidence is displayed in figure 44.5b.

Bayesian optimization of model control parameters has four important ad-
vantages. (1) No ‘test set’ or ‘validation set’ is involved, so all available training
data can be devoted to both model fitting and model comparison. (2) Reg-
ularization constants can be optimized on-line, i.e., simultaneously with the
optimization of ordinary model parameters. (3) The Bayesian objective func-
tion is not noisy, in contrast to a cross-validation measure. (4) The gradient of
the evidence with respect to the control parameters can be evaluated, making
it possible to simultaneously optimize a large number of control parameters.

Probabilistic modelling also handles uncertainty in a natural manner. It
offers a unique prescription, marginalization, for incorporating uncertainty
about parameters into predictions; this procedure yields better predictions, as
we saw in Chapter 41. Figure 44.6 shows error bars on the predictions of a
trained neural network.

Figure 44.6. Error bars on the
predictions of a trained regression
network. The solid line gives the
predictions of the best-fit
parameters of a multilayer
perceptron trained on the data
points. The error bars (dotted
lines) are those produced by the
uncertainty of the parameters w.
Notice that the error bars become
larger where the data are sparse.

Implementation of Bayesian inference

As was mentioned in Chapter 41, Bayesian inference for multilayer networks
may be implemented by Monte Carlo sampling, or by deterministic methods
employing Gaussian approximations (Neal, 1996; MacKay, 1992c).

Vertical: Error Horizontal: Inverse parameter value ( 1
γ

or 1
σ

)

I If classifier can adapt (too) well to data: Small training error, but possibly large
test error.

I If classifier can hardly adapt at all: Large training and test error.

I Somewhere in between, there is a sweet spot.

I Trade-off is controlled by the parameter.
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MODEL SELECTION BY CROSS VALIDATION

(From now on, we just write γ to denote the entire set of model parameters.)

Cross Validation: Procedure
Model selection:

1. Randomly split data into three sets: training, validation and test data.

2. Train classifier on training data for different values of γ.

3. Evaluate each trained classifier on validation data (ie compute error rate).

4. Select the value of γ with lowest error rate.

Model assessment:

5. Finally: Estimate the error rate of the selected classifier on test data.
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INTERPRETATION

Meaning

I The quality measure by which we are comparing different classifiers f ( . ; γ)
(for different parameter values γ) is the risk

R(f ( . ; γ)) = E[L(y, f (x; γ))] .

I Since we do not know the true risk, we estimate it from data as R̂(f ( . ; γ)).

Importance of model assessment step

I We always have to assume: Classifier is better adapted to any data used to
select it than to actual data distribution.

I Model selection: Adapts classifier to both training and validation data.

I If we estimate error rate on this data, we will in general underestimate it.
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CROSS VALIDATION

Procedure in detail
We consider possible parameter values γ1, . . . , γm.

1. For each value γj, train a classifier f ( . ; γj) on the training set.

2. Use the validation set to estimate R(f ( . ; γj)) as the empirical risk

R̂(f (x; γj)) =
1
nv

nv∑

i=1

L(ỹi, f (x̃i, γj)) .

nv is the size of the validation set.

3. Select the value γ∗ which achieves the smallest estimated error.

4. Re-train the classifier with parameter γ∗ on all data except the test set
(i.e. on training + validation data).

5. Report error estimate R̂(f ( . ; γ∗)) computed on the test set.
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K-FOLD CROSS VALIDATION

Idea
Each of the error estimates computed on validation set is computed from a single
example of a trained classifier. Can we improve the estimate?

Strategy

I Set aside the test set.

I Split the remaining data into K blocks.

I Use each block in turn as validation set. Perform cross validation and average
the results over all K combinations.

This method is called K-fold cross validation.

Example: K=5, step k=3
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K-FOLD CROSS VALIDATION: PROCEDURE

Risk estimation
To estimate the risk of a classifier f ( . , γj):

1. Split data into K equally sized blocks.

2. Train an instance fk( . , γj) of the classifier, using all blocks except block k as
training data.

3. Compute the cross validation estimate

R̂CV(f ( . , γj)) :=
1
K

K∑

k=1

1
|block k|

∑

(x̃,̃y)∈ block k

L(ỹ, fk(x̃, γj))

Repeat this for all parameter values γ1, . . . , γm.

Selecting a model
Choose the parameter value γ∗ for which estimated risk is minimal.

Model assessment
Report risk estimate for f ( . , γ∗) computed on test data.
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HOW TO CHOOSE K?

Extremal cases
I K = n, called leave one out cross validation (loocv)

I K = 2

An often-cited problem with loocv is that we have to train many (= n) classifiers, but
there is also a deeper problem.

Argument 1: K should be small, e.g. K = 2

I Unless we have a lot of data, variance between two distinct training sets may be
considerable.

I Important concept: By removing substantial parts of the sample in turn and at
random, we can simulate this variance.

I By removing a single point (loocv), we cannot make this variance visible.
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ILLUSTRATION

K = 2, n = 20
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HOW TO CHOOSE K?

Argument 2: K should be large, e.g. K = n

I Classifiers generally perform better when trained on larger data sets.

I A small K means we substantially reduce the amount of training data used to
train each fk, so we may end up with weaker classifiers.

I This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10
Intuition:

I K = 10 means number of samples removed from training is one order of
magnitude below training sample size.

I This should not weaken the classifier considerably, but should be large enough
to make measure variance effects.
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SUMMARY: CROSS VALIDATION

Purpose
Estimates the risk R(f ) = E[L(y, f (x))] of a classifier (or regression function) from
data.

Application to parameter tuning

I Compute one cross validation estimate of R(f ) for each parameter value.

I Example above is margin parameter γ, but can be used for any parameter of a
supervised learning algorithm.

I Note: Cross validation procedure does not involve the test data.

split this
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TREE CLASSIFIERS



TREES

Idea
I Recall: Classifiers classify according to location in Rd

I Linear classifiers: Divide space into two halfspaces

I What if we are less sophisticated and divide space only along axes? We could
classify e.g. according to

x ∈
{

Class + if x3 > 0.5
Class - if x3 ≤ 0.5

I This decision would correspond to an affine hyperplane perpendicular to the
x3-axis, with offset 0.5.

Tree classifier
A tree classifier is a binary tree in which

I Each inner node is a rule of the form xi > ti.

I The threshold values ti are the parameters which
specify the tree.

I Each leaf is a class label.
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TREES

I Each leaf of the tree corresponds to a region Rm of Rd.

I Classes k ∈ {1, . . . ,K} (not restricted to two classes).

I Training: Each node is assigned class to which most points in Rm belong,

k(m) := arg max
k

#{xi ∈ Rm with yi = k}
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FINDING A SPLIT POINT

I In training algorithm, we have to fix a region Rm and split it along an axis j at a
point tj.

I The split results in two new regions R1
m and R2

m.

I On each region, we obtain a new class assignment k1(m) and k2(m).

I Strategy is again: Define cost of split at tj and minimize it to find tj.

Cost of a split

Q(Rm, tj) :=

∑
x̃i∈R1

m
I{ỹi 6= k1(m)}+

∑
x̃i∈R2

m
I{ỹi 6= k2(m)}

#{xi ∈ Rm}
In words:

Q = proportion of training points in Rm that get misclassified
if we choose to split at tj
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TRAINING ALGORITHM

Overall algorithm

I At each step: Current tree leaves define regions R1, . . . ,RM .

I For each Rm, find the best split.

I Continue splitting regions until tree has depth D (input parameter).

Step of training algorithm
At each step: Current tree leaves define regions R1, . . . ,RM .

For each region Rm:

1. For each axis j: Compute best splitting point tj as

tj := arg min Q(Rm, tj)

2. Select best splitting axis:

j := arg min
j

Q(Rm, tj)

3. Split Rm along axis j at tj
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EXAMPLE: SPAM FILTERING

Data
I 4601 email messages

I Classes: email, spam

Tree classifier
I 17 nodes

I Performance:

Predicted

True Email Spam

Email 57.3% 4.0%
Spam 5.3% 33.4%
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INFLUENCE OF TREE SIZE
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.4. Results for spam example. The blue
curve is the 10-fold cross-validation estimate of mis-
classification rate as a function of tree size, with stan-
dard error bars. The minimum occurs at a tree size
with about 17 terminal nodes (using the “one-standard-
-error” rule). The orange curve is the test error, which
tracks the CV error quite closely. The cross-validation
is indexed by values of α, shown above. The tree sizes
shown below refer to |Tα|, the size of the original tree
indexed by α.

Tree Size
I Tree of height D defines 2D regions.

I D too small: Insufficient accuracy. D too large: Overfitting.

I D can be determined by cross validation or more sophisticated methods
("complexity pruning" etc), which we will not discuss here.
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SPAM FILTERING: TREE
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.5. The pruned tree for the spam example.
The split variables are shown in blue on the branches,
and the classification is shown in every node.The num-
bers under the terminal nodes indicate misclassification
rates on the test data.
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DECISION STUMPS

I The simplest possible tree classifier is a tree of depth 1. Such a classifier is
called a decision stump.

I A decision stump is parameterized by a pair (j, tj) of an axis j and a splitting
point tj.

I Splits Rd into two regions.

I Decision boundary is an affine hyperplane which is perpendicular to axis j and
intersects the axis at tj.

I Often used in Boosting algorithms and other ensemble methods.
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BOOSTING



ENSEMBLES

A randomly chosen hyperplane classifier has an expected error of 0.5 (i.e. 50%).

I Many random hyperplanes combined by majority vote: Still 0.5.

I A single classifier slightly better than random: 0.5 + ε.

I What if we use m such classifiers and take a majority vote?
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VOTING

Decision by majority vote

I m individuals (or classifiers) take a vote. m is an odd number.

I They decide between two choices; one is correct, one is wrong.

I After everyone has voted, a decision is made by simple majority.

Note: For two-class classifiers f1, . . . , fm (with output ±1):

majority vote = sgn
( m∑

j=1

fj

)

Assumptions
Before we discuss ensembles, we try to convince ourselves that voting can be
beneficial. We make some simplifying assumptions:

I Each individual makes the right choice with probability p ∈ [0, 1].

I The votes are independent, i.e. stochastically independent when regarded as
random outcomes.
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DOES THE MAJORITY MAKE THE RIGHT CHOICE?

Condorcet’s rule
If the individual votes are independent, the answer is

Pr{ majority makes correct decision } =

m∑

j= m+1
2

m!

j!(m− j)!
pj(1− p)m−j

This formula is known as Condorcet’s jury theorem.

Probability as function of the number of votes

p = 0.55 p = 0.45 p = 0.85
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ENSEMBLE METHODS

Terminology

I An ensemble method makes a prediction by combining the predictions of
many classifiers into a single vote.

I The individual classifiers are usually required to perform only slightly better
than random. For two classes, this means slightly more than 50% of the data are
classified correctly. Such a classifier is called a weak learner.

Strategy

I We have seen above that if the weak learners are random and independent, the
prediction accuracy of the majority vote will increase with the number of weak
learners.

I Since the weak learners all have to be trained on the training data, producing
random, independent weak learners is difficult.

I Different ensemble methods (e.g. Boosting, Bagging, etc) use different
strategies to train and combine weak learners that behave relatively
independently.
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METHODS WE WILL DISCUSS

Boosting

I After training each weak learner, data is modified using weights.

I Deterministic algorithm.

Bagging
Each weak learner is trained on a random subset of the data.

Random forests
I Bagging with tree classifiers as weak learners.

I Uses an additional step to remove dimensions in Rd that carry little information.
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BOOSTING

Boosting

I Arguably the most popular (and historically the first) ensemble method.

I Weak learners can be trees (decision stumps are popular), Perceptrons, etc.

I Requirement: It must be possible to train the weak learner on a weighted
training set.

Overview
I Boosting adds weak learners one at a time.

I A weight value is assigned to each training point.

I At each step, data points which are currently classified correctly are weighted
down (i.e. the weight is smaller the more of the weak learners already trained
classify the point correctly).

I The next weak learner is trained on the weighted data set: In the training step,
the error contributions of misclassified points are multiplied by the weights of
the points.

I Roughly speaking, each weak learner tries to get those points right which are
currently not classified correctly.
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TRAINING WITH WEIGHTS

Example: Decision stump
A decision stump classifier for two classes is defined by

f ( x | j, t ) :=

{
+1 x(j) > t
−1 otherwise

where j ∈ {1, . . . , d} indexes an axis in Rd.

Weighted data

I Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).

I With each data point x̃i we associate a weight wi ≥ 0.

Training on weighted data
Minimize the weighted misclassifcation error:

(j∗, t∗) := arg min
j,t

∑n
i=1 wiI{ỹi 6= f (x̃i|j, t)}∑n

i=1 wi
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ADABOOST

Input

I Training data (x̃1, ỹ1), . . . , (x̃n, ỹn)

I Algorithm parameter: Number M of weak learners

Training algorithm

1. Initialize the observation weights wi = 1
n for i = 1, 2, ..., n.

2. For m = 1 to M:

2.1 Fit a classifier gm(x) to the training data using weights wi.
2.2 Compute

errm :=

∑n
i=1 wiI{yi 6= gm(xi)}∑

i wi

2.3 Compute αm = log( 1−errm
errm

)
2.4 Set wi ← wi · exp(αm · I(yi 6= gm(xi))) for i = 1, 2, ..., n.

3. Output

f (x) := sign

(
M∑

m=1

αmgm(x)

)
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ADABOOST

Weight updates

αm = log
(1− errm

errm

)

w(m)
i = w(m-1)

i · exp(αm · I(yi 6= gm(xi)))

Hence:

w(m)
i =

{
w(m-1)

i if gm classifies xi correctly
w(m-1)

i · 1−errm
errm

if gm misclassifies xi

0.2 0.4 0.6 0.8 1.0
err

2

4

6

8

10

1−errm
errm

Weighted classifier

f (x) = sign

(
M∑

m=1

αmgm(x)

)
0.2 0.4 0.6 0.8 1.0

err

-6

-4

-2

2

4

performance
0.5 = random

αm = log
(

1−errm
errm

)
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EXAMPLE

AdaBoost test error (simulated data)

I Weak learners used are decision stumps.

I Combining many trees of depth 1 yields much better results than a single large
tree.
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BOOSTING: PROPERTIES

Properties

I AdaBoost is one of most widely used classifiers in applications.

I Decision boundary is non-linear.

I Can handle multiple classes if weak learner can do so.

Test vs training error

I Most training algorithms (e.g. Perceptron) terminate when training error
reaches minimum.

I AdaBoost weights keep changing even if training error is minimal.

I Interestingly, the test error typically keeps decreasing even after training error
has stabilized at minimal value.

I It can be shown that this behavior can be interpreted in terms of a margin:
I Adding additional classifiers slowly pushes overall f towards a

maximum-margin solution.
I May not improve training error, but improves generalization properties.

I This does not imply that boosting magically outperforms SVMs, only that
minimal training error does not imply an optimal solution.
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BOOSTING AND FEATURE SELECTION

AdaBoost with Decision Stumps

I Once AdaBoost has trained a classifier, the weights αm tell us which of the
weak learners are important (i.e. classify large subsets of the data well).

I If we use Decision Stumps as weak learners, each fm corresponds to one axis.

I From the weights α, we can read off which axis are important to separate the
classes.

Terminology
The dimensions of Rd (= the measurements) are often called the features of the data.
The process of selecting features which contain important information for the
problem is called feature selection. Thus, AdaBoost with Decision Stumps can be
used to perform feature selection.
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SPAM DATA

I Tree classifier: 9.3% overall
error rate

I Boosting with decision
stumps: 4.5%

I Figure shows feature
selection results of
Boosting.
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CYCLES

RUDIN, DAUBECHIES, AND SCHAPIRE
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Figure 6: Examples of cycles from randomly generated matricesM. An image ofM for each plot
appears in Figure 7. These plots show a projection onto the first two components of Ada-
Boost’s weight vector, e.g., the axes might be dt,1 vs. dt,2. Smaller circles indicate earlier
iterations, and larger circles indicate later iterations. For (a), (d) and (f), 400 iterations
were plotted, and for (b) and (e), 300 iterations were plotted. Plot (c) shows 5500 itera-
tions, but only every 20th iteration was plotted. This case took longer to converge, and
converged to a simple 3-cycle.

1574

I An odd property of AdaBoost is that it can go into a cycle, i.e. the same
sequence of weight configurations occurs over and over.

I The figure shows weights (called dt by the authors of the paper, with t=iteration
number) for two weak learners.

I Circle size indicates iteration number, i.e. larger circel indicates larger t.
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APPLICATION: FACE DETECTION



FACE DETECTION

Searching for faces in images
Two problems:

I Face detection Find locations of all faces in image. Two classes.

I Face recognition Identify a person depicted in an image by recognizing the
face. One class per person to be identified + background class (all other people).

Face detection can be regarded as a solved problem. Face recognition is not solved.

Face detection as a classification problem

I Divide image into patches.

I Classify each patch as "face" or "not face"
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CLASSIFIER CASCADES

Unbalanced Classes
I Our assumption so far was that both classes are roughly of the same size.

I Some problems: One class is much larger.

I Example: Face detection.

I Image subdivided into small
quadratic patches.

I Even in pictures with several people,
only small fraction of patches
usually represent faces.

Standard classifier training
Suppose positive class is very small.

I Training algorithm can achieve good error rate by classifiying all data as
negative.

I The error rate will be precisely the proportion of points in positive class.
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CLASSIFIER CASCADES

Addressing class imbalance

I We have to change cost function: False negatives (= classify face as
background) expensive.

I Consequence: Training algorithm will focus on keeping proportion of false
negatives small.

I Problem: Will result in many false positives (= background classified as face).

Cascade approach

I Use many classifiers linked in a chain structure ("cascade").

I Each classifier eliminates part of the negative class.

I With each step down the cascade, class sizes become more even.
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CLASSIFIER CASCADES

Training a cascade
Use imbalanced loss (very low false negative
rate for each fj).

1. Train classifier f1 on entire training data
set.

2. Remove all x̃i in negative class which f1

classifies correctly from training set.

3. On smaller training set, train f2.

4. ...

5. On remaining data at final stage, train fk.

Classifying with a cascade

I If any fj classifies x as negative,
f (x) = −1.

I Only if all fj classify x as positive,
f (x) = +1.

x

f1

f2

. . .

fk

−

−

− +

+1

+1

+1

−1

−1

−1 +1
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WHY DOES A CASCADE WORK?

We have to consider two rates

false positive rate FPR(fj) =
#negative points classified as "+1"
#negative training points at stage j

detection rate DR(fj) =
#correctly classified positive points
#positive training points at stage j

We want to achieve a low value of FPR(f ) and a high value of DR(f ).

Class imbalance
In face detection example:

I Number of faces classified as background is (size of face class)× (1− DR(f ))

I We would like to see a decently high detection rate, say 90%

I Number of background patches classified as faces is
(size of background class)× (FPR(f ))

I Since background class is huge, FPR(f ) has to be very small to yield roughly
the same amount of errors in both classes.

Peter Orbanz · Statistical Machine Learning 165 / 523



WHY DOES A CASCADE WORK?

Cascade detection rate
The rates of the overall cascade classifier f are

FPR(f ) =

k∏

j=1

FPR(fj) DR(f ) =

k∏

j=1

DR(fj)

I Suppose we use a 10-stage cascade (k = 10)

I Each DR(fj) is 99% and we permit FPR(fj) of 30%.

I We obtain DR(f ) = 0.9910 ≈ 0.90 and FPR(f ) = 0.310 ≈ 6× 10−6
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VIOLA-JONES DETECTOR

Objectives

I Classification step should be computationally efficient.

I Expensive training affordable.

Strategy

I Extract very large set of measurements (features), i.e. d in Rd large.

I Use Boosting with decision stumps.

I From Boosting weights, select small number of important features.

I Class imbalance: Use Cascade.

Classification step
Compute only the selected features from input image.
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FEATURE EXTRACTION

Extraction method
1. Enumerate possible windows (different

shapes and locations) by j = 1, . . . , d.

2. For training image i and each window j,
compute

xij := average of pixel values in gray block(s)

− average of pixel values in white block(s)

3. Collect values for all j in a vector
xi := (xi1, . . . , xid) ∈ Rd.

Robust Real-Time Face Detection 139

together yield an extremely reliable and efficient face
detector. Section 5 will describe a number of experi-
mental results, including a detailed description of our
experimental methodology. Finally Section 6 contains
a discussion of this system and its relationship to re-
lated systems.

2. Features

Our face detection procedure classifies images based
on the value of simple features. There are many moti-
vations for using features rather than the pixels directly.
The most common reason is that features can act to en-
code ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. For this system
there is also a second critical motivation for features:
the feature-based system operates much faster than a
pixel-based system.

The simple features used are reminiscent of Haar
basis functions which have been used by Papageorgiou
et al. (1998). More specifically, we use three kinds of
features. The value of a two-rectangle feature is the
difference between the sum of the pixels within two
rectangular regions. The regions have the same size
and shape and are horizontally or vertically adjacent
(see Fig. 1). A three-rectangle feature computes the
sum within two outside rectangles subtracted from the
sum in a center rectangle. Finally a four-rectangle fea-
ture computes the difference between diagonal pairs of
rectangles.

Given that the base resolution of the detector is
24 × 24, the exhaustive set of rectangle features is

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

quite large, 160,000. Note that unlike the Haar basis,
the set of rectangle features is overcomplete.3

2.1. Integral Image

Rectangle features can be computed very rapidly using
an intermediate representation for the image which we
call the integral image.4 The integral image at location
x, y contains the sum of the pixels above and to the left
of x, y, inclusive:

i i(x, y) =
∑

x ′≤x,y′≤y

i(x ′, y′),

where i i(x, y) is the integral image and i(x, y) is the
original image (see Fig. 2). Using the following pair of
recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (1)

i i(x, y) = i i(x − 1, y) + s(x, y) (2)

(where s(x, y) is the cumulative row sum, s(x, −1) =
0, and i i(−1, y) = 0) the integral image can be com-
puted in one pass over the original image.

Using the integral image any rectangular sum can be
computed in four array references (see Fig. 3). Clearly
the difference between two rectangular sums can be
computed in eight references. Since the two-rectangle
features defined above involve adjacent rectangular
sums they can be computed in six array references,
eight in the case of the three-rectangle features, and
nine for four-rectangle features.

One alternative motivation for the integral im-
age comes from the “boxlets” work of Simard et al.

Figure 2. The value of the integral image at point (x, y) is the sum
of all the pixels above and to the left.

The dimension is huge

I One entry for (almost) every possible location of a rectangle in image.

I Start with small rectangles and increase edge length repeatedly by 1.5.

I In Viola-Jones paper: Images are 384× 288 pixels, d ≈ 160000.

Peter Orbanz · Statistical Machine Learning 168 / 523



SELECTED FEATURES

First two selected features
144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

200 features are selected in total.
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TRAINING THE CASCADE

Training procedure

1. User selects acceptable rates (FPR and DR) for each level of cascade.

2. At each level of cascade:
I Train boosting classifier.
I Gradually increase number of selected features until rates achieved.

Use of training data
Each training step uses:

I All positive examples (= faces).

I Negative examples (= non-faces) misclassified at previous cascade layer.
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EXAMPLE RESULTS

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection
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RESULTS

Robust Real-Time Face Detection 151

Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130
images and 507 faces.

False detections

Detector 10 31 50 65 78 95 167 422

Viola-Jones 76.1% 88.4% 91.4% 92.0% 92.1% 92.9% 93.9% 94.1%

Viola-Jones (voting) 81.1% 89.7% 92.1% 93.1% 93.1% 93.2% 93.7% –

Rowley-Baluja-Kanade 83.2% 86.0% – – – 89.2% 90.1% 89.9%

Schneiderman-Kanade – – – 94.4% – – – –

Roth-Yang-Ahuja – – – – (94.8%) – – –

regime (i.e. single point on the ROC curve). To make
comparison with our detector easier we have listed our
detection rate for the same false positive rate reported
by the other systems. Table 3 lists the detection rate
for various numbers of false detections for our system
as well as other published systems. For the Rowley-
Baluja-Kanade results (Rowley et al., 1998), a number
of different versions of their detector were tested yield-
ing a number of different results. While these various
results are not actually points on a ROC curve for a
particular detector, they do indicate a number of dif-
ferent performance points that can be achieved with
their approach. They did publish ROC curves for two
of their detectors, but these ROC curves did not rep-
resent their best results. For the Roth-Yang-Ahuja de-
tector (Roth et al., 2000), they reported their result on
the MIT + CMU test set minus 5 images containing
line drawn faces removed. So their results are for a sub-
set of the MIT + CMU test set containing 125 images
with 483 faces. Presumably their detection rate would
be lower if the full test set was used. The parenthe-
ses around their detection rate indicates this slightly
different test set. The Sung and Poggio face detec-
tor (Sung and Poggio, 1998) was tested on the MIT
subset of the MIT + CMU test set since the CMU
portion did not exist yet. The MIT test set contains
23 images with 149 faces. They achieved a detection
rate of 79.9% with 5 false positives. Our detection
rate with 5 false positives is 77.8% on the MIT test
set.

Figure 10 shows the output of our face detector on
some test images from the MIT + CMU test set.

5.7.1. A Simple Voting Scheme Further Improves
Results. The best results were obtained through the
combination of three detectors trained using different
initial negative examples, slightly different weighting

on negative versus positive errors, and slightly different
criteria for trading off false positives for classifier size.
These three systems performed similarly on the final
task, but in some cases errors were different. The detec-
tion results from these three detectors were combined
by retaining only those detections where at least 2 out
of 3 detectors agree. This improves the final detection
rate as well as eliminating more false positives. Since
detector errors are not uncorrelated, the combination
results in a measurable, but modest, improvement over
the best single detector.

5.7.2. Failure Modes. By observing the performance
of our face detector on a number of test images we have
noticed a few different failure modes.

The face detector was trained on frontal, upright
faces. The faces were only very roughly aligned so
there is some variation in rotation both in plane and out
of plane. Informal observation suggests that the face
detector can detect faces that are tilted up to about ±15
degrees in plane and about ±45 degrees out of plane
(toward a profile view). The detector becomes unreli-
able with more rotation than this.

We have also noticed that harsh backlighting in
which the faces are very dark while the background
is relatively light sometimes causes failures. It is in-
teresting to note that using a nonlinear variance nor-
malization based on robust statistics to remove out-
liers improves the detection rate in this situation. The
problem with such a normalization is the greatly in-
creased computational cost within our integral image
framework.

Finally, our face detector fails on significantly oc-
cluded faces. If the eyes are occluded for example, the
detector will usually fail. The mouth is not as important
and so a face with a covered mouth will usually still be
detected.
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ADDITIVE VIEW OF BOOSTING

Basis function interpretation
The boosting classifier is of the form

f (x) = sgn(F(x)) where F(x) :=

M∑

m=1

αmgm(x) .

I A linear combination of functions g1, . . . , gm can be interpreted as a
representation of F using the basis functions g1, . . . , gm.

I We can interpret the linear combination F(x) as an approximation of the
decision boundary using a basis of weak classifiers.

I To understand the approximation, we have to understand the coefficients αm.

Boosting as a stage-wise minimization procedure
It can be shown that αm is obtained by minimizing a risk,

(αm, gm) := arg min
α′m,g′m

R̂n(F(m-1) + α′mg′m)

under a specific loss function, the exponential loss. Notation: F(m) :=
∑

j≤m αmgm.
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EXPONENTIAL LOSS

Definition

Lexp(y, f (x)) := exp(−y · f (x))

y · f (x)

Lexp(y, f (x))

−1 +1
Relation to indicator function

y · f (x) =

{
+1 x correctly classified
−1 x misclassified

This is related to the indicator function we have used so far by

−y · f (x) = 2 · I{f (x) 6= y} − 1
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ADDITIVE PERSPECTIVE

Exponential loss risk of additive classifier
Our claim is that AdaBoost minimizes the empirical risk under Lexp,

R̂n(F(m-1) + βmgm) =
1
n

n∑

i=1

exp(−yiF(m-1) − yiβmgm(xi))

fixed in mth step

we only have to minimize here

Relation to AdaBoost
It can be shown that the classifier obtained by solving

arg min
βm,gm

R̂n(F(m-1) + βmgm)

at each step m yields the AdaBoost classifier.
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ADABOOST AS ADDITIVE MODEL

More precisely, it can be shown:
If we build a classifier F(x) :=

∑M
m=1 βmgm(x) which minimizes

R̂n(F(m-1)(x) + βmgm(x))

at each step m, we have to choose:

I gm as the classifier which minimizes the weighted misclassifiation rate.

I βm = 1
2 log 1−errm

errm
= 1

2αm

I w(m+1)
i := w(m)

i exp(−yiβmgm(xi))

This is precisely equivalent to what AdaBoost does.

In other words
AdaBoost approximates the optimal classifier (under exponential loss) using a basis
of weak classifiers.

I Since we do not know the true risk, we approximate by the empirical risk.

I Each weak learner optimizes 0-1 loss on weighted data.

I Weights are chosen so that procedure effectively optimizes exponential loss
risk.
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LOSS FUNCTIONS
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 Misclassification

Exponential
Binomial Deviance
Squared Error
Support Vector

L
o
ss

y · f

FIGURE 10.4. Loss functions for two-class classi-
fication. The response is y = ±1; the prediction is
f , with class prediction sign(f). The losses are mis-
classification: I(sign(f) != y); exponential: exp(−yf);
binomial deviance: log(1 + exp(−2yf)); squared er-
ror: (y − f)2; and support vector: (1− yf)+ (see Sec-
tion 12.3). Each function has been scaled so that it
passes through the point (0, 1).
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FIGURE 10.3. Simulated data, boosting with stumps:
misclassification error rate on the training set, and av-

erage exponential loss: (1/N)
PN

i=1 exp(−yif(xi)). Af-
ter about 250 iterations, the misclassification error is
zero, while the exponential loss continues to decrease.

I The right figure shows the misclassification rate and the average exponential
loss on the same data as number of weak learners increases.

I From the additive model perspective, the exponential loss helps explain why
prediction error continues to improve when training error is already optimal.
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BAGGING AND RANDOM FORESTS



BACKGROUND: RESAMPLING TECHNIQUES

We briefly review a technique called bootstrap on which Bagging and random forests are based.

Bootstrap
Bootstrap (or resampling) is a technique for improving the quality of estimators.

Resampling = sampling from the empirical distribution

Application to ensemble methods

I We will use resampling to generate weak learners for classification.

I We discuss two classifiers which use resampling: Bagging and random forests.

I Before we do so, we consider the traditional application of Bootstrap, namely
improving estimators.
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BOOTSTRAP: BASIC ALGORITHM

Given
I A sample x̃1, . . . , x̃n.

I An estimator Ŝ for a statistic S.

Bootstrap algorithm

1. Generate B bootstrap samples B1, . . . ,BB. Each bootstrap sample is obtained
by sampling n times with replacement from the sample data. (Note: Data points
can appear multiple times in any Bb.)

2. Evaluate the estimator on each bootstrap sample:

Ŝb := Ŝ(Bb)

(That is: We estimate S pretending that Bb is the data.)

3. Compute the bootstrap estimate of S by averaging over all bootstrap samples:

ŜBS :=
1
B

B∑

b=1

Ŝb
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EXAMPLE: VARIANCE ESTIMATION

Mean and Variance

µ :=

∫

Rd
x p(x)dx σ2 :=

∫

Rd
(x− µ)2p(x)dx

Plug-in estimators for mean and variance

µ̂ :=
1
n

n∑

i=1

x̃i σ̂2 :=
1
n

n∑

i=1

(x̃i − µ̂)2
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BOOTSTRAP VARIANCE ESTIMATE

Bootstrap algorithm

1. For b = 1, . . . ,B, generate a boostrap sample Bb. In detail:
For i = 1, . . . , n:

I Sample an index j ∈ {1, . . . , n}.
I Set x̃(b)

i := x̃j and add it to Bb.

2. For each b, compute mean and variance estimates:

µ̂b :=
1
n

n∑

i=1

x̃(b)
i σ̂2

b :=
1
n

n∑

i=1

(x̃(b)
i − µ̂b)

2

3. Compute the bootstrap estimate:

σ̂2
BS :=

1
B

B∑

b=1

σ̂2
b
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HOW OFTEN DO WE SEE EACH SAMPLE?

Sample {x̃1, ..., x̃n}, bootstrap resamples B1, ...,BB.

In how many sets does a given xi occur?
Probability for xi not to occur in n draws:

Pr{x̃i 6∈ Bb} = (1− 1
n

)n

For large n:

lim
n→∞

(
1− 1

n

)n

=
1
e
≈ 0.3679

I Asymptotically, any x̃i will appear in ∼ 63% of the bootstrap resamples.

I Multiple occurrences possible.

How often is x̃i expected to occur?
The expected number of occurences of each x̃i is B.

Bootstrap estimate averages over reshuffled samples.

Peter Orbanz · Statistical Machine Learning 184 / 523



BOOTSTRAP: APPLICATIONS

Estimate variance of estimators
I Since estimator Ŝ depends on (random) data, it is a random variable.

I The more this variable scatters, the less we can trust our estimate.

I If scatter is high, we can expect the values Ŝb to scatter as well.

I In previous example, this means: Estimating the variance of the variance
estimator.

Variance reduction
I Averaging over the individual bootstrap samples can reduce the variance in Ŝ.

I In other words: ŜBS typically has lower variance than Ŝ.

I This is the property we will use for classicifation in the following.

As alternative to cross validation
To estimate prediction error of classifier:

I For each b, train on Bb, estimate risk on points not in Bb.

I Average risk estimates over bootstrap samples.
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BAGGING

Idea
I Recall Boosting: Weak learners are deterministic, but selected to exhibit high

variance.

I Strategy now: Randomly distort data set by resampling.

I Train weak learners on resampled training sets.

I Resulting algorithm: Bagging (= Bootstrap aggregation)
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REPRESENTATION OF CLASS LABELS

For Bagging with K classes, we represent class labels as vectors:

xi in class k as yi =




0
...
0
1
0
...
0




←− kth entry

This way, we can average together multiple class labels:

1
n

(y1 + . . .+ yn) =




p1

...
pk

...
pK




We can interpret pk as the probability that one of the n points is in class k.
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BAGGING: ALGORITHM

Training
For b = 1, . . . ,B:

1. Draw a bootstrap sample Bb of size n from training data.

2. Train a classifier fb on Bb.

Classification
I Compute

favg(x) :=
1
B

B∑

b=1

fb(x)

This is a vector of the form favg(x) = (p1(x), . . . , pk(x)).

I The Bagging classifier is given by

fBagging(x) := arg max
k
{p1(x), . . . , pk(x)} ,

i.e. we predict the class label which most weak learners have voted for.
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EXAMPLE: BAGGING TREES

I Two classes, each with
Gaussian distribution in R5.

I Note the variance between
bootstrapped trees.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8

|
x.1 < 0.395

0 1

0
1 0

1
1 0

Original Tree

|
x.1 < 0.555

0
1 0

0
1

b = 1

|
x.2 < 0.205

0 1

0 1

0 1

b = 2

|
x.2 < 0.285

1 1
0

1 0

b = 3

|
x.3 < 0.985

0

1

0 1

1 1

b = 4

|
x.4 < −1.36

0

1
1 0

1
0

1 0

b = 5

|
x.1 < 0.395

1 1 0 0

1

b = 6

|
x.1 < 0.395

0 1

0 1

1

b = 7

|
x.3 < 0.985

0 1

0 0

1 0

b = 8

|
x.1 < 0.395

0

1

0 1
1 0

b = 9

|
x.1 < 0.555

1 0

1

0 1

b = 10

|
x.1 < 0.555

0 1

0

1

b = 11

FIGURE 8.9. Bagging trees on simulated dataset.
Th l f l h h i i l El
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RANDOM FORESTS

Bagging vs. Boosting

I Bagging works particularly well for trees, since trees have high variance.

I Boosting typically outperforms bagging with trees.

I The main culprit is usually dependence: Boosting is better at reducing
correlation between the trees than bagging is.

Random Forests
Modification of bagging with trees designed to further reduce correlation.

I Tree training optimizes each split over all dimensions.

I Random forests choose a different subset of dimensions at each split.

I Optimal split is chosen within the subset.

I The subset is chosen at random out of all dimensions {1, . . . , d}.

Peter Orbanz · Statistical Machine Learning 190 / 523



RANDOM FORESTS: ALGORITHM

Training
Input parameter: m (positive integer with m < d)

For b = 1, . . . ,B:

1. Draw a bootstrap sample Bb of size n from training data.

2. Train a tree classifier fb on Bb, where each split is computed as follows:
I Select m axes in Rd at random.
I Find the best split (j∗, t∗) on this subset of dimensions.
I Split current node along axis j∗ at t∗.

Classification
Exactly as for bagging: Classify by majority vote among the B trees. More precisely:

I Compute favg(x) := (p1(x), . . . , pk(x)) := 1
B

∑B
b=1 fb(x)

I The Random Forest classification rule is

fBagging(x) := arg max
k
{p1(x), . . . , pk(x)}
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RANDOM FORESTS

Remarks
I Recommended value for m is m = b

√
dc or smaller.

I RF typically achieve similar results as boosting. Implemented in most
packages, often as standard classifier.

Example: Synthetic Data

I This is the RF classification
boundary on the synthetic data we
have already seen a few times.

I Note the bias towards axis-parallel
alignment.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 15
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FIGURE 15.11. Random forests versus 3-NN on the
mixture data. The axis-oriented nature of the individ-
ual trees in a random forest lead to decision regions
with an axis-oriented flavor.
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SUMMARY: CLASSIFICATION



SUMMARY

Approaches we have discussed

I Linear classifiers
I Perceptron, SVM
I Nonlinear versions using kernels

I Trees (depth 1: linear and axis-parallel, depth ≥ 2: non-linear)

I Ensemble methods

What should we use?
I RBF SVMs, AdaBoost and Random Forests perform well on many problems.

I All have strengths and weaknesses. E.g.:
I High dimension, limited data: SVM may have the edge.
I Many dimensions, but we believe only a few are important: AdaBoost

with stumps.

I In general: Feature extraction (what do we measure?) is crucial.

I Consider combination of different methods by voting.
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EVERY METHOD HAS ITS IDIOSYNCRASIES

Linear SVM

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 12

SVM - Degree-4 Polynomial in Feature Space
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SVM - Radial Kernel in Feature Space
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FIGURE 12.3. Two nonlinear SVMs for the mix-
ture data. The upper plot uses a 4th degree polynomial

RBF SVM
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Random Forest Classifier
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3−Nearest Neighbors
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Training Error: 0.130
Test Error:       0.242
Bayes Error:    0.210

FIGURE 15.11. Random forests versus 3-NN on the
mixture data. The axis-oriented nature of the individ-
ual trees in a random forest lead to decision regions
with an axis-oriented flavor.
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HISTORY

I Ca. 1957: Perceptron (Rosenblatt)

I 1970s: Vapnik and Chervonenkis develop learning theory

I 1986: Neural network renaissance (backpropagation algorithm by Rumelhart,
Hinton, Williams)

I 1993: SVM (Boser, Guyon, Vapnik)

I 1997: Boosting (Freund and Schapire)
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REGRESSION: PROBLEM DEFINITION

Data
I Measurements: x ∈ Rd (also: independent variable, covariate)

I Labels: y ∈ R (also: dependent variable, response)

Task
Find a predictor f : Rd → R such that (approximately) f (x) = y for data (x, y). The
predictor is called a regression function.

Definition: Linear regression
A regression method is called linear if the predictor f is a linear function, i.e. a line if
d = 1 (more generally, an affine hyperplane).
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LINEAR REGRESSION

x ∈ Rd and y ∈ R

d = 1

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .

d = 2
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LINEAR REGRESSION

Implications of linearity
A linear function f : Rd → R is always of the form

f (x) = β0 +

d∑

j=1

βjxj for β0, β1, . . . , βd ∈ R ,

where xj is the jth entry of x. Recall representation of hyperplanes in classification!

Consequence
Finding f boils down to finding βββ ∈ Rd+1.

Relation to classification
I Classification is a regression problem with {1, . . . ,K} substituted for R.

I Don’t get confused—the role of the hyperplane (for, say, d = 2) is different:
I Regression: Graph of regression function is hyperplane in Rd+1.
I Classification: Regression function is piece-wise constant. The classifier

hyperplane lives in Rd and marks where the regression function jumps.
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LEAST-SQUARES REGRESSION

Squared-error loss
We use the squared-error loss function

Lse(y, f (x)) := ‖y− f (x)‖2
2 .

Regression methods that determine f by minimizing Lse are called least-squares
regression methods.

Least-squares linear regression
For training data (x̃1, ỹ1), . . . , (x̃n, ỹn), we have to find the parameter vector
βββ ∈ Rd+1 which solves

β̂ββ := arg min
βββ

n∑

i=1

Lse(ỹi, f (x̃i ;βββ))

where

f (x ;βββ) = β0 +

d∑

j=1

βjxj = 〈βββ, (1, x)〉 .
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MATRIX FORMULATION

Data matrix
Since f (x ;βββ) = 〈βββ, (1, x)〉, we write the data as a matrix:

X̃ :=

1 (x̃1)1 . . . (x̃1)j . . . (x̃1)d

...
...

...
1 (x̃i)1 . . . (x̃i)j . . . (x̃i)d

...
...

...
1 (x̃n)1 . . . (x̃n)j . . . (x̃n)d







x̃i

We write X̃col
j for the column vectors with X̃col

0 = (1, . . . , 1) and j = 1, . . . , d.

X̃βββ =




f (x̃1 ;βββ)
...

f (x̃n ;βββ)
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MATRIX FORMULATION

Least-squares linear regression: Matrix form
We have to minimize

n∑

i=1

Lse(ỹi, f (x̃i ;βββ)) =

n∑

i=1

(ỹi − f (x̃i ;βββ))2 = ‖ỹ− X̃βββ‖2
2

The solution to the linear regression problem is now β̂ββ = arg minβββ ‖ỹ− X̃βββ‖2.

Solving the minimization problem
Recall:

I We have to solve for a zero derivative, ∂Lse

∂βββ
(β̂ββ) = 0.

I That means that β̂ββ is an extremum.

I To ensure that the extremum is a minimum, we have to ensure the second
derivative ∂2Lse

∂βββ2 (β̂ββ) is positive. For matrices: Positive definite.
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LEAST-SQUARES SOLUTION

Solution

∂Lse

∂βββ
(β̂ββ) = −2X̃t(ỹ− X̃βββ)

Equating to zero gives the least-squares solution:

β̂ββ = (X̃tX̃)−1X̃ty

(Recall: The transpose Xt is the matrix with (Xt)ij := Xji.)

Second derivative

∂2Lse

∂βββ2 (β̂ββ) = 2X̃tX̃

I X̃tX̃ is always positive semi-definite. If it is also invertible, it is positive definite.

I In other words: If X̃tX̃ is invertible (which we also need to compute β̂ββ), then β̂ββ
is the unique global minimum of the squared-error loss.
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IMAGES OF LINEAR MAPPINGS (1)

Linear mapping
A matrix X ∈ Rn×m defines a linear mapping fX : Rm → Rn.

Image
Recall: The image of a mapping f is the set of all possible function values, here

image(fX ) := {y ∈ Rn |Xz = y for some z ∈ Rm}

Image of a linear mapping

I The image of a linear mapping Rm → Rn is a linear subspace of Rn.

I The columns of X form a basis of the image space:

image(X̃) = span{Xcol
1 , . . . ,X

col
m }

I This is one of most useful things to remember about matrices, so, again:

The columns span the image.
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IMAGES OF LINEAR MAPPINGS (2)

Dimension of the image space
Clearly: The number of linearly independent column vectors. This number is called
the column rank of X.

Invertible mappings
Recall: A mapping f is invertible if it is one-to-one, i.e. for each function value ỹ
there is exactly one input value with f (z) = ỹ.

Invertible matrices
The matrix X̃ is called invertible if fX is invertible.

I Only square matrices can be invertible.

I For a linear mapping: If X̃ is a square matrix fX is invertible if the image has the
same dimension as the input space.

I Even if X̃ ∈ Rn×m, the matrix X̃tX̃ is in Rm×m (a square matrix).

I So: X̃tX̃ is invertible if X̃ has full column rank.
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SYMMETRIC AND ORTHOGONAL MATRICES

Recall: Transpose
The transpose AT of a matrix A ∈ Rm is the matrix with entries

(AT)ij := Aji

Orthogonal matrices
A matrix O ∈ Rm×m is called orthogonal

O−1 = OT

Orthogonal matrices describe two types of operations:

1. Rotations of the coordinate system.

2. Permutations of the coordinate axes.

Symmetric matrices
A matrix A ∈ Rm×m is called symmetric

A = AT

Note: Symmetric and orthogonal matrices are very different objects. Only the identity is both.
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ORTHONORMAL BASES

Recall: ONB
A basis {v1, . . . , vm} of Rm is called an orthonormal basis if

〈vi, vj〉 =

{
1 i = j
0 i 6= j

In other words, the vi are pairwise orthogonal and each of length 1.

Orthogonal matrices
A matrix is orthogonal precisely if its rows form an ONB. Any two ONBs can be
transformed into each other by an orthogonal matrix.
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BASIS REPRESENTATION

Representation of a vector
Suppose E = {e1, . . . , ed} is a basis of a vector
space. Then a vector x is represented as

x =

d∑

j=1

[xj]E e(j)

[xj]E ∈ R are the coordinates of x w.r.t. E .

Other bases
If B = {b1, . . . , bd} is another basis, x can be
represented alternatively as

x =

d∑

j=1

[xj]Bb(j)

x

e(1)

e(2)

[x2]E

[x1]E

x
b(1)

b(2)

[x1]B[x2]B
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CHANGING BASES

Change-of-basis matrix
The matrix

M :=
(

[e(1)]B , . . . , [e
(d)]B

)

transforms between the bases, i.e.

M[x]E = [x]B .

If both E and B are ONBs, M is orthogonal.

Representation of matrices
The matrix representing a linear mapping
A : Rd → Rd in the basis E is computed as

[A]E :=
(

[A(e(1))]E , . . . , [A(e(d))]E

)

x

e(1)

e(2)

[x2]E

[x1]E

x
b(1)

b(2)

[x1]B[x2]B
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BASIS CHANGE FOR LINEAR MAPPINGS

Transforming matrices
The matrix representing a linear mapping also changes when we change bases:

[A]B = M[A]EM−1 .

Applied to a vector x, this means:

[A]B [x]B = M[A]EM−1[x]B .

transform x from B to E

apply A in representation E

transform x back to B

Transforming between ONBs
If V = {v1, . . . , vm} andW = {w1, . . . ,wm} are any two ONBs, there is an
orthogonal matrix O such that

[A]V = O[A]WO−1

for any linear mapping A.
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TOOLS:
EIGENVALUES AND GAUSSIAN

DISTRIBUTIONS



EIGENVALUES

We consider a square matrix A ∈ Rm×m.

Definition
A vector ξ ∈ Rm is called an eigenvector of A if the direction of ξ does not change
under application of A. In other words, if there is a scalar λ such that

Aξ = λξ .

λ is called an eigenvalue of A for the eigenvector ξ.

Properties in general

I In general, eigenvalues are complex numbers λ ∈ C.

I The class of matrices with the nicest eigen-structure are symmetric matrices,
for which all eigenvectors are mutually orthogonal.
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EIGENSTRUCTURE OF SYMMETRIC MATRICES

If a matrix is symmetric:

I There are rank(A) distinct eigendirections.

I The eigenvectors are pair-wise orthogonal.

I If rank(A) = m, there is an ONB of Rm consisting of eigenvectors of A.

Definiteness

type if ...

positive definite all eigenvalues > 0
positive semi-definite all eigenvalues ≥ 0
negative semi-definite all eigenvalues ≤ 0

negative definite all eigenvalues < 0
indefinite none of the above
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EIGENVECTOR ONB

Setting

I Suppose A symmetric, ξ1, . . . , ξm are eigenvectors and form an ONB.

I λ1, . . . , λm are the corresponding eigenvalues.

How does A act on a vector v ∈ Rm?

1. Represent v in basis ξ1, . . . , ξm:

v =

m∑

j=1

vA
j ξj where vA

j ∈ R

2. Multiply by A: Eigenvector definition (recall: Aξj = λξj) yields

Av = A
( m∑

j=1

vA
j ξj

)
=

m∑

j=1

vA
j Aξj =

m∑

j=1

vA
j λjξj

Conclusion

A symmetric matrix acts by scaling the directions ξj.
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ILLUSTRATION

Setting
We repeatedly apply a symmetric matrix B to some vector v ∈ Rm, i.e. we compute

Bv, B(Bv) = B2v, B(B(Bv))) = B3v, . . .

How does v change?

Example 1: v is an eigenvector with eigenvalue 2

v
Bv

B2v

The direction of v does not change, but its length doubles with each application of B.
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ILLUSTRATION

Example 2: v is an eigenvector with eigenvalue −1
2

v

Bv

B2v

B3v

For an arbitrary vector v

Bnv =

m∑

j=1

vB
j λ

n
j ξj

I The weight λn
j grows most rapidly for eigenvalue with largest absolute value.

I Consequence:

The direction of Bnv converges to the direction of the eigenvector with largest
eigenvalue as n grows large.
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QUADRATIC FORMS

In applications, symmetric matrices often occur in quadratic forms.

Definition
The quadratic form defined by a matrix A is the function

qA : Rm →R
x 7→ 〈x,Ax〉

Intuition
A quadratic form is the m-dimensional analogue of a quadratic function ax2, with a
vector substituted for the scalar x and the matrix A substituted for the scalar a ∈ R.

The Quadratic Form 5
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Figure 5: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a
singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of
solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG
will not work. In three dimensions or higher, a singular matrix can also have a saddle.

solution is a minimum of , so can be solved by finding an that minimizes . (If is not
symmetric, then Equation 6 hints that CG will find a solution to the system 1

2 . Note that
1
2 is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between
at some arbitrary point and at the solution point 1 . FromEquation 3 one can show (AppendixC1)

that if is symmetric (be it positive-definite or not),

1
2

(8)

If is positive-definite as well, then by Inequality 2, the latter term is positive for all . It follows that
is a global minimum of .

The fact that is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.
If is not positive-definite, there are several other possibilities. could be negative-definite — the result
of negating a positive-definite matrix (see Figure 2, but hold it upside-down). might be singular, in which
case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for . If
is none of the above, then is a saddle point, and techniques like Steepest Descent and CG will likely fail.
Figure 5 demonstrates the possibilities. The values of and determine where the minimum point of the
paraboloid lies, but do not affect the paraboloid’s shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.
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The fact that is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.
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Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.
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QUADRATIC FORMS

Here is the quadratic form for the matrix A =

(
2 1
1 2

)
:

I Left: The function value qA is graphed on the vertical axis.
I Right: Each line in R2 corresponds to a constant function value of qA .

Dark color = small values.
I The red lines are eigenvector directions of A. Their lengths represent the

(absolute) values of the eigenvalues.
I In this case, both eigenvalues are positive. If all eigenvalues are positive, the

contours are ellipses. So:

positive definite matrices ↔ elliptic quadratic forms
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QUADRATIC FORMS

In this plot, the eigenvectors are axis-parallel, and one eigenvalue is negative:

The matrix here is A =

(
2 0
0 −2

)
.

Intuition
I If we change the sign of one of the eigenvalue, the quadratic function along the

corresponding eigen-axis flips.

I There is a point which is a minimum of the function along one axis direction,
and a maximum along the other. Such a point is called a saddle point.
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APPLICATION: COVARIANCE MATRIX

Recall: Covariance
The covariance of two random variables X1,X2 is

Cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] .

If X1 = X2, the covariance is the variance: Cov[X,X] = Var[X].

Covariance matrix
If X = (X1, . . . ,Xm) is a random vector with values in Rm, the matrix of all
covariances

Cov[X] := (Cov[Xi,Xj])i,j =




Cov[X1,X1] · · · Cov[X1,Xm]
...

...
Cov[Xm,X1] · · · Cov[Xm,Xm]




is called the covariance matrix of X.

Notation
It is customary to denote the covariance matrix Cov[X] by Σ.
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GAUSSIAN DISTRIBUTION

Gaussian density in one dimension

p(x;µ, σ) :=
1√
2πσ

exp
(
− (x− µ)2

2σ2

)

I µ = expected value of x, σ2 = variance, σ = standard
deviation

I The quotient x−µ
σ

measures deviation of x from its expected
value in units of σ (i.e. σ defines the length scale)

Gaussian density in m dimensions
The quadratric function

− (x− µ)2

2σ2 = −1
2

(x− µ)(σ2)−1(x− µ)

is replaced by a quadratic form:

p(x;µµµ,Σ) :=
1√

2π det(Σ)
exp
(
−1

2

〈
(x−µµµ),Σ−1(x−µµµ)

〉)

The Gaussian Distribution

Chris Williams, School of Informatics, University of Edinburgh
Overview

• Probability density functions

• Univariate Gaussian

• Multivariate Gaussian

• Mahalanobis distance

• Properties of Gaussian distributions

• Graphical Gaussian models

• Read: Tipping chs 3 and 4

Continuous distributions
• Probability density function (pdf) for a continuous random variable X

P (a ≤ X ≤ b) =

∫ b

a
p(x)dx

therefore
P (x ≤ X ≤ x + δx) " p(x)δx

• Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2
exp−

{
(x − µ)2

2σ2

}

shorthand notation X ∼ N(µ, σ2)

• Standard normal (or Gaussian) distribution Z ∼ N(0,1)

• Normalization ∫ ∞

−∞
p(x)dx = 1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

• Cumulative distribution function

Φ(z) = P (Z ≤ z) =

∫ z

−∞
p(z′)dz′

• Expectation

E[g(X)] =

∫
g(x)p(x)dx

• mean, E[X]

• Variance E[(X − µ)2]

• For a Gaussian, mean = µ, variance = σ2

• Shorthand: x ∼ N(µ, σ2)
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COMPONENTS OF A 1D GAUSSIAN

µ = 2, σ = 2

-5 5 10

-2

-1

1

2

I Red: x 7→ x

I Green: x 7→ x− µ
I Blue: x 7→ − 1

2 (x− µ)2

I Brown: x 7→ − 1
2

(
x−µ
σ

)2

I Black: x 7→ exp
(
− 1

2

(
x−µ
σ

)2)
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GEOMETRY OF GAUSSIANS

Covariance matrix of a Gaussian
If a random vector X ∈ Rm has Gaussian distribution with density p(x;µ,Σ), its
covariance matrix is Cov[X] = Σ. In other words, a Gaussian is parameterized by its
covariance.

Observation
Since Cov[Xi,Xj] = Cov[Xj,Xi], the covariance matrix is symmetric.

What is the eigenstructure of Σ?

I We know: Σ symmetric⇒ there is an eigenvector ONB

I Call the eigenvectors in this ONB ξ1, . . . , ξm and their eigenvalues λ1, . . . , λm

I We can rotate the coordinate system to ξ1, . . . , ξm. In the new coordinate
system, Σ has the form

Σ[ξ1,...,ξn] =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm


 = diag(λ1, . . . , λm)
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EXAMPLE

Quadratic form

〈x,Σx〉 with Σ =

(
2 1
1 2

)

The eigenvectors are (1, 1) and (−1, 1) with
eigenvalues 3 and 1.

Gaussian density
p(x;µµµ,Σ) with µµµ = (0, 0).

Density graph
Density contour

1000 sample points
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INTERPRETATION

The ξi as random variables
Write e1, . . . , em for the ONB of axis vectors. We can represent each ξi as

ξi =

m∑

j=1

αijej

Then O = (αij) is the orthogonal transformation matrix between the two bases.
We can represent random vector X ∈ Rm sampled from the Gaussian in the
eigen-ONB as

X[ξ1,...,ξm] = (X′1, . . . ,X
′
m) with X′i =

m∑

j=1

αijXj

Since the Xj are random variables (and the αij are fixed), each X′i is a scalar random
variable.
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INTERPRETATION

Meaning of the random variables ξi
For any Gaussian p(x;µµµ,Σ), we can

1. shift the origin of the coordinate system into µµµ

2. rotate the coordinate system to the eigen-ONB of Σ.

In this new coordinate system, the Gaussian has covariance matrix

Σ[ξ1,...,ξm] = diag(λ1, . . . , λm)

where λi are the eigenvalues of Σ.

Gaussian in the new coordinates

A Gaussian vector X[ξ1,...,ξm] represented in the
new coordinates consists of m independent 1D
Gaussian variables X′i . Each X′i has mean 0 and
variance λi.
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SHRINKAGE



ISSUES WITH LEAST SQUARES

Robustness
I Least squares works only if X̃ has full column rank, i.e. if X̃tX̃ is invertible.

I If X̃tX̃ almost not invertible, least squares is numerically unstable.
Statistical consequence: High variance of predictions.

Not suited for high-dimensional data

I Modern problems: Many dimensions/features/predictors (possibly thousands)

I Only a few of these may be important
→ need some form of feature selection

I Least squares:
I Treats all dimensions equally
I Relevant dimensions are averaged with irrelevant ones
I Consequence: Signal loss
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REGULARITY OF MATRICES

Regularity
A matrix which is not invertible is also called a singular matrix. A matrix which is
invertible (not singular) is called regular.

In computations
Numerically, matrices can be "almost singular". Intuition:

I A singular matrix maps an entire linear subspace into a single point.

I If a matrix maps points far away from each other to points very close to each
other, it almost behaves like a singular matrix.
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REGULARITY OF SYMMETRIC MATRICES

Recall: A positive semi-definite matrix A is singluar⇔ smallest EValue is 0

Illustration
If smallest EValue λmin > 0 but very small (say λmin ≈ 10−10):

I Suppose x1, x2 are two points in subspace spanned by ξmin with
‖x1 − x2‖ ≈ 1000.

I Image under A: ‖Ax1 − Ax2‖ ≈ 10−7

In this case
I A has an inverse, but A behaves almost like a singular matrix

I The inverse A−1 can map almost identical points to points with large distance,
i.e.

small change in input → large change in output

→ unstable behavior

Consequence for Statistics
If a statistical prediction involves the inverse of an almost-singular matrix, the
predictions become unreliable (high variance).
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IMPLICATIONS FOR LINEAR REGRESSION

Recall: Prediction in linear regression
For a point xnew ∈ Rd, we predict the corresponding function value as

ŷnew =
〈
β̂, (1, x)

〉
= (X̃tX̃)−1X̃ty

Effect of unstable inversion
I Suppose we choose an arbitrary training point x̃i and make a small change to its

response value ỹi.

I Intuitively, that should not have a big impact on β̂ or on prediction.

I If X̃tX̃ is almost singular, a small change to ỹi can prompt a huge change in β̂,
and hence in the predicted value ŷnew.
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MEASURING REGULARITY (OF SYMMETRIC MATRICES)

Symmetric matrices
Denote by λmax and λmin the eigenvalues of A with largest/smallest absolute value. If
A is symmetric, then

A regular ⇔ |λmin| > 0 .

Idea
I We can use |λmin| as a measure of regularity:

larger value of λmin ↔ "more regular" matrix A

I We need a notion of scale to determine whether |λmin| is large.

I The relevant scale is how A scales a vector. Maximal scaling coefficient: λmax.

Regularity measure

c(A) :=
|λmin|
|λmax|

The function c( . ) is called the spectral condition ("spectral" since the set of
eigenvalues is also called the "spectrum").
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RIDGE REGRESSION

Objective
Ridge regression is a modification of least squares. We try to make least squares
more robust if X̃tX̃ is almost singular.

Ridge regression solution
The ridge regression solution to a linear regression problem is defined as

β̂ββ
ridge

:= (X̃tX̃ + λI)−1X̃ty

λ is a tuning parameter.
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EXPLANATION

Recall
X̃tX̃ ∈ R(d+1)×(d+1) is positive definite.

Spectral shift
Suppose ξ1, . . . , ξd+1 are EVectors of X̃tX̃ with EValues λ1, . . . , λd+1.
Then:

(X̃tX̃ + λI)ξi = (X̃tX̃)ξi + λIξi = (λi + λ)ξi

Hence: (X̃tX̃ + λI) is positive definite with EValues λ1 + λ, . . . , λd+1 + λ.

Conclusion

X̃tX̃ + λI is a regularized version of X̃tX̃.
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IMPLICATIONS FOR STATISTICS

Effect of regularization

I We deliberately distort prediction:
I If least squares (λ = 0) predicts perfectly, the ridge regression prediction

has an error that increases with λ.
I Hence: Biased estimator, bias increases with λ.

I Spectral shift regularizes matrix→ decreases variance of predictions.

Bias-variance trade-off
I We decrease the variance (improve robustness) at the price of incurring a bias.

I λ controls the trade-off between bias and variance.
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COST FUNCTION

Recall: Simple linear regression

I Linear regression solution was defined as minimizer of L(βββ) := ‖ỹ− X̃βββ‖2

I We have so far defined ridge regression only directly in terms of the estimator
β̂ββ

ridge
:= (X̃tX̃ + λI)−1X̃ty.

I To analyze the method, it is helpful to understand it as an optimization problem.

I We ask: Which function L′ does β̂ββ
ridge

minimize?

Ridge regression as an optimization problem

β̂ββ
ridge

= arg min
β
{‖y− X̃βββ‖2

2 + λ‖βββ‖2
2}
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REGRESSION WITH PENALTIES

Penalty terms
Recall: ‖y− X̃βββ‖2

2 =
∑

i Lse(yi, f (x̃i;βββ)), so ridge regression is of the form

L′(βββ) =
∑

i

Lse(yi, f (x̃i;βββ)) + λ‖βββ‖2

The term ‖βββ‖2 is called a penalty term.

Penalized fitting
The general structure of the optimization problem is

total cost = goodness-of-fit term + penalty term

Penalty terms make solutions we would like to discourage more expensive.

What kind of solutions does the choice ‖βββ‖2 favor or discourage?
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QUADRATIC PENALTIES

I A quadratic penalty implies that the
reduction in cost we can achieve
depends on the magnitude of βj.

I Suppose we reduce βj by a fixed
amount ∆β.

I Recall that the effect on the
regression function is linear. The
fitting cost (squared error) is
quadratic, but in the error, not in βββ.

I Consequence: Optimization
algorithm will favor vectors βββ whose
entries all have similar size.

βj

|βj|2

∆β ∆β
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SPARSITY

Setting

I Regression problem with n data points x̃i in RD.

I D may be very large (much larger than n).

I Goal: Select a small subset of d � D dimensions and discard the rest.

I In machine learning lingo: Feature selection for regression.

How do we switch off a dimension?
I In linear regression: Each entry of βββ corresponds to a dimension in data space.

I If βk = 0, the prediction is

f (x,βββ) = β0 + β1x1 + . . .+ 0 · xk + . . .+ βDxD ,

so the prediction does not depend on dimension k.

I Feature selection: Find a solution βββ that (1) predicts well and (2) has only a
small number of non-zero entries.

I A solution in which all but a few entries vanish is called a sparse solution.
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SPARSITY AND PENALTIES

Penalization approach
Find a penalty term which discourages non-sparse solutions.

Can quadratic penalty help?

I Suppose βk is large, all other βj are small but non-zero.

I Sparsity: Penalty should keep βk, discard others (i.e. push other βj to zero)

I Quadratic penalty: Will favor entries βj which all have similar size
→ pushes βk towards small value.

Overall, a quadratic penalty favors many small, but non-zero values.

Solution
Sparsity can be achieved using linear penalty terms.
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LASSO

Sparse regression

βββ lasso := arg min
βββ
{‖ỹ− X̃βββ‖2

2 + λ‖βββ‖1}

where

‖βββ‖1 :=

D∑

j=1

|βj|

The regression method which determines βββ lasso is also called the LASSO (for "Least
Absolute Shrinkage and Selection Operator").
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QUADRATIC PENALTIES

Quadratic penalty

βj

|βj|2

Reducing a large value βj by a fixed
amount achieves a large cost reduction.

Linear penalty

βj

|βj|

Cost reduction does not depend on the
magnitude of βj.
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RIDGE REGRESSION VS LASSO

β1

β2

β̂ββ

β1

β2

β̂ββ

I Red: Contours of ‖ỹ− X̃βββ‖2
2

I Blue: Contours of ‖βββ‖1 (left) and ‖βββ‖2 (right)
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`p REGRESSION

`p-norms

‖βββ‖p :=
( D∑

j=1

|βj|p
) 1

p for 0 < p ≤ ∞

is called the `p-norm.

`p-regression
The penalized linear regression problem

βββ`p := arg min
βββ
{‖ỹ− X̃βββ‖2

2 + λ‖βββ‖p
p}

is also referred to as `p-regression. We have seen:

I `1-regression = LASSO

I `2-regression = ridge regression
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`p PENALIZATION TERMS

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value ofP
j |βj |q for given values of q.

p = 4 p = 2 p = 1 p = 0.5 p = 0.1

p Behavior of ‖ . ‖p

p =∞ Norm measures largest absolute entry, ‖βββ‖∞ = maxj ‖βj‖
p > 2 Norm focusses on large entries
p = 2 Large entries are expensive; encourages similar-size entries.
p = 1 Encourages sparsity.
p < 1 Encourages sparsity as for p = 1 (note "pointy" behavior on the axes),

but contour set not convex.
p→ 0 Simply records whether an entry is non-zero, i.e. ‖βββ‖0 =

∑
j I{βj 6= 0}
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COMPUTING THE SOLUTION

Ridge regression
Recall: Solution can be computed directly as β̂ββ

ridge
:= (X̃tX̃ + λI)−1X̃ty. There is no

similar formula for the `1 case.

Solution of `1 problem
By convex optimization.
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`p REGRESSION AS AN OPTIMIZATION PROBLEM

Recall: `p penalty
The optimization problem

βββ`p := arg min
βββ
{‖ỹ− X̃βββ‖2

2 + λ‖βββ‖p
p}

looks like a Lagrange version of:

min
βββ

‖ỹ− X̃βββ‖2
2

s.t. ‖βββ‖p
p ≤ 0

However, ‖βββ‖p
p ≤ 0 makes no sense, since the only solution is βββ = (0, . . . , 0).

Observation
Constant shifts do not affect minima, so

arg min
βββ
‖βββ‖p

p = arg min
βββ

(‖βββ‖p
p − t)

for any t ∈ R.
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FORMULATION OF CONSTRAINTS

Constrained Version

βββ`p = arg min
βββ
‖ỹ− X̃βββ‖2

2

s.t. ‖βββ‖p
p ≤ t

Choosing the constraint as ‖βββ‖1
1 ≤ t gives the Lasso, ‖βββ‖2

2 ≤ t is ridge regression.

Feasible sets
The boundary ∂G of the feasible set is the contour set ‖βββ‖p

p = t.
Recall: G is convex only if p ≥ 1.
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SUMMARY: REGRESSION

Methods we have discussed
I Linear regression with least squares

I Ridge regression, Lasso, and other `p penalties

Note: All of these are linear. The solutions are hyperplanes. The different methods
differ only in how they place the hyperplane.

Ridge regression
Suppose we obtain two training samples X1 and X2 from the same distribution.

I Ideally, the linear regression solutions on both should be (nearly) identical.

I With standard linear regression, the problem may not be solvable (if X̃tX̃ not
invertible).

I Even if it is solvable, if the matrices X̃tX̃ are close to singular (small spectral
condition c(X̃tX̃)), then the two solutions can differ significantly.

I Ridge regression stabilizes the inversion of X̃tX̃. Consequences:
I Regression solutions for X1 and X2 will be almost identical if λ

sufficiently large.
I The price we pay is a bias that grows with λ.
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SUMMARY: REGRESSION

Lasso
I The `1-costraint "switches off" dimensions; only some of the entries of the

solution βββ lasso are non-zero (sparse βββ lasso).

I This variable selection also stabilizes X̃tX̃, since we are effectively inverting
only along those dimensions which provide sufficient information.

I No closed-form solution; use numerical optimization.

Formulation as optimization problem

Method f (βββ) g(βββ) Solution method

Least squares ‖ỹ− X̃βββ‖2
2 0 Analytic solution exists if X̃tX̃ invertible

Ridge regression ‖ỹ− X̃βββ‖2
2 ‖βββ‖2

2 − t Analytic solution exists
Lasso ‖ỹ− X̃βββ‖2

2 ‖βββ‖1 − t Numerical optimization
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MODEL BIAS AND VARIANCE



OVERVIEW

I We have already encountered the fact that we can trade off model flexibility
against stability of estimates (e.g. shrinkage).

I To make this effect a bit more precise, we have to discuss the type of errors that
we encounter in estimation problems.

I In this context, it is useful to interpret models as sets of probability
distributions.
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SPACE OF PROBABILITY DISTRIBUTIONS

The space of probability measure
We denote the set of probability distributions on X by M(X).

Example: X = {a, b, c}
I We write δ{a} for the distribution with

Pr{X = a} = 1 ,

similarly for b and c.

I Every distribution P ∈ M(X) is of the form

P = caδ{a} + cbδ{b} + ccδ{c}

with ca + cb + cc = 1.

M(X)

δ{a}

δ{b}δ{c}

P = 0.6 · δ{a} + 0.1 · δ{b} + 0.3 · δ{c}
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POINT MASSES

Dirac distributions
A Dirac distribution δx is a probability distribution which concentrates all its mass
at a single point x. A Dirac δx is also called a point mass.

Note: This means that there is no uncertainty in a random variable X with
distribution δx: We know before we even sample that X = x with probability 1.

Working with a Dirac
The defining property of a Dirac is that

∫

X
f (x)δx0 (dx) = f (x0)

for every (integrable) function f .
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VISUALIZATION OF M(X)

M(X) for an infinite set X
I If X is infinite (e.g. X = Rd), the distributions δ{a}, δ{b}, δ{c} above are

replaced by Diracs δx (one for each x ∈ X).

I The distributions δx still have the property that they cannot be represented as
convex combinations.

I Hence: Each δx is an extreme point of M(X).

I We need one additional dimension for each point x ∈ X.

I Roughly speaking, M(X) is the infinite-dimensional analogue of a triangle or
tetraeder, with its extreme points labelled by the points in X.

Visualization
In the following, we will still visualize
M(X) as a triangle, but keep in mind that
this is a cartoon.

M(X)
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THE EMPIRICAL DISTRIBUTION

The empirical distribution
If {x1, . . . , xn} is a sample, its empirical distribution is

Fn :=

n∑

i=1

1
n
δxi .

The sample as a distribution
Using Fn, we can regard the sample as an
element of the space M(X).

For i.i.d. samples, the law of large
numbers says that Fn converges to the true
distribution as n→∞.

M(X)

Actual distribution P0

Fn
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EXAMPLE: PLUG-IN ESTIMATORS

A simple application of the empirical distribution are plug-in estimators.

Integral statistics
Many of the most common statistics can be written in the form

S[p] =

∫

X
f (x)p(x)dx .

Examples: Expectation of p (where f (x) = x), variance of p (where
f (x) = (x− µ)2), etc.

Plug-in estimator
One way to estimate S from a sample {x1, . . . , xn} is to "plug in" the empirical
distribution Fn for the true distribution p:

Ŝ :=

∫

X
f (x)Fn(dx) =

1
n

n∑

i=1

f (xi)

This estimator is called the plug-in estimator of S.
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STATISTICAL MODELS

M(X)

Model

Recall that a statistical model with parameter space T is a set

P = {Pθ|θ ∈ T }

of distributions. In particular, a model is a subset of M(X).
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MODEL MISSPECIFICATION

M(X)

Model

P0 = Pθ0

misspecified
P0 outside model:

Suppose the observed data is generated by a "true" distribution P0.

I We say that the model is correctly specified if P0 ∈ P .

I If P0 6∈ P , the model is misspecified.
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MODEL MISSPECIFICATION

Example: Regression

Correctly specified Misspecified

Implications

I If the model is correctly specified, we can in principle find a parameter value
θ ∈ T which fully explains the data.

I Finding θ still requires a valid estimation procedure.

I In most cases, we can live with misspecification, provided that the
approximation error can be controlled.
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BIAS-VARIANCE TRADE-OFF

Model complexity
If our only objective is to avoid misspecification, we should make the model (the
subset P of M(X)) as large as possible. A larger set P corresponds to a model that is
more flexible.

Bias vs. Variance
I Misspecification means that, no matter how much data we observe, our

estimated model never completely explains the data. This can be interpreted as
a form of bias.

I To avoid misspecification, we can make the model more flexible.

I We have already seen how estimates in more flexible models tend to vary more
between sample sets (higher variance).

Thus, we can decrease bias at the expense of increasing variance, and vice versa.
This phenomenon is called the bias-variance trade-off.
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MEASURING MODEL COMPLEXITY

In parametric models

I A fundamental measure of model complexity is the number of degrees of
freedom (d.o.f.).

I This is roughly the dimension of the parameter space (= the number of
independent scalar paramaters), provided the parametrization is chosen such
that the entries of the parameter vector are reasonably independent of each
other.

I For example, a Gaussian scale model on Rd (unknown mean, fixed variance)
has d degrees of freedom, a Gaussian model with unknown mean and variance
has d + d(d − 1)/2.

Remark: Nonparametric models

I In nonparametric models (= infinite-dimensional parameter space), measuring
model complexity is much harder.

I Tools to solve this problem are developed in two closely related research fields
called Statistical Learning Theory (in Machine Learning) and Empirical
Process Theory (in Statistics).
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EXAMPLE: REGRESSION WITH ADDITIVE NOISE

Model

Y = f (X) + ε with E[ε] = 0 and Var[ε] = σ2 .

We assume that f ∈ F , where F is some class of functions. Linear regression is the
special case where F is the set of affine functions.

Bias and Variance
Prediction error(x0) = E[(Y − f̂ (x0))

2|X = x0]

= σ2 + (E[ f̂ (x0)]− f (x0))
2 + E[ f̂ (x0)− E[ f̂ (x0)]]

2

= σ2 + Bias( f̂ (x0))
2 + Var[ f̂ (x0)]

= Irreducible error + Bias2 + Variance

This is due to Fn 6= P0.

Decreases with model flexibility.

Increases with model flexibility.
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TYPES OF ERRORS

M(X)

Model

Regularized Model

P0

Fn

Model bias

Irreducible error Regularization bias

Regularized representation of Fn

Regularized representation of P0

Best model fit to P0

Best model fit for F

See also HTF, Chapter 7.3.Peter Orbanz · Statistical Machine Learning 266 / 523



SPECIFICALLY: LINEAR REGRESSION

Unregularized case
In linear least-squares regression, the variance term is

Var[̂f (x0)] = ‖(X̃tX̃)−1X̃tx0‖σ2
ε

Ridge regression
In ridge, the variance term is

Var[̂f (x0)] = ‖(X̃tX̃ + λI)−1X̃tx0‖σ2
ε

This term is generally smaller than in the unregularized case, but the corresponding
bias term is larger.
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SUMMARY

Model complexity

I Model choice has to trade off stability (low variance) vs flexibility (low bias).

I It can be beneficial (in terms of prediction error) to permit a bias if this
decreases the variance.

I Bias and variance terms combine to form prediction error.

How does cross validation fit in?
I Cross validation estimates the prediction error.

I A high variance of estimates will typically be reflected in a high variance
between estimates on different blocks.
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UNSUPERVISED LEARNING

In short
I Label information available→ supervised learning (classification, regression)

I No label information available→ unsupervised learning

Problem
I Try to find structure or patterns in data without knowing a correct solution.

I By choosing a model, we specify what kind of patterns we are looking for.

Examples of unsupervised learning problems

I Dimension reduction

I Clustering
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DIMENSION REDUCTION PROBLEMS

Setting

I Given: High-dimensional data x1, . . . , xn ∈ RD

I Look for: Low-dimensional projection of the data such that important structure
in data is preserved

More precisely

I Find suitable linear subspace V ⊂ RD with dim(V) =: d small.

I Compute projection xv
j of each xj onto V

Most common cases: d ∈ {2, 3} for visualization.
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PCA: OVERVIEW

Assumptions

1. Directions along which uncertainty in data is maximal are most interesting.

2. Uncertainty is measured by variance.

Method
I Compute empirical covariance matrix of the data.

I Compute its EValues λ1, . . . , λD and EVectors ξ1, . . . , ξD.

I Choose the d largest EValues, say, λj1 , . . . , λjd .

I Define subspace as V := span{ξj1 , . . . , ξjd}
I Project data onto V: For each xi, compute xv

i :=
∑d

j=1 〈xi, ξj〉 ξj

This algorithm is called Principal Component Analysis (PCA).
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PCA

Notation
I Empirical mean of data: µ̂n := 1

n

∑n
i=1 xi

I Empirical variance of data (1 dimension): σ̂2
n := 1

n

∑n
i=1(xi − µ̂n)

2

I Empirical covariance of data (D dimensions): Σ̂n := 1
n

∑n
i=1(xi− µ̂n)(xi− µ̂n)

t

Recall outer product of vectors: Matrix (xxt)ij := xixj

PCA Idea
Project data onto a direction v ∈ RD such that the variance of the projected data is
maximized.
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PCA

Claim
The variance of the projected data is given by

〈
v, Σ̂nv

〉
.

Explanation
The projection of xi onto v is 〈xi, v〉. Substitute
into empirical variance:

1
n

n∑

i=1

(〈xi, v〉 − 〈µ̂n, v〉)2 =
1
n

n∑

i=1

〈(xi − µ̂n), v〉2

=

〈(1
n

n∑

i=1

(xi − µ̂n)(xi − µ̂n)
t

︸ ︷︷ ︸
=Σ̂n

)
v, v

〉

Recall: quadratic forms
The variance along v is the value of the quadratic
form defined by Σ̂n, evaluated at v.

Red: Eigenvectors. White: v.
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PCA

PCA as optimization problem

max
v

〈
v, Σ̂nv

〉

s.t. ‖v‖2 = 1

The constraint ‖v‖2 = 1 ensures that we maximize by adjusting the direction of v;
otherwise, we could make

〈
v, Σ̂nv

〉
arbitrarily large by scaling v.

Optimization problem: Solution
We know from our discussion of quadratic forms:
〈
v, Σ̂nv

〉
maximal ⇔ v points in direction of ξmax

where ξmax is the EVector associated with the
largest EValue.
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PROJECTING ONTO SEVERAL DIMENSIONS

Projecting onto 2 dimensions

1. Project onto 1 dimension.

2. Remove that dimension from data, i.e. restrict data to the space orthogonal to v.

3. Apply PCA on restricted space.

It is not hard to show that the result is the direction of the EVector associated with the
second-largest eigenvalue.

Projecting onto d dimensions
By iterating the procedure above, we find that the optimal projection onto d
dimensions corresponds to the d largest EValues.

Summary
The PCA algorithm (=project on the d "largest" EVectors) can be justified as the
projection which maximizes the variance of the projected data.

Peter Orbanz · Statistical Machine Learning 277 / 523



PCA: EXAMPLE

Again: Digit data

I Recall: xi ∈ R256

I Here: Images representing the number 3.

Original M = 1 M = 10 M = 50 M = 250

Eigenvectors
The mean µ̂n and the EVectors are also elements of R256, so we can plot them as
images as well.

Mean λ1 = 3.4 · 105 λ2 = 2.8 · 105 λ3 = 2.4 · 105 λ4 = 1.6 · 105

These are the EVectors for the four largest EValues.

Principal components
The first few eigenvectors are called principal components. They can be regarded as
a summary of the main features of the data.
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COMPRESSION

Using PCA as a compressor

I To store a digit, we have to store 256 floating point (FP) numbers.

I If we store its projection onto d eigenvectors, we have to store:

1. The d complete eigenvectors = d · 256 FP numbers.
2. d FP numbers per image.

I For n large enough, i.e. if n · d + d · 256 < n · 256, this results in compression
of the data.

Lossy data compression

I From the compressed data, we cannot restore the data completely. Such
compression methods are called lossy compression.

I Other examples: JPEG, MP3, etc.

I Compression methods which completely preserve the data are called lossless.
(Example: ZIP compression for digital files.)
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COMPRESSING DIGITS WITH PCA
Original M = 1 M = 10 M = 50 M = 250

Input d = 1 d = 10 d = 50 d = 200

I The input image x is projected onto each eigenvector ξi to obtain a coefficient ci.

I Then x can be represented as

x =

D∑

j=1

ciξi

I A compressed version using d components is obtained as

x(d) =

d∑

j=1

ciξi

Since x(d) ∈ R256, we can plot it as an image. These are the images above.
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MODEL SELECTION

How many eigenvectors should we use?

I For visualization: Usually 2 or 3.

I For approximation or compression: We would like to minimize the
approximation error, so we should try to keep all large EValues.

Eigenvalues in the digit problem

I Ideally, the curve of the size-ordered
EValues shows a clear jump or bent at
which we can truncate.

I Such a jump is called a spectral gap.

 

i

λi

(a)
0 200 400 600

0

1

2

3

x 105
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CLUSTERING

Problem
I Given: Data x1, . . . , xn.

I Assumption: Each data point belongs to exactly one
group or class. These groups are called clusters.

I Our task is to find the clusters, given only the data.
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FIGURE 14.4. Simulated data in the plane, clus-
tered into three classes (represented by orange, blue and
green) by the K-means clustering algorithm

Representation
For K clusters, we encode assignments to clusters as a vector m ∈ {1, . . . ,K}n as

mi = k ⇔ xi assigned to cluster k

Clustering and classification
Clustering is the "unsupervised" counterpart to classification. There is no training
data and no labels, only one, unlabeled data set.
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EXAMPLE: IMAGE SEGMENTATION

Segmentation
Image segmentation is the problem of partitioning an image into "coherent" regions.
The problem is not well-posed: Its solution depends on the meaning of "coherent".

Example

Segmentation as a clustering problem

I For each pixel, place a small window around the pixel. Extract features
(measurements) from this window. For the i-th pixel, represent measurements
by a vector xi.

I Compute a clustering of the data x1, . . . , xn with K clusters.

I Each cluster represents one segment. In the images above, one cluster is
colored blue, one green, one red.
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A VERY SIMPLE CLUSTERING ALGORITHM: K-MEANS

K-means algorithm

I Randomly choose K "cluster centers" (the "means") µ(0)
1 , . . . , µ

(0)
K ∈ Rd

I Iterate until convergence (j = iteration number):

1. Assign each xi to the closest (in Euclidean distance) mean:

m(j+1)
i := arg min

k∈{1,...,K}
‖xi − µ(j)

k ‖

2. Recompute each µ(j)
k as the mean of all points assigned to it:

µ
(j+1)
k :=

1∣∣{i|m(j+1)
i = k}

∣∣
∑

i|m(j+1)
i =k

xi

Convergence Criterion
For example: Terminate when a the total change of the means satisfies

K∑

k=1

‖µ(j+1)
k − µ(j)

k ‖ < τ .

The threshold value τ is set by the user.
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K-MEANS: ILLUSTRATION
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FIGURE 14.6. Successive iterations of the K-means
clustering algorithm for the simulated data of Fig-
ure 14.4.

j = 1
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FIGURE 14.6. Successive iterations of the K-means
clustering algorithm for the simulated data of Fig-
ure 14.4.

j = 2
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FIGURE 14.6. Successive iterations of the K-means
clustering algorithm for the simulated data of Fig-
ure 14.4.

j = 20

Voronoi decomposition
The means µk partition the space (here R2) into K regions.
The regions corresponding to µk is the set of all points
closer to µk than to any other µl. Such a partition is called a
Voronoi decomposition.

The K-means assignment step assigns all data points in the
Voronoi region of µk to cluster k. The lines in the k-means
example are the boundaries of Voronoi regions.
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K-MEANS: GAUSSIAN INTERPRETATION

K Gaussians
Consider the following algorithm:

I Suppose each µk is the expected value of a Gaussian density p(x|µk, I) with unit
covariance.

I Start with K randomly chose means and iterate:

1. Assign each xi to the Gaussian under which it has the highest probability
of occurence (more precisely: highest density value).

2. Given the assignments, fit p(x|µk, I) by maximum likelihood estimation
of µk from all points assigned to cluster k.

Comparison to K-means

I Since the Gaussians are spherical with identical covariance, the density
p(xi|µk, I) is largest for the mean µk which is closest to xi in Euclidean distance.

I The maximum likelihood estimator of µk is

µ̂k :=
1∣∣{i|mi = k}

∣∣
∑

i|mi=k

xi

This is precisely the k-means algorithm!
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WHAT NEXT

I We will discuss a more sophisticated version of K-means called the
Expectation-Maximization (EM) algorithm.

I EM gives

1. A better statistical explanation of what is going on.
2. A direct generalization to other distributions. We will consider (1)

Gaussians with general covariance structure and (2) multinomial
distributions.
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MIXTURE MODELS

Mixture
For a parametric model p(x|θ) and a probability density q, a distribution of the form

π(x) =

∫

T
p(x|θ)q(θ)dθ

is called a mixture model. The distribution given by q is called the mixing
distribution.

Interpretation
Mixtures describe two-stage sampling procedures. We can generate samples from π
as follows:

1. Sample θi ∼ q.

2. Sample Xi ∼ p( . |θi).

The distribution of a sample x1, . . . , xn generated in this manner has density π.

Peter Orbanz · Statistical Machine Learning 289 / 523



EXAMPLE: CONTINUOUS MIXTURE

Example
We are mostly interested discrete mixing distributions, but θ can be continuous
variable, as in the following example.

Mixture components

1. Sample θ ∼ Gamma(α, β).

2. Regard θ as an inverse variance 1
σ2 := θ and sample

X ∼ Normal(0, σ)

Mixture distribution
The distribution of X is the mixture with density

π(x|0, ν :=
α

β
, τ := 2α) =

∫

R+

pNormal(x|0, 1/θ)qGamma(θ|α, β)dθ

This is Student’s t-distribution with parameters 0 (the mean of the normal), ν, τ .
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EXAMPLE: CONTINUOUS MIXTURE

Mixture components

Gamma distribution Normal distribution, different variances

Mixture distribution

The mixture is a Student distribution. Mixing over
different variances results in "heavy tails".

Comparison: Normal distribution (red) vs Student
distribution (blue)
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FINITE MIXTURES

Finite Mixture Model
A finite mixture model is a distribution with density of the form

π(x) =

K∑

k=1

ckp(x|θk) ,

where
∑

k ck = 1 and ck ≥ 0.

Example: Finite mixture of Gaussians
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FINITE MIXTURES

Interpretation as mixture
A mixture is of the form

π(x) =

∫

T
p(x|θ)q(θ)dθ .

We choose q as

q =

K∑

k=1

ckδθk

for K fixed values θk ∈ T . Recall that integration against the Dirac distribution δθ
"picks out" the function value at θ.

The mixture with mixing distribution q is therefore

π(x) =

∫

T
p(x|θ)

( K∑

k=1

ckδθk

)
dθ =

K∑

k=1

ck

∫

T
p(x|θ)δθk dθ

=

K∑

k=1

ckp(x|θk) .

Peter Orbanz · Statistical Machine Learning 293 / 523



EXAMPLE: GAUSSIAN MIXTURE

Specifying component parameters
To obtain mixture components with

(µ1, σ1) = (0, 1) and (µ2, σ2) = (2, 0.5) ,

we define Dirac distributions

δ(0,1) and δ(2,0.5) .

Right: Dirac locations on parameter space T .

Resulting mixture model
Convolution of

q(µ, σ) = c1δ(0,1)(µ, σ) + c2δ(2,0.5)(µ, σ)

with a Gaussian density g(x|µ, σ) results
in

π(x) = c1g(x|0, 1) + c2g(x|2, 0.5) .

Right: π(x) plotted for c1 = c2 = 1
2 .
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ILLUSTRATION

Mixture of two Gaussians

The curve outlined in red is the mixture

π(x) = 0.5g(x|0, 1) + 0.5g(x|2, 0.5) ,

where g is the Gaussian density. The blue
curves are the component densities.

Influence of the weights

Here, the weights c1 = c2 = 0.5 above
have been changed to c1 = 0.8 and
c2 = 0.2. The component distributions are
the same as above.
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SAMPLING

Sampling from a finite mixture
For a finite mixture with fixed parameters ck and θk, the two-step sampling procedure
is:

1. Choose a mixture component at random. Each component k is selected with
probability ck.

2. Sample xi from p(x|θk).

Note: We always repeat both steps, i.e. for xi+1, we choose again choose a (possibly
different) component at random.
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FINITE MIXTURES AND CLUSTERING

Clustering with finite mixtures
For a clustering problem with K clusters,

p(x|θk) = model of cluster k

The weight ck is the relative cluster size.

Estimation problem
If K is fixed and given, the unknown parameters of a mixture model are the weights
ck and the cluster parameters θk. The parameters of finite mixtures are estimated
using a method known as the EM algorithm.
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ILLUSTRATION: MIXTURE OF GAUSSIAN IN 2D

Plot of the mixture density.
A sample of size 1000.

Same components as above, with weight
of one component increased.

A sample of 1000 points. Note how the
relative size of one cluster has increased.
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MIXTURE ESTIMATION

Maximum likelihood for finite mixtures
Writing down the maximum likelihood problem is straightforward:

(ĉ, θ̂θθ) := (ĉ1, . . . , ĉK , θ̂1, . . . , θ̂K) = arg max
c,θθθ

n∏

i=1

( K∑

k=1

ckp(xi|θk)
)

The maximality equation for the logarithmic likelihood is

∂

∂(c, θθθ)

n∑

i=1

log
( K∑

k=1

ckp(xi|θk)
)

= 0

The component equation for each θk is:

n∑

i=1

ck
∂
∂θk

p(xi|θk)
∑K

k=1 ckp(xi|θk)
= 0

Solving this problem is analytically infeasible (note that we cannot multiply out the
denominator, because of the sum over i). Even numerical solution is often difficult.
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LATENT VARIABLES

Problems with ML estimation
I Solving the ML problem is difficult.

I For clustering, the maximum likelihood solution does not tell us which cluster
generated each xi.

Cluster assignments

I The mixture assumption implies that each xi was generated from one
component.

I For each xi, we again use an assignment variable mi ∈ {1, . . . ,K} which
encodes which cluster xi was sampled from.

Latent Variables
Since we do not know which component each xi was generated by, the values of the
assignment variables are unobserved. Such variables whose values are not observed
are called latent variables or hidden variables.
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ESTIMATION WITH LATENT VARIABLES

Latent variables as auxiliary information
If we knew the correct assignments mi, we could:

I Estimate each component distribution p(x|θk) separately, using only the data
assigned to cluster k.

I Estimate the cluster proportions ck as ĉk := #points in cluster k
n .

EM algorithm: Idea
The EM algorithm estimates values of the latent variables to simplify the estimation
problem. EM altnernates between two steps:

1. Estimate assignments mi given current estimates of the parameters ck and θk

("E-step").

2. Estimate parameters ci and θk given current estimates of the assignments
("M-step").

These two steps are iterated repeatedly.
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REPRESENTATION OF ASSIGNMENTS

We re-write the assignments as vectors of length K:

xi in cluster k as Mi :=




0
...
0
1
0
...
0




←− kth entry

so Mik = 1 if xi in cluster k, and Mik = 0 otherwise.
We collect the vectors into a matrix

M =




M11 . . . M1K

...
...

Mn1 . . . MnK




Note: Rows = observations, columns = clusters
Row sums = 1, column sums = cluster sizes.
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E-STEP

Hard vs soft assignments

I The vectors Mi are "hard assignments" with values in {0, 1} (as in k-means).

I EM computes "soft assignments" aik with values in [0, 1].

I Once the algorithm terminates, each point is assigned to a cluster by setting

mi := arg max
k

aik

The vectors Mi are the latent variables in the EM algorithm. The aik are there
current estimates.

Assignment probabilities
The soft assignments are computed as

aik :=
ckp(xi|θk)∑K
l=1 clp(xi|θl)

.

They can be interpreted as

aik := E[Mik|xi, c, θθθ] = Pr{xi generated by component k | c, θθθ}
Peter Orbanz · Statistical Machine Learning 303 / 523



M-STEP (1)

Objective
The M-Step re-estimates c and θθθ. In principle, we use maximum likelihood within
each cluster, but we have to combine it with the use of weights aik instead "switch
variables" Mik.

Cluster sizes
If we know which points belong to which cluster, we can estimate the cluster
proportions ck by counting point:

ĉk =
# points in cluster k

n
=

∑n
i=1 Mik

n

Since we do not know Mik, we substitute our current best guess, which are the
expectations aik:

ĉk :=

∑n
i=1 aik

n
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M-STEP (2)

Gaussian special case
The estimation of the component parameters θ depends on which distribution we
choose for p. For now, we assume a Gaussian.

Component parameters
We use maximum likelihood to estimate θ = (µ,Σ). We can write the MLE of µk as

µ̂k :=
1

# points in cluster k

∑

i|xi in k

xi =

∑n
i=1 Mikxi∑n

i=1 Mik

By substituting current best guesses (=aik) again, we get:

µ̂k :=

∑n
i=1 aikxi∑n

i=1 aik

For the covariance matrices:

Σ̂k :=

∑n
i=1 aik(xi − µ̂k)(xi − µ̂k)

t

∑n
i=1 aik
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NOTATION SUMMARY

Assignment probabilities

a =




a11 . . . a1K

...
...

an1 . . . anK


 = E







M11 . . . M1K

...
...

Mn1 . . . MnK





 =



E[M11] . . . E[M1K ]

...
...

E[Mn1] . . . E[MnK ]




Rows = observations, columns = clusters.

Mixture parameters

τττ = (c, θθθ) c = cluster proportions θθθ = component parameters

Iterations
θ( j), a( j) etc = values in jth iteration
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SUMMARY: EM FOR GAUSSIAN MIXTURE

Gaussian special case
θ = (µ,Σ) (mean & covariance) p(x|θ) = g(x|µ,Σ) (Gaussian density)

Algorithm
The EM algorithm for a finite mixture of Gaussians looks like this:

I Initialize: Choose random values c(0)
k and θ(0)

k .

I E-Step: Recompute the assignment weight matrix as

a( j+1)
ik :=

c( j)
k g(xi|θ( j)

k )∑K
l=1 c( j)

l g(xi|θ( j)
l )

.

I M-Step: Recompute the proportions ck and parameters θk = (µk,Σk) as

µ( j+1)
k :=

∑n
i=1 a( j+1)

ik xi∑n
i=1 a( j+1)

ik

and Σ( j+1)
k :=

∑n
i=1 a( j+1)

ik (xi − µ( j+1)
k )(xi − µ( j+1)

k )t

∑n
i=1 a( j+1)

ik

The E-Step and M-Step are repeated alternatingly until convergence criterion (e.g.
threshold) satisfied.
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EM: ILLUSTRATION

EM for a mixture of two Gaussians

(a)−2 0 2

−2

0

2

(b)−2 0 2

−2

0

2

(c)

L = 1

−2 0 2

−2

0

2

(d)

L = 2

−2 0 2

−2

0

2

(e)

L = 5

−2 0 2

−2

0

2

(f)

L = 20

−2 0 2

−2

0

2

The algorithm fits both the mean and the covariance parameter.
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EM ALGORITHM: GENERAL CASE

Reminder: Objective
Estimate θ and c by (approximate) Maximum Likelihood for

π(x) =

K∑

k=1

ckp(x|θk) =: π(x|c, θθθ) .

The components p(x|θk) need not be Gaussian.
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STEP 1 (OF 4)

Including the latent variables
Recall that we can integrate out a variable y from a joint density p(x, y):

p(x) =

∫
p(x, y)dy

We can apply this idea backwards and write the likelihood π(x|c, θ) as

π(x|c, θ) =
∑

M

π(x,M|c, θ)

Since M is discrete, the integral is a sum (over all possible assignment vectors M).

Application to the log-likelihood

n∑

i=1

logπ(xi|c, θ) =

n∑

i=1

log
(∑

Mi

π(x,Mi|c, θ)
)
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STEP 2

Approximation of the log-likelihood
We replace the log-likehood

n∑

i=1

log
(∑

Mi

π(x,Mi|c, θ)
)

by
n∑

i=1

∑

Mi

logπ(x,Mi|c, θ)

This is an approximation, the two terms are not identical.

Justification
It can be shown that always

n∑

i=1

∑

Mi

logπ(x,Mi|c, θ) ≤
n∑

i=1

log
(∑

Mi

π(x,Mi|c, θ)
)
.

That means we substitute the log-likelihood by a lower bound, and maximize the
lower bound.
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STEP 3

Current form of our problem
We have to solve the problem

(c∗, θ∗) = arg max
c,θ

n∑

i=1

∑

Mi

logπ(xi,Mi|c, θ)

but we only know the data xi, not the Mi.

Taking expectations
If we knew at least the distribution q(Mi) of Mi, we could maximize the expected
value:

(c∗, θ∗) := arg max
c,θ

n∑

i=1

∑

Mi

q(Mi) logπ(xi,Mi|c, θ)
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STEP 4 (OF 4)

Making the steps iterative
In step (j + 1) of the algorithm:

I We want to compute c( j+1), θ( j+1).

I We know the previous estimates c( j), θ( j).

Strategy: For quantities we do not know in current step, we substitute estimates
based on previous step.

Substituting previous estimates
As distribution q(Mi), we use

Pr{Mi = k|c( j), θ( j)} = Pr{xi generated by component k in mixture π(xi|c( j), θθθ( j))}

which is precisely
Pr{Mi = k|c( j), θ( j)} = a( j)

ik .
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SUMMARY: GENERAL EM

Algorithm

I E-Step: Recompute assignment matrix a( j)
ik as

a( j+1)
ik :=

c( j)
k p(xi|θ( j)

k )∑K
l=1 c( j)

l p(xi|θ( j)
l )

.

I M-Step: Recompute (c, θ) as

(c( j+1), θ( j+1)) := arg max
c,θ

{∑

ik

a( j+1)
ik log

(
ckp(xi|θk)

)}

Convenient special case
If the MLE of p(x|θ) is of the form θ̂ML = 1

n

∑
i f (xi) for some function f , the M-step

computes the "weighted maximum likelihood estimate":

c( j+1)
k :=

∑n
i=1 a( j+1)

ik

n
and θ( j+1)

k :=

∑n
i=1 a( j+1)

ik f (xi)∑n
i=1 a( j+1)

ik

This is, for example, the case for the Gaussian and the multinomial distribution.
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SUMMARY: APPROXIMATIONS

Approximations Used in EM
The derivation makes two approximations:

1. The log-likelihood is substituted by a lower bound.

2. The unknown assignments Mi are substituted by their expectations a( j)
ik under the

current model.
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CONVERGENCE PROPERTIES

Log-likelihood

I It can be shown that the likelihood
n∏

i=1

π(xi|c, θθθ)

always increases from each step to the next, unless (c, θθθ) is already a stationary
point.

I The theory guarantees only that the algorithm terminates at a stationary point.
That point can be a saddle point rather than a maximum (very rare problem).

The real problem: Local maxima

I EM is effectively a gradient method.

I The maxima it finds are local maxima of the
log-likelihood.

I There are no guarantees on the global quality
of the solution: The global maximum may
differ arbitrarily from the one we find.

initial value EM solution

log p(x|c, θ)

(c, θ)
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EM IN PRACTICE

Comparing solutions

I If (c, θθθ) and (c′, θθθ′) are two different EM solutions, we can always compute the
log-likelihoods

∑

i

logπ(xi|c, θθθ) and
∑

i

logπ(xi|c′, θθθ′)

(no approximations or complications!).

I The solution with the higher likelihood is better.

I This is a very convenient feature of EM: Different solutions are comparable.

Random restarts
In practice, the best way to use EM is often:

I Restart EM repeatedly with randomly chosen initial values.

I Compute the log-likelihoods of all solutions and compare them.

I Choose the solution achieving maximal log-likelihood.
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EXPONENTIAL FAMILY MODELS



EXPONENTIAL FAMILY DISTRIBUTIONS

Definition
We consider a model P for data in a sample space X with parameter space T ⊂ Rm.
Each distribution in P has density p(x|θ) for some θ ∈ T .

The model is called an exponential family model (EFM) if p can be written as

p(x|θ) =
h(x)

Z(θ)
e〈S(x),θ〉

where:

I S is a function S : X→ Rm. This function is called the sufficient statistic of P .

I h is a function h : X→ R+.

I Z is a function Z : T → R+, called the partition function.

Exponential families are important because:

1. The special form of p gives them many nice properties.

2. Most important parametric models (e.g. Gaussians) are EFMs.

3. Many algorithms and methods can be formulated generically for all EFMs.
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ALTERNATIVE FORM

The choice of p looks perhaps less arbitrary if we write

p(x|θ) = exp
(
〈S(x), θ〉 − φ(x)− ψ(θ)

)

which is obtained by defining

φ(x) := − log(h(x)) and ψ(θ) := log(Z(θ))

A first interpretation
Exponential family models are models in which:

I The data and the parameter interact only through the linear term 〈S(x), θ〉 in the
exponent.

I The logarithm of p can be non-linear in both S(x) and θ, but there is no joint
nonlinear function of (S(x), θ).

Peter Orbanz · Statistical Machine Learning 320 / 523



THE PARTITION FUNCTION

Normalization constraint
Since p is a probability density, we know

∫

X

h(x)

Z(θ)
e〈S(x),θ〉dx = 1 .

Partition function
The only term we can pull out of the integral is the partition function Z(θ), hence

Z(θ) =

∫

X
h(x)e〈S(x),θ〉dx

Note: This implies that an exponential family is completely determined by choice of
the spaces X and T and of the functions S and h.
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EXAMPLE: GAUSSIAN

In 1 dimension
We can rewrite the exponent of the Gaussian as

1√
2πσ

exp
(
−1

2
(x− µ)2

σ2

)
=

1√
2πσ

exp
(
−1

2
x2

σ2 +
2xµ
2σ2

)
exp
(
−1

2
µ2

σ2

)

= c(µ, σ)︸ ︷︷ ︸
some function ofµ and σ

exp
(

x2 · −1
2σ2 + x · µ

σ2

)

This shows the Gaussian is an exponential family, since we can choose:

S(x) :=
(
x2, x

)
and θ :=

( −1
2σ2 ,

µ
σ2

)
and h(x) = 1 and Z(θ) = c(µ, σ)−1 .

In d dimensions

S(x) =
(
xxt, x

)
and θ :=

(
− 1

2 Σ−1,Σ−1µ
)
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MORE EXAMPLES OF EXPONENTIAL FAMILIES

Model Sample space Sufficient statistic

Gaussian Rd S(x) = (xxt, x)
Gamma R+ S(x) = (ln(x), x)
Poisson N0 S(x) = x
Multinomial {1, . . . ,K} S(x) = x
Wishart Positive definite matrices (requires more details)
Mallows Rankings (permutations) (requires more details)
Beta [0, 1] S(x) = (ln(x), ln(1− x))
Dirichlet Probability distributions on d events S(x) = (ln x1, . . . , ln xd)
Bernoulli {0, 1} S(x) = x
. . . . . . . . .

Roughly speaking
On every sample space, there is a "natural" statistic of interest. On a space with
Euclidean distance, for example, it is natural to measure both location and
correlation; on categories (which have no "distance" from each other), it is more
natural to measure only expected numbers of counts.
On most types of sample spaces, the exponential family model with S chosen as this
natural statistic is the prototypical distribution.

Peter Orbanz · Statistical Machine Learning 323 / 523



MAXIMUM LIKELIHOOD FOR EFMS

Log-likelihood for n samples

log
n∏

i=1

p(xi|θ) =

n∑

i=1

(
log(h(xi))− log(Z(θ)) + 〈S(xi), θ〉

)

MLE equation

0 =
∂

∂θ

n∑

i=1

(
log(h(xi))− log(Z(θ)) + 〈S(xi), θ〉

)
= −n

∂

∂θ
log(Z(θ)) +

n∑

i=1

S(xi)

Hence, the MLE is the parameter value θ̂ which satisfies the equation

∂

∂θ
log(Z(θ̂)) =

1
n

n∑

i=1

S(xi)
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MOMENT MATCHING

Further simplification
We know that Z(θ) =

∫
h(x) exp 〈S(x), θ〉 dx, so

∂

∂θ
log(Z(θ)) =

∂
∂θ

Z(θ)

Z(θ)
=

∫
h(x) ∂

∂θ
e〈S(x),θ〉dx

Z(θ)
=

∫
S(x)h(x)e〈S(x),θ〉dx

Z(θ)
= Ep(x|θ)[S(x)]

MLE equation
Substitution into the MLE equation shows that θ̂ is given by

Ep(x|θ̂)[S(x)] =
1
n

n∑

i=1

S(xi)

Using the empirical distribution Fn, the right-hand side can be expressed as

Ep(x|θ̂)[S(x)] = EFn [S(x)]

This is called a moment matching equation. Hence, MLEs of exponential family
models can be obtained by moment matching.
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SUMMARY: MLE FOR EFMS

The MLE
If p(x|θ) is an exponential family model with sufficient statistic S, the maximum
likelihood estimator θ̂ of θ given data x1, . . . , xn is given by the equation

Ep(x|θ̂)[S(x)] =
1
n

n∑

i=1

S(xi)

Note
We had already noticed that the MLE (for some parameter τ ) is often of the form

τ̂ =
1
n

n∑

i=1

f (xi) .

Models are often defined so that the parameters can be interpreted as expectations of
some useful statistic (e.g., a mean or variance). If θ in an exponential family is
chosen as θ = Ep(x|θ)[S(x)], then we have indeed

θ̂ =
1
n

n∑

i=1

S(xi) .

Peter Orbanz · Statistical Machine Learning 326 / 523



EM FOR EXPONENTIAL FAMILY MIXTURE

Finite mixture model

π(x) =

K∑

k=1

ckp(x|θk) ,

where p is an exponential family with sufficient statistic S.

EM Algorithm

I E-Step: Recompute the assignment weight matrix as

a( j+1)
ik :=

c( j)
k p(xi|θ( j)

k )∑K
l=1 c( j)

l p(xi|θ( j)
l )

.

I M-Step: Recompute the proportions ck and parameters θk by solving

c( j+1)
k :=

∑n
i=1 a( j+1)

ik

n
and Ep(x|θ( j+1)

k )
[S(x)] =

∑n
i=1 a( j+1)

ik S(xi)∑n
i=1 a( j+1)

ik
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EM FOR EXPONENTIAL FAMILY MIXTURE

If in particular the model is parameterized such that

Ep(x|θ)[S(x)] = θ

the algorithm becomes very simple:

I E-Step: Recompute the assignment weight matrix as

a( j+1)
ik :=

c( j)
k p(xi|θ( j)

k )∑K
l=1 c( j)

l p(xi|θ( j)
l )

.

I M-Step: Recompute the proportions ck and parameters θk as

c( j+1)
k :=

∑n
i=1 a( j+1)

ik

n
and θ( j+1)

k :=

∑n
i=1 a( j+1)

ik S(xi)∑n
i=1 a( j+1)

ik
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THE MULTINOMIAL

DISTRIBUTION



CATEGORICAL DATA

Categorical random variable
We call a random variable ξ categorical if it takes values in a finite set, i.e. if
ξ ∈ {1, . . . , d} for some d ∈ N. We interpret the d different outcomes as d separate
categories or classes.

Category probabilities
Suppose we know the probability tj = Pr{ξ = j} for each category j. Then

tj ≥ 0 and
d∑

j=1

tj = 1

We can represent the distribution of ξ by the vector t = (t1, . . . , tj) ∈ Rd. In other
words, we can parameterize distributions of categorical variables by vectors t.
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SAMPLES OF SIZE n

A single sample
We can represent a single sample as a vector, e.g.

(0, 1, 0, 0, 0) if d = 5 and ξ = 2 .

(Recall the assignments in EM.)

n samples
A sample of size n is a vector of counts, e.g.

(2, 5, 1, 3, 0)

We denote the counts by Hj and write

H := (H1, . . . ,Hd) with
d∑

j=1

Hj = n .
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MULTINOMIAL DISTRIBUTION

Modeling assumption
The n observations of ξ are independent, and the probability for ξ = j in each draw is
tj. What is the probability of observing the sample H = (H1, . . . ,Hj)?

Multinomial distribution
Answer: The probability is

P(H|t) =
n!

H1! · · ·Hd!

d∏

j=1

tHj
j =

n!

H1! · · ·Hd!
exp
( d∑

j=1

Hj log(tj)
)

Recall: n! = 1 · 2 · 3 · . . . · n
Note: The assingment variables Mi in a finite mixture model are multinomially
distributed with n = 1 and θ = (c1, . . . , ck).

As an exponential family
The form of P above shows that the multinomial is an EFM with

S(H) := H h(H) :=
n!

H1! · · ·Hd!
θj := log tj Z(θ) := 1 .
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EXPLANATION

I In one draw, the probability of observing ξ = j is tj.
I In n draws, the probability of n times observing ξ = j is tn

j .

Suppose we have n = 3 observation in two categories. How many ways are there to
observe exactly two observations in category 1? Three:

[1, 2] [3] [1, 3] [2] [2, 3] [1]

Probability: t2
1 · t2 also t2

1 · t2 again t2
1 · t2

The total probability of H1 = 2 and H2 = 1 is 3 · t2
1 · t2.

I The number of ways that n elements can be subdivided into d classes with, Hj

elements falling into class j, is precisely

n!

H1! · · ·Hd!

In the multinomial formula:

P(H|t) =
n!

H1! · · ·Hd!︸ ︷︷ ︸
# combinations

d∏

j=1

tHj
j

︸ ︷︷ ︸
probability of one combination
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PARAMETER ESTIMATION

MLE
The maximum likelihood estimator of t is

t̂ = (̂t1, . . . , t̂d) :=
1
n

(H1, . . . ,Hd) .
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MULTINOMIAL PARAMETERS AND SIMPLICES

The simplex
The set of possible parameters of a multionmial distribution
is

4d := {t ∈ Rd | tj ≥ 0 and
∑

j

tj = 1}

4d is a subset of Rd and is called the d-simplex, or the
standard simplex in Rd.

Interpretation

I Each point in e.g.43 is a distribution on 3 events.

I Each extreme point (corner) correspond to one
category j and is the distribution with tj = 1.

I The edges of43 are the distributions under which
only 2 events can occur. (The category corresponding
to the opposite corner has zero probability.)

I The inner points are distributions under which all
categories can occur.

Category 3

Category 2

Category 1

43

t = (t1, t2, t3)

Category 1

Category 2

42

t = (t1, t2)
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EXAMPLE 1: LOCAL IMAGE HISTOGRAMS

Extracting local image statistics

1. Place a small window (size l× l)
around location in image.

2. Extract the pixel values inside the
image. If the grayscale values are
e.g. {0, . . . , 255}, we obtain a
histogram with 256 categories.

3. Decrease resolution by binning; in
Homework 4, we decrease from 256
to 16 categories.

Resulting data

H = (H1, . . . ,H16) where Hj = # pixel values in bin j .

Since 256/16 = 8, bin j represents the event

pixel value ∈ {(j− 1) · 8, . . . , j · 8− 1} .
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EXAMPLE 1: LOCAL IMAGE HISTOGRAMS

Multinomial model
We can model the data by a multinomial distribution P(H|t, n = l2). Then

tj = Pr{ξ = j} = Pr{ grayscale value falls in bin j } .

Homework: Multinomial clustering

I The probability of e.g. bin 1 (dark pixels) clearly
varies between locations in the image.

I Consequence: A single multinomial distribution is not
a good representation of this image.

I In HW 4, the image is represented by a mixture of
multinomials which is estimated using EM.

Peter Orbanz · Statistical Machine Learning 337 / 523



MULTINOMIAL CLUSTERING AND

TEXT MODELS



TEXT DATA

Setting
Data set: A huge set of text documents (e.g. all books in a library). The entire set of
texts is called a corpus.

Can we learn models from text which describe natural language?

Terminology
We have to distinguish occurences of words in a document and distinct words in the
dictionary. We refer to words regarded as entries of the dictionary as terms.
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EXAMPLE 2: SIMPLE TEXT MODEL

Data
Suppose our data is a text document. We are given a dictionary which contains all
terms occurring in the document.

Documents as vectors of counts
We represent the document as

H = (H1, . . . ,Hd) where Hj = # occurences of term j in document.

Note:

I d is the number of all terms (distinct words) in the dictionary i.e. d is identical
for all documents.

I n =
∑

j Hj can change from document to document.
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EXAMPLE 2: SIMPLE TEXT MODEL

Multinomial model
To define a simple probabilistic model of document generation, we can use a
multinomial distribution P(H|t, n). That means:

I Each word in the document is sampled independently of the other words.

I The probabilities of occurrence are

Pr{ word = term j } = tj .

Implicit assumption
The assumption implicit in this model is that the probability of observing a document
is completely determined by how often each term occurs; the order of words does not
matter. This is called the bag-of-words assumption.
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CONTEXT

Task
Can we predict the next word in a text?

Context
In language, the co-occurence and order of words is highly informative. This
information is called the context of a word.
Example: The English language has over 200,000 words.

I If we choose any word at random, there are over 200,000 possibilities.

I If we want to choose the next word in

There is an airplane in the __

the number of possibilities is much smaller.

Significance for statistical methods
Context information is well-suited for machine learning: By parsing lots of text, we
can record which words occur together and which do not.

The standard models based on this idea are called n-gram models.
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BIGRAM MODELS

Bigram model
A bigram model represents the conditional distribution

Pr(word|previous word) =: Pr(wl|wl−1) ,

where wl is the lth word in a text.

Representation by multinomial distributions
A bigram model is a family of d multinomial distributions, one for each possible
previous word.

Estimation
For each term k, find all terms in the corpus which are preceeded by k and record
their number of occurences in a vector

Hk = (Hk1, . . . ,Hkd) where Hkj = number of times term j follows on term k

Then compute the maximum likelihood estimate t̂k from the sample Hk.
Note: Both j and k run through {1, . . . , d}.
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N-GRAM MODELS

Multinomial representation of bigram
The distributions in the bigram model are:

Pr(word = j|previous word = k) = P(Hj = 1|̂tk, n = 1)

where P is the multinomial distribution. The entire bigram model is the set

{P( . |̂tk, n = 1) | k = 1, . . . , d}

N-gram models
More generally, a model conditional on the (N − 1) previous words

Pr(wl|wl−1, . . . ,wl−(N−1))

is called an N-gram model (with the predicted word, there are N words in total).

Unigrams
The special case N = 1 (no context information) is the simple multinomial word
probability model which we discussed first. This model is also called a unigram
model.
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LEARNING SHAKESPEARE (1)

Unigram Model

To him swallowed confess hear both.
Which. Of save on trail for are ay device
and rote life have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less
first you enter

Are where exeunt and sighs have rise
excellency took of.. Sleep knave we. near;
vile like

Bigram Model

What means, sir. I confess she? then all
sorts, he is trim, captain.

Why dost stand forth thy canopy, forsooth;
he is this palpable hit the King Henry.
Live king. Follow.

What we, hath got so she that I rest and
sent to scold and nature bankrupt, nor the
first gentleman?

Enter Menenius, if it so many good
direction found’st thou art a strong upon
command of fear not a liberal largess
given away, Falstaff! Exeunt
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LEARNING SHAKESPEARE (2)

Trigram Model

Sweet prince, Falstaff shall die. Harry of
Monmouth’s grave.

This shall forbid it should be branded, if
renown made it empty.

Indeed the duke; and had a very good
friend.

Fly, and will rid me these news of price.
Therefore the sadness of parting, as they
say, ’tis done.

Quadrigram Model

King Henry. What! I will go seek the
traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, ’tis a
noble Lepidus.

From Jurafsky and Martin, "Speech and Language Processing", 2009.Peter Orbanz · Statistical Machine Learning 346 / 523



COMPLEXITY OF N-GRAM MODELS

Enumerating contexts
An N-gram model considers ordered combinations of N terms (=distinct words). Say
a corpus contains 100,000 words. Then there are

100000N = 105N

possible combinations.

Naive estimate
If we require on average n observations per combination to get a reliable estimate, we
would need a corpus containing n · 105N words.

Consequence
In practice, you typically encountner bigrams or trigrams. Research labs at some
internet companies have reported results for higher orders.
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CLUSTERING TEXT

Task
Suppose we have a corpus consisting of two types of text, (1) cheap romantic novels
and (2) books on theoretical physics. Can a clustering algorithm with two clusters
automatically sort the books according to the two types?

(We will see that there is more to this than solving artificial sorting problems.)

Clustering model
We assume the corpus is generated by a multinomial mixture model of the form

π(H) =

K∑

k=1

ckP(H|tk) ,

i.e. each component P(H|tk) is multionmial.
However: We are now considering documents rather than individual words.

Estimation
Apply EM algorithm for multinomial mixture models.
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INTEPRETATION: TOPICS

Thought experiment
Say we run a mixture of two multinomial distributions on the cheap romantic novels
and theoretical physics textbooks.

Outcome:

I Each cluster will roughly represent one of the two topics.

I The two parameter vectors t1 and t2 represent distributions of words in texts of
the respective topic.

Word distributions as topics
This motivates the interpretation of clusters as topics.

tk = distribution of words that characterizes topic k

Language models derived from this idea are called topic models.
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TOOLS: INFORMATION THEORY



MEASURING INFORMATION

Information content of a random variable
We consider a random variable X with distribution P.

I P expresses what we know before we observe X.

I How much information do we gain by observing X?

That is: By information content of X, we mean the difference in information between
knowing P and knowing both P and X = x.

To reiterate
For the definition of information, it is useful to think of...

I ...the distribution P as what we expect to happen.

I ...the sample outcome X = x as what actually happens.
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INFORMATION

Heuristic motivation
Suppose we sample X = x from a distribution P.

I If P(x) is large: Small surprise; we have not
gained much additional information.

I If P(x) is small: We have gained more
information.

Conclusions
I The information in X = x increases with 1

P(x) .

I Intuitively, the information gain in two unrelated
observations should be additive, so 1

P(x) itself is
not a useful measure of information.

Definition
The information in observing X = x under P is

JP(x) := log
1

P(x)
= − log P(x) .

X=1:
not very surprising,
low information gain

X=23:
unexpected, high
information gain
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SHANNON’S ENTROPY

Discrete random variables
In information theory, we have to distinguish between discrete and continuous
random variables. If X is a RV with values in a space X, we call X discrete if X has a
finite or at most countably infinite number of elements.

Definition
Let X be a discrete random variable with distribution P. The expected information in
a draw from P,

H[X] := EP[JP(X)]

is called the Shannon entropy of X, or the entropy for short.

Remarks
I Note that

E[JP(X)] = −EP[log P(X)] = −
∑

x∈X

P(x) log P(x)

I The entropy measures the information gained when sampling from P.

I We can interchangeably regard H as a property of X or of P, and we
equivalently write H(P) for H[X].
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BASIC PROPERTIES

1. The entropy is non-negative:
H[X] ≥ 0

2. H(P) = 0 means there is no uncertainty in P:

H(P) = 0 ⇔ P(x0) = 1 for some x0 ∈ X .

3. If X is finite with d elements, the distribution with the largest entropy is the
uniform distribution Ud, with

H(Ud) = log d
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ALTERNATIVE DERIVATION

Axiomatic description
Suppose we define some measureH[X] of information in X. Regardless of the
definition, we can postulate a number of properties (axioms) that a meaningful
measure should satisfy.

Additivity

I If two RVs X and Y are independent, their information content should be
disjoint.

I Hence,H should be additive:

X⊥⊥Y ⇒ H[X, Y] = H[X] +H[Y]

I More generally: We should be able to "remove the joint information" in X and
Y from Y by conditioning.

I This is what we require as our first axiom:

(Axiom I) H[X, Y] = H[X] +H[Y|X]
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AXIOMATIC DERIVATION

Continuity

I We can alternatively regardH[X] as a functionH(P) of the distribution of X.

I If we make a small change to P, thenH(P) should not "jump". That is:

(Axiom II) H(P) should be continuous as a function of P.

Monotonicity

I Suppose we consider in particular the uniform distribution P = Ud on d
outcomes.

I If we increase d, the uncertainty in Ud increases; hence, the information gained
by sampling should be higher for d + 1 than for d:

(Axiom III) H(Ud) < H(Ud+1)
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AXIOMATIC DERIVATION

Theorem
If a real-valued functionH on X satisfies Axioms I–III, then

H(P) = c ·H(P) for all P ,

for some constant c ∈ R+. (The constant is the same for all P.)

In other words
If any information measure satisfies our requirements, it is precisely the entropy, up
to a choice of scale.
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SHANNON’S ENTROPY

How meaningful are the axioms?

I Over the years, about a dozen different axioms for information measures have
been proposed.

I It can be shown that basically any meaningful combination of two or three of
these axioms leads to the same result (i.e. determines the entropy up to scaling).

One might argue that this makes the entropy a much more fundamental quantity than
most quantities used in statistics (variance etc).

Historical note
I The notion of entropy was first conceived in physics. The first precise definition

was given by Boltzmann in the 1870s.

I The information-theoretic entropy was introduced in the paper

Claude Shannon: "A mathematical theory of communication", 1948.

This paper introduced most of the quantities we discuss here, created the field
of information theory, and proved almost all of its fundamental results.
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EXAMPLE: CODING

Suppose we would like to compress a text document (lossless compression).

Huffman Coding
Here is a simple but efficient coding scheme:

1. Given a text, determine the frequency with which each word occurs.

2. Assign short code words to words that occur often, long code words to words
that are rare.

This idea (with a specific algorithm for finding determining the code words) is called
Huffman coding. If all we are allowed to do is to replace text words by code words,
this compression method is optimal.

Information-theoretic problems
Suppose we know the distribution P of words in texts. Then we can ask:

1. What is the expected compression rate for a random document?

2. Does our encoder achieve the optimal expected rate for P?
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EXAMPLE: CODING

The Source Coding Theorem (Shannon)
Suppose we are given a distribution P on words or symbols and sample a string
Xn = (X1, . . . ,Xn) iid from P. Then for every ε > 0, there is a lossless encoder for
which

H(P) ≤ E
[1

n
· length(encoding(Xn))

]
< H(P) + ε

for sufficiently large n.

Remarks
I In other words: We can encode the sequence Xn without loss of information

using nH(P) bits on average.

I The entropy H(P) is a lower bound for lossless compression: If an encoder
achieves a better (=smaller) expectation than above, the probability that it will
result in information loss approaches 1 for n→∞.
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HOW WELL CAN WE COMPRESS ENGLISH TEXT?

Character-by-character compression
I We can compress text by splitting the text

into characters and assigning a code to each
character.

I An empirical estimate of the distribution of
characters is shown on the right. The entropy
is 4.11 bit/character.

I This compression is not very effective: There
are 27 characters and 24 < 27 ≤ 25, hence
we can trivially encode with 5 bits/character.
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HOW WELL CAN WE COMPRESS ENGLISH TEXT?

Word-by-word compression

I The distribution of words in languages is
highly concentrated on a few common words.
(Upper plot: Ranked word occurrences in Romeo and

Juliet.)

I If we rank words in English by frequency of
occurrence, the occurrence distribution is
well-approximated by a Zipf distribution with
parameter between 1.5 and 2 (lower plot).

I Due to concentration, these distributions have
relatively low entropy.

I Consequence: If we split into words instead
or characters, we can achieve much better
compression rates.

I Common compression algorithms (e.g.
Lempel-Ziv) split into substrings which are
not necessarily words.
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KULLBACK-LEIBLER DIVERGENCE

Comparing distributions
We can use the notion of information to compare one distribution to another.

Heuristic motivation
Suppose we wish to compare two distributions P and Q on X.

I The entropy H[Q] = EQ[JQ(X)] measures how much information gain (in terms
of Q) we can expect from a random sample from Q.

I Now ask instead: How much information gain in terms of Q can we expect
from a random sample drawn from P? We compute: EP[JQ(X)].

I A measure of difference between P and Q should vanish if Q = P. Since
P = Q means EP[JQ(X)] = H(P), which is usually not 0, we have to normalize
by subtracting H(P).

Definition
The function

DKL(P‖Q) := EP[JQ(X)]−H(P)

is called the Kullback-Leibler divergence or the relative entropy of P and Q.
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BASIC PROPERTIES

Equivalent forms

DKL[P‖Q] = EP[JQ(X)− JP(X)] =
∑

x∈X

P(x) log
P(x)

Q(x)

Positive definiteness

DKL[P‖Q] ≥ 0 and DKL[P‖Q] = 0⇔ P = Q .

The KL divergence is not a metric
Intuitively, DKL can be used like a distance measure between distributions, however:

I It is not symmetric: DKL[P‖Q] 6= DKL[Q‖P] in general.

I It does not satisfy a triangle inequality.

Convexity
A very useful property of H and DKL is convexity:

I H(P) is concave as a function of P.

I DKL[P‖Q] is convex in the pair (P,Q).
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CONDITIONING

I How can we compute the entropy of Y conditional on X?

I For a fixed value X = x, we can simply compute H from the conditional
probability P(Y|X = x) as

H[Y|X = x] = −
∑

y∈X

P(y|x) log P(y|x) .

I To make the definition independent of x, we take the expectation

H[Y|X] := EP(x)[H[Y|X = x]] .

This is called the conditional entropy of Y given X.

I A few lines of arithmetic show:

H[Y|X] = −
∑

x,y∈X

P(x, y) log P(y|x)
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MUTUAL INFORMATION

Heuristic Motivation
I Another question we can ask about a pair X, Y of random variables is: How

much information do they share?

I In other words: How much does observing X tell us about Y?

I If X and Y contain no shared information, they are independent, and their joint
distribution is P(x, y) = P(x)P(y).

I Idea: Compare the actual joint distribution to the independent case using KL
divergence.

We first define the mutual information in a different way, but will then see that the
idea above indeed applies.

Definition
The function

I[X, Y] := H[X]−H[X|Y] = H[Y]−H[Y|X]

is called the mutual information of X and Y .
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USEFUL RELATIONSHIPS

Conditioning reduces entropy

H[X, Y] = H[Y|X] + H[X]

Mutual information as a Kullback-Leibler divergence

I[X, Y] = DKL[P(x, y)‖P(x)P(y)] =
∑

x∈X

P(x, y) log
P(x, y)

P(x)P(y)

Note: This compares P(x, y) to the case where X, Y are independent (which means
P(x, y) = P(x)P(y)).

Mutual information characterizes independence

I[X, Y] = 0 ⇔ X⊥⊥Y
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THE CONTINUOUS CASE

If the sample space X is uncountable (e.g. X = R), instead of P and Q we consider
densities p and q, we have to substitute integrals for sums.

Differential entropy

H[X] := −
∫

X
p(x) log p(x)dx

Since p is a density, we can have log p(x) > 0, and H[X] can be negative. To
distinguish it from the entropy, H[X] is called the differential entropy.

KL divergence and mutual information
DKL and I are defined analagously to the discrete case:

DKL(p‖q) :=

∫

X
p(x) log

p(x)

q(x)
dx

I[X, Y] :=

∫

X
p(x, y) log

p(x, y)

p(x)p(y)
dx

Peter Orbanz · Statistical Machine Learning 368 / 523



PROPERTIES IN THE CONTINUOUS CASE

Differential entropy

I Since p is a density, we can have log p(x) > 0, and H[X] can be negative.

I The term differential entropy is used to distinguish it from the entropy.

KL divergence
The KL divergence for densities still satisfies

DKL(p‖q) ≥ 0 and DKL(p‖q) = 0 ⇔ p = q .

As a consequence, the mutual information still satisfies

I[X, Y] ≥ 0 and I[X, Y] = 0 ⇔ X⊥⊥Y .

Peter Orbanz · Statistical Machine Learning 369 / 523



KL DIVERGENCE AND MAXIMUM LIKELIHOOD

Idea
Suppose we observe data x1, . . . , xn and assume a model P = {p(x|θ)|θ ∈ T }. We
could fit the model using the KL divergence as a cost measure:

θ̂ := arg min
θ∈T

DKL(Fn|p(x|θ))

Computation

θ̂ = arg min
θ∈T

DKL(Fn|p(x|θ)) = arg min
θ∈T

(∫

X
Fn(x) log

F(x)

p(x|θ)dx
)

= arg min
θ∈T

(∫

X
Fn(x) logFn(x)dx−

∫

X
Fn(x) log p(x|θ)dx

)

= arg max
θ∈T

(∫

X
Fn(x) log p(x|θ)dx

)
= arg max

θ∈T

(∫

X

1
n

n∑

i=1

δxi (x) log p(x|θ)dx
)

= arg max
θ∈T

(1
n

n∑

i=1

log p(xi|θ)
)

= θ̂MLE

Minimizing KL divergence between Fn and the model is equivalent to maximum
likelihood estimation!
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MAXIMUM ENTROPY METHODS

The maximum entropy principle
Suppose we have to choose a model distribution from a given set P of admissible
distributions. The maximum entropy principle says: Always choose the distribution

P = arg max
Q∈P

H(Q)

with the highest entropy in P . P is called the maximum entropy distribution,
which is sometimes abbreviated to ‘MaxEnt distribution’.

Rationale
I When choosing a model distribution, we should try to avoid illicit assumptions.

I Higher entropy↔ higher uncertainty↔ fewer assumptions.

This idea was introduced by the physicist E. T. Jaynes, who championed it as a
general modeling approach.
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MAXIMUM ENTROPY UNDER CONSTRAINTS

Maximum entropy under constraints
Suppose the set P of distributions is defined by a constraint. For example:

P = all distributions on R with variance σ2
0 .

Example 1: Trivial constraint
Suppose the only constaint is that the choice of sample space, e.g. X = [0, 1]. Then
the maximum entropy distribution is the uniform distribution on [0, 1].

Example 2: Given variance
If P = { distributions on R with Var[X] = σ2

0}, then P is Gaussian with variance σ2
0 .
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THE EXPONENTIAL FAMILY AGAIN

Expectations as constraints
Suppose X = Rd, and we formulate constraints by choosing functions
S1, . . . , Sm : X→ R and positing their expected values.

That is, the constrained set is

P := {Q |EQ[S1(X)] = s1, . . . ,EQ[Sm(X)] = sm} .

Constrained optimization problem (for the discrete case)
We add the constraints to the objective function H(Q) using Lagrange multipliers
θ1, . . . , θn. We also include a normalization constraint with Lagrangre multiplier θ0.

P = arg max
Q

H(Q)+θ0

(
1−

∑

x∈X

Q(x)
)

+θ1

(
s1 −

∑

x∈X

S1(x)Q(x)
)

+ . . .+ θm

(
sm −

∑

x∈X

Sm(x)Q(x)
)
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EXPONENTIAL FAMILY

Maximum entropy solution
The solution of the constrained optimization problem is

P(x) =
1

Z(θ)
e〈S(x),θθθ〉 ,

where θθθ = (θ1, . . . , θm).

Continuous distributions
Exponential family densities p(x|θ) for continuous random variables can similarly
obtained as maximum entropy models given constraints of the form Ep[Sj(x)] = sj.
This case requires more technicalities, due to the properties of the differential
entropy.

Statistical physics
In physics, the maximum entropy distribution under given constraints is called the
Gibbs distribution.
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SUMMARY: INFORMATION THEORY AND STATISTICS

I Maximum likelihood minimizes DKL between empirical distribution and model.

I Variance, covariance and the χ2-statistic can be regarded as first-order
approximations to entropy, mutual information and KL divergence.

I Various methods can be derived by substituting information-theoretic for
traditional statistical quantities.

I Example: A dimension-reduction technique called independent component
analysis can be motivated as (roughly speaking) a PCA-like method which
measures independence in terms of mutual information rather than covariance.
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SUMMARY

The various additive relationships can be summarized as follows:

H(X, Y )

H(X)

H(Y )

I(X ; Y )H(X | Y ) H(Y |X)

Further reading
David J. C. MacKay: Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003.
Online version: See link on course homepage.
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MODEL SELECTION FOR CLUSTERING

The model selection problem
For mixture models π(x) =

∑K
k=1 ckp(x|θk), we have so far assumed that the number

K of clusters is known.

Model Order
Methods which automatically determine the complexity of a model are called model
selection methods. The number of clusters in a mixture model is also called the
order of the mixture model, and determining it is called model order selection.
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MODEL SELECTION FOR CLUSTERING

Notation
We write L for the log-likelihood of a parameter under a model p(x|θ):

L(xn; θ) := log
n∏

i=1

p(xi|θ)

In particular, for a mixture model:

L(xn; c, θθθ) := log
n∏

i=1

( K∑

k=1

ckp(xi|θk)
)

Number of clusters: Naive solution (wrong!)
We could treat K as a parameter and use maximum likelihood, i.e. try to solve:

(K, c1, . . . , cK , θ1, . . . , θK) := arg max
K,c′,θθθ′

L(xn; K, c′, θθθ′)
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NUMBER OF CLUSTERS

Problem with naive solution: Example
Suppose we use a Gaussian mixture model.

I The optimization procedure can add additional components arbitrarily.

I It can achieve minimal fitting error by using a separate mixture component for
each data point (ie µk = xi).

I By reducing the variance of each component, it can additionally increase the
density value at µk = xi. That means we can achieve arbitrarily high
log-likelihood.

I Note that such a model (with very high, narrow component densities at the data
points) would achieve low log-likelihood on a new sample from the same
source. In other words, it does not generalize well.

In short: The model overfits.
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NUMBER OF CLUSTERS

The general problem

I Recall our discussion of model complexity: Models with more degrees of
freedom are more prone to overfitting.

I The number of degrees of freedom is roughly the number of scalar parameters.

I By increasing K, the clustering model can add more degrees of freedom.

Most common solutions
I Penalization approaches: A penalty term makes adding parameters expensive.

Similar to shrinkage in regression.

I Stability: Perturb the distribution using resampling or subsampling. Idea: A
choice of K for which solutions are stable under perturbation is a good
explanation of the data.

I Bayesian methods: Each possible value of K is assigned a probability, which is
combined with the likelihood given K to evaluate the plausibility of the
solution. Somewhat related to penalization.
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PENALIZATION STRATEGIES

General form
Penalization approaches define a penalty function φ, which is an increasing function
of the number m of model parameters.
Instead of maximizing the log-likelihood, we minimize the negative log-likelihood
and add φ:

(m, θ1, . . . , θm) = arg min
m,θ1,...,θm

−L(xn; θ1, . . . , θm) + φ(m)

The most popular choices
The penalty function

φAIC(m) := m

is called the Akaike information criterion (AIC).

φBIC(m) :=
1
2

m log n

is called the Bayesian information criterion (BIC).
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CLUSTERING

Clustering with penalization
For clustering, AIC means:

(K, c, θθθ) = arg min
K,c′,θθθ′

−L(xn; K, c′, θθθ′) + K

Similarly, BIC solves:

(K, c, θθθ) = arg min
K,c′,θθθ′

−L(xn; K, c′, θθθ′) +
1
2

K log n

Which criterion should we use?
I BIC penalizes additional parameters more heavily than AIC (ie tends to select

fewer components).

I Various theoretical results provide conditions under which one of the criteria
succeeds or fails, depending on:

I Whether the sample is small or large.
I Whether the individual components are mispecified or not.

I BIC is more common choice in practice.
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STABILITY

Assumption
A value of K is plausible if it results in similar solutions on separate samples.

Strategy
As in cross validation and boostrap methods, we "simulate" different sample sets by
perturbation or random splits of the input data.

Recall: Assignment in mixtures
Recall that, under a mixture model π =

∑K
k=1 ckp(x|θk), we compute a "hard"

assignment for a data point xi as

mi := arg max
k

ckp(xi|θk)
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STABILITY

Computing the stability score for fixed K

1. Randomly split the data into two sets X ′ and X ′′ of equal size.

2. Separately estimate mixture models π′ on X ′ and π′′ on X ′′, using EM.

3. For each data point xi ∈ X ′′, compute assignments m′i under π′ and m′′i under
π′′. (That is: π′ is now used for prediction on X ′′.)

4. Compute the score

ψ(K) := min
σ

n∑

i=1

I{m′i 6= σ(m′′i )}

where the minimum is over all permutations σ which permute {1, . . . ,K}.

Explanation

I ψ(K) measures: How many points are assigned to a different cluster under π′

than under π′′?

I The minimum over permutations is necessary because the numbering of
clusters is not unique. (Cluster 1 in π′ might correspond to cluster 5 in π′′, etc.)
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STABILITY

Selecting the number of clusters

1. Compute ψ(K) for a range of values of K.

2. Select K for which ψ(K) is minimial.

Improving the estimate of ψ(K)
For each K, we can perform multiple random splits and estimate ψ(K) by averaging
over these.

Performance
I Empirical studies show good results on a range of problems.

I Some basic theoretical results available, but not as detailed as for AIC or BIC.

Peter Orbanz · Statistical Machine Learning 386 / 523



SEQUENTIAL DATA AND MARKOV

MODELS



MOTIVATION: PAGERANK

Simple random walk
Start with a graph G. Define a random sequence of vertices as follows:

I Choose a vertex X1 uniformly at random.

I Choose a vertex X2 uniformly at random from the neighbors of X1. Move to X2.

I Iterate: At step n, uniformly sample a neighbor Xn of Xn−1, and move to Xn.

This is called simple random walk on G.

Google’s PageRank Algorithm
To sort the web pages matching a search query by importance, PageRank:

1. Defines a graph G whose vertices are web pages and whose edges are web links.

2. Computes the probability distribution on vertices x in G given by

Pn(x) = Pr{Xn = x} where X1, . . .Xn is a simple random walk on G

and n is very large.

We will try to understand (a) why and (b) how Pn can be computed.
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SEQUENTIAL DATA

So far: I.i.d. sequences
We have assumed that samples are of the form

X1 = x1,X2 = x2, . . . where X1,X2, . . . ∼iid P

for some distribution P. In particular, the order of observations does not matter.

Now: Dependence on the past
We now consider sequences in which the value Xn can be stochastically dependent on
X1, . . . ,Xn−1, so we have to consider conditional probabilities of the form

P(Xn|X1, . . . ,Xn−1) .

Application examples

I Speech and handwriting recognition.

I Time series, e.g. in finance. (These often assume a continuous index. Our index
n is discrete.)

I Simulation and estimation algorithms (Markov chain Monte Carlo).

I Random walk models (e.g. web search).
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MARKOV MODELS

Markov models
The sequence (Xn)n is called a Markov chain of order r if Xn depends only on a
fixed number r of previous samples, i.e. if

P(Xn|Xn−1, . . . ,X1) = P(Xn|Xn−1, . . . ,Xn−r) .

If we simply call (Xn)n a Markov chain, we imply r = 1.

Initial state
The first state in the sequence is special because it does not have a "past", and is
usually denoted X0.

Example: r = 2

X0 = x0, X1 = x1, X2 = x2, X3 = x3, X4 =?

X4 is independent
of these given X2, X3

X4 may depend on these
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GRAPHICAL REPRESENTATION

A simple binary chain
Suppose X = {0, 1}.

0 1

p0→1

p1→0

p1→1p0→0

I We regard 0 and 1 as possible "states" of X, represented as vertices in a graph.

I Each pair Xn−1 = s,Xn = t in the sequence is regarded as a "transition" from s
to t and represented as an edge in the graph.

I Each edge s→ t is weighted by the probability

ps→t := Pr{Xn = t|Xn−1 = s} .
State space
The elements of the sample space X are called the states of the chain. X is often
called the state space. We generally assume that X is finite, but Markov chains can
be generalized to infinite and even uncountable state spaces.
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GRAPHICAL REPRESENTATION

First example: Independent coin flips
Suppose X is a biased coin with Pr{Xn = 1} = p independently of Xn−1. In other
words, the sequence (Xn) is iid Bernoulli with parameter p.

0 1

p

1− p

p1− p

Breaking independence
Here is a simple modification to the chain above; only p1→0 and p1→1 have changed:

0 1

p

0

11− p

This is still a valid Markov chain, but the elements of the sequence are no longer
independent.
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GRAPHICAL REPRESENTATION

Observation
The graph representation is only possible if ps→t is independent of n. Otherwise we
would have to draw a different graph for each n.

If ps→t does not depend on n, the Markov chain is called stationary.

Transition matrix
The probabilities ps→t are called the transition probabilities of the Markov chain. If
|X| = d, the d × d-matrix

p := (pi→j )j,i≤d =




p1→1 . . . pd→1

...
...

p1→d . . . pd→d




is called the transition matrix of the chain. This is precisely the adjacency matrix of
the graph representing the chain. Each row is a probability distribution on d events.
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GRAPHICAL REPRESENTATION

Complete description of a Markov chain
The transition matrix does not completely determine the chain: It determines the
probability of a state given a previous state, but not the probability of the starting
state. We have to additionally specify the distribution of the first state.

Inital distribution
The distribution of the first state, i.e. the vector

Pinit := (Pr{X0 = 1}, . . . , Pr{X0 = d}) ,

is called the initial distribution of the Markov chain.

Representing stationary Markov chains
Any stationary Markov chain with finite state space can be completely described by a
transition matrix p and an initial distribution Pinit. That is, the pair (p,Pinit)
completely determines the joint distribution of the sequence (X0,X1, . . .).
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RANDOM WALKS ON GRAPHS

Simple random walk
Suppose we are given a directed graph G (with unweighted edges). We had already
mentioned that the simple random walk on G is the vertex-valued random sequence
X0,X1, . . . defined as:

I We select a vertex X0 in G uniformly at random.

I For n = 1, 2, . . ., select Xn uniformly at random from the children of Xn−1 in
the graph.

Markov chain representation
Clearly, the simple random walk on a graph with d vertices is a Markov chain with

Pinit =
(1

d
, . . . ,

1
d

)
and pi→j =

1
# edges out of i
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RANDOM WALKS AND MARKOV CHAINS

Generalizing simple random walk
We can generalize the idea of simple random walk by substituting the uniform
distributions by other distributions. To this end, we can weight each edge in the graph
by a probability of following that edge.

Adjacency matrix
If the edge weights are proper probabilities, each row of the adjacency matrix must
sum to one. In other words, the matrix is the transition matrix of a Markov chain.

Random walks and Markov chains
If we also choose a general distribution for the initial state of the random walk, we
obtain a completely determined Markov chain. Hence:

Any Markov chain on a finite state space is a random walk on a weighted graph and
vice versa.
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INTERNET SEARCH

Queries
The first step in internet search is query matching:

1. The user enters a search query (a string of words).

2. The search engine determines all web pages indexed in its database which
match the query.

This is typically a large set. For example, Google reports ca 83 million matches for
the query "random walk".

The ranking problem

I For the search result to be useful, the most useful link should with high
probability be among the first few matches shown to the user.

I That requires the matching results to be ranked, i.e. sorted in order of
decreasing "usefulness".
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POPULARITY SCORING

Available data
Using a web crawler, we can (approximately) determine the link structure of the
internet. That is, we can determine:

I Which pages there are.

I Which page links which.

A web crawler cannot determine:

I How often a link is followed.

I How often a page is visited.

Web graph
The link structure can be represented as a graph with

vertices = web pages and edges = links.
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RANDOM WALK NETWORK MODELS

Key idea
The popularity of a page x is proportional to the probability that a "random web
surfer" ends up on page x after a n steps.

Probabilistic model
The path of the surfer is modeled by a random walk on the web graph.

Modeling assumptions
Two assumptions are implicit in this model:

1. Better pages are linked more often.

2. A link from a high-quality page is worth more than one from a low-quality
page.

Remarks
I We will find later that the choice of n does not matter.

I To compute the popularity score, we first have to understand Markov chains a
bit better.
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STATE PROBABILITIES

Probability after n = 1 steps
If we know the initial state, then

Pr{X1 = s1 |X0 = s0} = ps0→s1
.

P1 describes the probability of X1 if we do not know the starting state (i.e. the
probability before we start the chain):

P1(s1) = Pr{X1 = s1} =
∑

s0∈X

Pr{X1 = s1 |X0 = s0}Pinit(s0)

=
∑

s0∈X

ps0→s1
Pinit(s0) .

Matrix representation
Recall that p is a d × d-matrix and Pinit a vector of length d. The equation for P1

above is a matrix-vector product, so

P1 = p · Pinit .
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STATE PROBABILITIES

Probability after n = 2 steps
The same argument shows that P2 is given by

P2(s2) =
∑

s1∈X

ps1→s2
P1(s1) ,

hence
P2 = p · P1 = p · p · Pinit .

For arbitary n

Pn = pnPinit
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LIMITS AND EQUILIBRIA

Limiting distribution
Instead of considering Pn for a specific, large n, we take the limit

P∞ := lim
n→∞

Pn = lim
n→∞

pnPinit ,

provided that the limit exists.

Observation
If the limit P∞ exists, then

p · P∞ = p · lim
n→∞

pnPinit = lim
n→∞

pnPinit = P∞ ,

which motivates the next definition.

Equilibrium distribution
If p is the tansition matrix of a Markov chain, a distribution P on X which is invariant
under p in the sense that

p · P = P

is called an equilibrium distribution or invariant distribution of the Markov chain.
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WHAT CAN GO WRONG?

Problem 1: The equilibrium distribution may not be unique

3 2

1

For this chain, both P = (0, 1, 0) and P′ = (0, 0, 1) are valid equilibria. Which one
emerges depends on the initial state and (if we start in state 1) on the first transition.

Remedy
Require that there is a path in the graph (with non-zero probability) from each state
to every other state. A Markov chain satisfying this condition is called irreducible.
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WHAT CAN GO WRONG?

Recall that a sequence in R does not have a limit if it "oscillates". For example,

lim
n

1n = 1 but lim
n

(−1)n does not exist

Problem 2: The limit may not exist
I The chain on the right has no limit distribution.

I If we start e.g. in state 0, then:
I 0 can only be reached in even steps.
I 1 only in odd steps.

I The distribution Pn oscillates between

Peven =

(
1
0

)
and Podd =

(
0
1

)
.

0 1
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WHAT CAN GO WRONG?

Remedy
To prevent this (particular) problem, we can add two edges:

0 1

Now each state is reachable in every step.

The problem (at least this example) is that we have to leave the state before we can
return to it. We prevent this, we introduce the following definition.

Aperiodic chains
We call a stationary Markov chain aperiodic if, for every state s,

Pr{Xn = s |Xn−1 = s} = ps→s > 0 .

In short, a stationary chain is aperiodic if the transition matrix has non-zero diagonal.
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EQUILIBRIUM DISTRIBUTIONS

We have introduced two definitions which prevent two rather obvious problems. Surprisingly, these

definitions are all we need to guarantee limits.

Theorem
Suppose a Markov chain (p,Pinit) is stationary, and for each state s ∈ X:

1. There is a path (with non-zero probability) from s to every other state (i.e. the
chain is irreducible).

2. ps→s > 0 (i.e. the chain is aperiodic).

Then:

I The limit distribution P∞ exists.

I The limit distribution is also the equlibrium distribution.

I The equilibrium distribution is unique.
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COMPUTING THE EQUILIBRIUM

Power method
If the the transition matrix p makes the chain irreducible and aperiodic, we know that

equilibrium distribution = limit distribution .

This means we can compute the approximate the equilibrium P∞ by Pn. In other
words, we start with any distribution Pinit (e.g. uniform) and repeatedly multiply by p:

Pn+1 = p · Pn

We can threshold the change between steps, e.g. by checking ‖Pn+1 − Pn‖ < τ for
some small τ .

Remark: Eigenstructure
The power method can be regarded as an eigenvector computation. The definition

P = p · P

of the equilibrium means that P = P∞ is an eigenvector of p with eigenvalue 1. If p
is irreducible and aperiodic, it can be shown that 1 is the largest eigenvalue.
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PAGERANK

Constructing the transition matrix
We start with the web graph and construct the transition matrix of simple random
walk, i.e.

aij :=
{ 1

# edges out of i if i links to j
0 otherwise

A chain defined by A := (aij) will almost certainly not be irreducible (think of web
pages which do not link anywhere). We therefore regularize A by defining

p := (1− α)A +
α

d




1 · · · 1
...

...
1 · · · 1




for some small α > 0.
Clearly, this makes p both irreducible and aperiodic.

Computing the equilibrium
Given p, the equilibrium distribution is computed using the power method. Since the
web changes, the power method can be re-run every few days with the previous
equilibrium as initial distribution.
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THE RANDOM SURFER AGAIN

We can now take a more informed look at the idea of a random web surfer:

I Suppose the surfer is more likely to start on a popular page than on an
unpopular one.

I In terms of the popularity model, this means

X0 ∼ Pequ ,

where Pequ is the equilibrium distribution of the chain.

I After following any number of links n (with probabilities given by the transition
matrix p),

Pn = pnPequ = Pequ .

I In this sense, Pequ is really the consistent solution to our problem, even if we
compute it by starting the random walk from e.g. a uniform initial distribution
instead.

I In particular, it does not matter how we choose n in the model.
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EXAMPLE
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nz = 2636
Adjacence matrix of the web graph of 500 web pages.

The root (index 0) is www.harvard.edu.
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Equilibrium distribution computed by PageRank.

See K. Murphy, "Machine Learning", MIT Press 2012.Peter Orbanz · Statistical Machine Learning 410 / 523



GRAPHICAL MODEL NOTATION

Conditional independence
Given random variables X, Y , Z, we say that X is conditionally independent of Y
given Z if

P(x|y, z) = P(x|z)
Notation:

X ⊥⊥Z Y

In words: Once Z = z is known, the outcome of Y does not provide additional
information about X.

Graphical models: Idea
A graphical model represents the dependence structure within a set of random
variables by a directed graph. Roughly speaking:

I Each random variable is represented by vertex.

I If Y depends on X, we draw an edge X → Y .
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A SIMPLE EXAMPLE

A simple example
The graphical model for X ⊥⊥Z Y looks like this:

X Y

Z

Important

I X and Y are not independent, independence holds only conditionally on Z.

I In other words: If we do not observe Z, X and Y are dependent, and we have to
change the graph:

X Y or X Y
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GRAPHICAL MODEL NOTATION

Factorizing a joint distribution
The joint probability of random variables X1, . . . ,Xm can always be factorized as

P(x1, . . . , xm) = P(xm|x1, . . . , xm−1)P(xm−1|x1, . . . , xm−2) · · ·P(x1) .

Note that we can re-arrange the variables in any order. If there are conditional
independencies, we can remove some variables from the conditionals:

P(x1, . . . , xm) = P(xm|Xm)P(xm−1|Xm−1) · · ·P(x1) ,

where Xi is the subset of X1, . . . ,Xm on which Xi depends.

Definition
Let X1, . . . ,Xm be random variables. A (directed) graphical model represents a
factorization of joint distribution P(x1, . . . , xm) as follows:

I Add one vertex for each variable Xi.

I For each variable Xi, add and edge from each variable Xj ∈ Xi to Xi.
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GRAPHICAL MODEL NOTATION

Lack of uniqueness
The factorization is usually not unique, since e.g.

P(x, y) = P(x|y)P(y) = P(y|x)(x) .

That means the direction of edges is not generally determined.

Remark
I If we use a graphical model to define a model or visualize a model, we decide

on the direction of the edges.

I Estimating the direction of edges from data is a very difficult (and very
important) problem. This is the subject of a research field called causal
inference or causality.
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HIDDEN MARKOV MODELS



OVERVIEW

Motivation
We have already used Markov models to model sequential data. Various important
types of sequence data (speech etc) have long-range dependencies that a Markov
model does not capture well.

Hidden Markov model
I A hidden Markov model is a latent variable model in which a sequence of latent

(or "hidden") variables is generated by a Markov chain.

I These models can generate sequences of observations with long-range
dependencies, but the explanatory variables (the latent variables) are
Markovian.

I It turns out that this is exactly the right way to model dependence for a variety
of important problems, including speech recognition, handwriting recognition,
and parsing problems in genetics.
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HIDDEN MARKOV MODELS

Definition
A (discrete) hidden Markov model (HMM) consists of:

I A stationary Markov chain (Qinit, q) with states {1, . . . ,K}, initial distribution
Qinit and transition matrix q.

I A (discrete) emission distribution, given by a conditional probability P(x|z).

The model generates a sequence X1,X2, . . . by:

1. Sampling a sequence Z1, Z2, . . . from the Markov chain (Qinit, q).

2. Sampling a sequence X1,X2, . . . by independently sampling Xi ∼ P( . |Zi).

In a continuous HMM, the variables Xi have continuous distributions, and P(x|z) is
substituted by a density p(x|z). The Markov chain still has finite state space [K].

Z1 Z2 · · · Zn−1 Zn

X1 X2 · · · Xn−1 Xn
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NOTATION

We will see a lot of sequences, so we use the "programming" notation

x1:n := (x1, . . . , xn)
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EXAMPLE: DISHONEST CASINO

This example is used in most textbooks and is very simple, but it is useful to understand the conditional
independence structure.

Problem
I We consider two dice (one fair, one loaded).

I At each roll, we either keep the current dice, or switch to the other one with a
certain probability.

I A roll of the chosen dice is then observed.
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EXAMPLE: DISHONEST CASINO
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HMM
I States: Zn ∈ {fair, loaded}.
I Sample space: X = {1, . . . , 6}.

I Transition matrix: q =

(
0.95 0.05
0.10 0.90

)

I Emission probabilities:
P(x|z = fair) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6)
P(x|z = loaded) = (1/10, 1/10, 1/10, 1/10, 1/10, 5/10)
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EXAMPLE: DISHONEST CASINO
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Conditional independence

I Given the state (=which dice), the outcomes are independent.

I If we do not know the current state, observations are dependent!

I For example: If we observe sequence of sixes, we are more likely to be in state
"loaded" than "fair", which increases the probability of the next observation
being a six.
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HMM: ESTIMATION PROBLEMS

Filtering problem

I Given: Model and observations, i.e. :

1. Transition matrix q and emission distribution P( . |z).
2. Observed sequence x1:N = (x1, . . . , xN).

I Estimate: Probability of each hidden variable, i.e. Q(Zn = k|x1:n)

Variant: Smoothing problem, in which we estimate Q(Zn = k|x1:N) instead.

Decoding problem

I Given: Model (q and P( . |z)) and observed sequence x1:N .

I Estimate: Maximum likelihood estimates ẑ1:N = (̂z1, . . . , ẑN) of hidden states.

Learning problem

I Given: Observed sequence x1:N .

I Estimate: Model (i.e. q and P( . |z)).
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EXAMPLES

Before we look at the details, here are examples for the dishonest casino.
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Filtering result.

Gray bars: Loaded dice used.

Blue: Probability P(Zn = loaded|x1:N)
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Viterbi

Decoding result.

Gray bars: Loaded dice used.

Blue: Most probable state Zn.
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PROBABILITIES OF HIDDEN STATES

The first estimation problem we consider is to estimate the probabilities Q(zn|x1:n).

Idea
We could use Bayes’ equation (recall: P(a|b) = P(b|a)P(a)

P(b) ) to write:

Q(k|xn) =
P(xn|k)Q(Zn = k)∑K
j=1 P(xn|k)Q(Zn = k)

.

Since we know the Markov chain (Qinit, q), we can compute Q, and the emission
probabilities P(xn|k) are given.

Filtering
The drawback of the solution above is that it throws away all information about the
past. We get a better estimate of Zn by taking x1, . . . , xn−1 into account. Reducing the
uncertainty in Zn using x1, . . . , xn−1 is called filtering.
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FILTERING

Filtering problem
Our task is to estimate the probabilities Q(zn|x1:n). Since the sequence has length n
and each Zi can take K possible values, this is a N × K-matrix Q̂, with entries

Q̂nk := Q(Zn = k|x1:n) .

Decomposition using Bayes’ equation
We can use Bayes’ equation (recall: P(a|b) = P(b|a)P(a)

P(b) ) to write:

Q(zn|x1:n) = Q(zn|xn, x1:(n−1)) =
P(xn|zn, x1:(n−1))Q(zn|x1:(n−1))∑K

zn=1 P(xn|zn, x1:(n−1))Q(zn|x1:(n−1))

This is the emission probability
P(xn|zn) (conditional independence!)

This is the crucial term

Normalization
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FILTERING

Reduction to previous step
The crucial idea is that we can use the results computed for step n− 1 to compute
those for step n:

Q(Zn = k|x1:(n−1)) =

K∑

l=1

Q(Zn = k|Zn−1 = l)︸ ︷︷ ︸
= qlk (transition matrix)

Q(Zn−1 = l|x1:(n−1))︸ ︷︷ ︸
= Q̂(n−1)l

Summary
In short, we can compute the numerator in the Bayes equation as

ank := P(xn|zn)

K∑

l=1

qlkQ̂(n−1)l .

The normalization term is

K∑

zn=1

(
P(xn|zn)

K∑

l=1

qlkQ̂(n−1)l

)
=

K∑

j=1

anj .
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FILTERING

Solution to the filtering problem: The forward algorithm
Given is a sequence (x1, . . . , xN).

For n = 1, . . . ,N, compute

ank := P(xn|zn)

K∑

l=1

qlkQ̂(n−1)l ,

and
Q̂nk =

ank∑K
j=1 anj

.

This method is called the forward algorithm.
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HMMS AND MIXTURE MODELS

Parametric emission model
We usually define the emission probabilities P(xn|zn) using a parametric model
P(x|θ) (e.g. a multinomial or Gaussian model). Then

P(xn|Zn = k) := P(xn|θk) ,

i.e. the emission distribution of each state k is defined by a parameter value θk.

· · · Zn−1 Zn Zn+1 · · ·

· · · Xn−1 Xn Xn+1 · · ·

Relation to mixture models
If we just consider a single pair (Zn,Xn), this defines a finite mixture with K clusters:

π(xn) =

K∑

k=1

ckP(xn|θk) =

K∑

k=1

Q(Zn = k)P(xn|θk)
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EM FOR HMMS

Recall: EM for mixtures

E-step M-step

Soft assignments E[Mik] = Pr(mi = k) cluster weights ck

component parameters θk

HMM case
I For mixtures, Pr{mi = k} = ck. In HMMs, the analogous probability

Pr{Zn = k} is determined by the transition probabilities.

I The analogue of the soft assignments aik computed for mixtures are state
probabilities

bnk = Q(Zn = k|θ, x1:N) .

I Additionally, we have to estimate the transition matrix q of the Markov chain.

EM for HMMs

E-step M-step

Transition probabilities qkj component parameters θk

State probabilities bnk
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EM FOR HMMS

M-step
The M-step works exactly as for mixture models. E.g. for Gaussian emission
distributions with parameters µk and σ2

k ,

µk =

∑N
n=1 bnkxn∑N

n=1 bnk
and σ2

k =

∑N
n=1 bnk(xn − µk)

2

∑N
n=1 bnk

State probabilities substituted
for assignment probabilities

E-step

I Computing the state probabilities is a filtering problem:

bnew
nk = Q(Zn = k|θold, x1:n) .

The forward-backward algorithm assumes the emission probabilities are known,
so we use the emission parameters θold computed during the previous M-step.

I Estimating the transition probabilities is essentially a filtering-type problem for
pairs of states and can also be solved recursively, but we will skip the details
since the equations are quite lengthy.
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APPLICATION: SPEECH RECOGNITION

Problem
Given speech in form of a sound signal, determine the words that have been spoken.

Method
I Words are broken down into small sound units (called phonemes). The states in

the HMM represent phonemes.

I The incoming sound signal is transformed into a sequence of vectors (feature
extraction). Each vector xn is indexed by a time step n.

I The sequence x1:N of feature vectors is the observed data in the HMM.

Peter Orbanz · Statistical Machine Learning 431 / 523



PHONEME MODELS

Phoneme
A phoneme is defined as the smallest unit of sound in a language that distinguishes
between distinct meanings. English uses about 50 phonemes.

Example

Zero Z IH R OW Six S IH K S
One W AH N Seven S EH V AX N
Two T UW Eight EY T

Three TH R IY Nine N AY N
Four F OW R Oh OW
Five F AY V

Subphonemes
Phonemes can be further broken down into subphonemes. The standard in speech
processing is to represent a phoneme by three subphonemes ("triphons").
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PREPROCESSING SPEECH
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Feature extraction
I A speech signal is measured as amplitude over time.

I The signal is typically transformed into various types of features, including
(windowed) Fourier- or cosine-transforms and so-called "cepstral features".

I Each of these transforms is a scalar function of time. All function values for the
different transforms at time t are collected in a vector, which is the feature
vector (at time t).
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LAYERS IN PHONEME MODELS

4 WORTKETTENERKENNUNG FÜR GROSSES VOKABULAR 132

4.1.2 HMMs für Phonemstrukturen

Wörter:

Phoneme:

Subphoneme:

akustische Vektoren:

Sprachsignal:

THIS         BOOK        IS        GOOD

th   i   s     b   uh   k     i   z      g   uh   d

. . .   b    b     uh    uh    uh      k    kcl rel on off cl rel

. . .

. . .

. . .

Abbildung 4.2: Ebenen der akustischen Modellierung.

Die gesprochene Sprache kann auf jeder dieser Ebenen modelliert werden.

Spracherkennung, 12. März 2002 WS 01/02

Words

Phonemes

Subphonemes

Features

Speech signal

HMM speech recognition

I Training: The HMM parameters (emission parameters and transition
probabilities) are estimated from data, often using both supervised and
unsupervised techniques.

I Recognition: Given a language signal (= observation sequence x1:N , estimate
the corresponding sequence of subphonemes (= states z1:N). This is a decoding
problem.
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SPEAKER ADAPTATION

Factory model
Training requires a lot of data; software is typically shipped with a model trained on
a large corpus (i.e. the HMM parameters are set to "factory settings").

The adaptation problem

I The factory model represents an average speaker. Recognition rates can be
improved drastically by adapting to the specific speaker using the software.

I Before using the software, the user is presented with a few sentences and asked
to read them out, which provides labelled training data.

Speaker adaptation

I Transition probabilities are properties of the language. Differences between
speakers (pronounciation) are reflected by the emission parameters θk.

I Emission probabilities in speech are typically multi-dimensional Gaussians, so
we have to adapt means and covariance matrices.

I The arguably most widely used method is maximum likelihood linear
regression (MLLR), which uses a regression technique to make small changes
to the covariance matrices.

Peter Orbanz · Statistical Machine Learning 435 / 523



FURTHER READING

More details on HMMs
If you feel enthusiastic, the following books provide more background:

I David Barber’s "Bayesian reasoning and machine learning" (available online;
see class homepage).

I Chris Bishop’s "Pattern recognition and machine learning".

I Many books on speech, e.g. Rabiner’s classic "Fundamentals of speech
recognition".

HTK
If you would like to try out speech recognition software, have a look at the HTK
(HMM Toolkit) package, which is the de-facto standard in speech research. HTK
implements both HMMs for recognition and routines for feature extraction.
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BAYESIAN MODELS



INTRODUCTION

Approach
The defining assumption of Bayesian statistics is that the distribution P which
explains the data is a random quantity and itself has a distribution Q. The generative
model for data X1,X2, . . . is

P ∼ Q

X1,X2, . . . ∼iid P

Rationale
I In any statistical approach (Bayesian or classical), the distribution P is

unknown.

I Bayesian statistics argues that any form of uncertainty should be expressed by
probability distributions.

I We can think of the randomness in Q as a model of the statistician’s lack of
knowlegde regarding P.

An older name for Bayesian statistics is inverse probability.
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INTRODUCTION

Prior and Posterior
The distribution Q of P is called the a priori distribution (or the prior for short).
Our objective is to determine the conditional probability of P given observed data,

Π[P|x1, . . . , xn] .

This distribution is called the a posteriori distribution or posterior.

Parametric case
We can impose the modeling assumption that P is an element of a parametric model,
e.g. that the density p of P is in a family P = {p(x|θ)|θ ∈ T }. If so, the prior and
posterior can be expressed as distributions on T . We write

q(θ) and Π(θ|x1, . . . , xn)

for the prior and posterior density, respectively.

Remark
The posterior Π[P|x1, . . . , xn] is an abstract object, which can be rigorously defined
using the tools of probability theory, but is in general (even theoretically) impossible
to compute. However: In the parametric case, the posterior can be obtained using the
Bayes equation.
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COMPUTING PARAMETRIC POSTERIORS

Parametric modeling assumption
Suppose P = {p(x|θ)|θ ∈ T } is a model and q a prior distribution on T . Our
sampling model then has the form:

θ ∼ q

X1,X2, . . . ∼iid p( . |θ)

Note that the data is conditionally i.i.d. given Θ = θ.

Bayes’ Theorem
If P is a parametric Bayesian model and q a distribution on T , the posterior under
data X1, . . . ,Xn generated as above is

Π(θ|x1, . . . , xn) =

(∏n
i=1 p(xi|θ)

)
q(θ)

p(x1, . . . , xn)
=

(∏n
i=1 p(xi|θ)

)
q(θ)

∫
T

(∏n
i=1 p(xi|θ)

)
q(θ)dθ

The individual terms have names:

posterior =
likelihood× prior

evidence
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EXAMPLE: UNKNOWN GAUSSIAN MEAN

Model
We assume that the data is generated from a Gaussian with fixed variance σ2. The
mean µ is unknown. The model likelihood is p(x|µ, σ) = g(x|µ, σ) (where g is the
Gaussian density on the line).

Bayesian model
We choose a Gaussian prior on µ,

q(µ) := g(µ|µ0, σ0) .

In the figure, µ0 = 2 and σ0 = 5. Hence, we
assume that µ0 = 2 is the most probable value of
µ, and that µ ∈ [−3, 7] with a probability ∼ 0.68.

Posterior
Application of Bayes’ formula to the Gaussian-Gaussian model shows

Π(µ|x1:n) = g(µ|µn, σn) where µn :=
σ2µ0 + σ2

0
∑n

i=1 xi

σ2 + nσ2
0

and σn :=
σ2σ2

0

σ2 + nσ2
0
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EXAMPLE: UNKNOWN GAUSSIAN MEAN

Model

Prior

most probable model
under the prior

actual distribution
of the data

Sampling distribution

Posterior distributions

Prior

Posterior

n = 1 n = 2 n = 10
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A SLIGHTLY DIFFERENT PERSPECTIVE

Parameters
Intuitively, we can think of θ as the common pattern underlying the data:

P(X|θ) = Probability[data|pattern]

Inference idea

data = underlying pattern + independent randomness

Broadly speaking, the goal of statistics is to extract the pattern from the data.
Bayesian statistics models the pattern as a random quantity.
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MAP ESTIMATION

Definition
Suppse Π(θ|x1:n) is the posterior of a Bayesian model. The estimator

θ̂MAP := arg max
θ∈T

Π(θ|x1:n)

is called the maximum a posteriori (or MAP) estimator for θ.

Point estimates
The goal of Bayesian inference is to compute the
posterior distribution. Contrast this to classical
statistics (e.g. maximum likelihood), where we
typically estimate a single value for θ (a so-called
point estimate).

MAP estimation combines aspects of Bayesian
methodology (use of a prior) with aspects of classical
methodology (since θ̂MAP is a point estimate). θ̂MAP
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MAP AND REGULARIZATION

Logarithmic view
Since the logarithm leaves the maximum invariant,

θ̂MAP = arg max
θ∈T

Π(θ|x1:n) = arg max
θ∈T

log Π(θ|x1:n)

Substituting in the Bayes equation gives

log Π(θ|x1:n) =

n∑

i=1

log p(xi|θ) + log q(θ)− log p(x1, . . . , xn) .

MAP as regularized ML
Since log-evidence does not depend on θ,

θ̂MAP = arg max
θ∈T

{ n∑

i=1

log p(xi|θ) + log q(θ)
}

Thus, the MAP estimate can be regarded as a regularized version of a maximum
likelihood estimator. The regularization term log q(θ) favors values where q (and
hence log q) is large.
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PARAMETRIC PRIOR FAMILIES

Families of priors
The prior has to be expressed by a specific distribution. In parametric Bayesian
models, we typically choose q as an element of a standard parametric family (e.g. the
Gaussian in the previous example).

Hyperparameters
If we choose q as an element of a parametric family

Q = {q(θ|φ)|φ ∈ H}

on T , selecting the prior comes down to choosing φ. Hence, φ becomes a tuning
parameter of the model.

Parameter of the prior familiy are called hyperparameters of the Bayesian model.
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NATURAL CONJUGATE PRIORS

Exponential family likelihood
We now assume the parametric model P = {p(x|θ)|θ ∈ T } is an exponential family
model, i.e.

p(x|θ) =
h(x)

Z(θ)
e〈S(x)|θ〉 .

Natural conjugate prior
We define a prior distribution using the density

q(θ|λ, y) =
1

K(λ, y)
exp
(
〈θ|y〉 − λ · log Z(θ)

)

I Hyperparameters: λ ∈ R+ and y ∈ T .

I Note that the choice of P enters through Z.

I K is a normalization function.

Clearly, this is itself an exponential family (on T ), with h ≡ Z−λ and Z ≡ K.
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UGLY COMPUTATION

Substitution into Bayes’ equation gives

Π(θ|x1, . . . , xn) =

∏n
i=1 p(xi|θ)

p(x1, . . . , xn)
· q(θ)

=

∏n
i=1 h(xi)

Z(θ)n exp
〈∑

i S(xi)|θ
〉

p(x1, . . . , xn)
· exp

(
〈θ|y〉 − λ log Z(θ)

)

K(λ, y)

If we neglect all terms which do not depend on θ, we have

Π(θ|x1, . . . , xn) ∝ =
exp
〈∑

i S(xi)|θ
〉

Z(θ)n exp
(
〈θ|y〉 − λ log Z(θ)

)
=

exp
(〈

y +
∑

i S(xi)|θ
〉)

Z(θ)λ+n

Up to normalization, this is precisely the form of an element ofQ:

. . . = exp
(〈

y +
∑

i

S(xi)|θ
〉
− (λ+ n) log Z(θ)

)
∝ q(θ|λ+ n, y +

n∑

i=1

S(xi))
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POSTERIORS OF CONJUGATE PRIORS

Conclusion
If P is an exponential family model with sufficient statistic S, and if q(θ|λ, y) is a
natural conjugate prior for P , the posterior under observations x1, . . . , xn is

Π(θ|x1, . . . , xn) = q(θ|λ+ n, y +

n∑

i=1

S(xi))

Remark
The form of the posterior above means that we can compute the posterior by
updating the hyperparameters. This property motivates the next definition.

Definition
Assume that P is a parametric family andQ a family of priors. Suppose, for each
sample size n ∈ N, there is a function Tn : Xn ×H → H such that

Π(θ|x1, . . . , xn) = q(θ|φ̂) with φ̂ := Tn(x1, . . . , xn, φ) .

Then P andQ are called conjugate.
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CONJUGATE PRIORS

Closure under sampling
If the posterior is an element of the prior family, i.e. if

Π(θ|x1, . . . , xn) = q(θ|φ̃)

for some φ̃, the model is called closed under sampling. Clearly, every conjugate
model is closed under sampling.

Remark
Closure under sampling is a weaker property than conjugacy; for example, any
Bayesian model with

Q = { all probability distributions on T }

is trivially closed under sampling, but not conjugate.
Warning: Many Bayesian texts use conjugacy and closure under sampling
equivalently.

Which models are conjugate?
It can be shown that, up a few "borderline" cases, the only paramteric models which
admit conjugate priors are exponential family models.
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NATURAL CONJUGATE POSTERIORS

Generic posterior updates
For an exponential family P with natural conjugate familyQ, the posterior is
computed as the hyperparameter update

Tn(x1, . . . , xn, λ, y) = (λ+ n, y +

n∑

i=1

S(xi)) .

Effect of hyperparameters
The natural conjugate prior q(θ|λ, y) has expected value E[Θ] = y. The parameter λ
is a concentration, i.e.

large λ ↔ prior peaks sharply around y .

Interpretation of posterior updates
The posterior mean is

E[Θ] = y +

n∑

i=1

S(xi) ,

i.e. we linearly interpolate the prior guess and the sufficient statistics of the data in
parameter space. The more data we observe, the larger the posterior concentration
λ+ n, which reflects increasing certainty regarding Θ given more data.
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HIERARCHICAL MODEL

Motivation
Choosing a prior means we have to choose a distribution on Q (or a density q) on the
parameter space T . How?

Recall
A Bayesian model with prior q can be regarded as a decomposition of the data
distribution p(x) into a mixture p(x1:n) =

∫
T
∏

i p(xi|θ)q(θ)dθ.

Hierarchical modeling idea
Split the prior up further into a mixture

q(θ) =

∫
q(θ|φ)q̃(φ)dφ .

The generative model for the data is then:

Φ ∼ q̃

Θ ∼ q( . |Φ)

X1, . . . ,Xn ∼ p( . |Θ)
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HIERARCHICAL MODEL

Additional levels in hierarchy
If we are so inclined, we can recursively split further:

q(θ) =

∫
q(θ|φ1)q̃1(φ1)dφ1 q̃1(φ1) =

∫
q̃1(φ1|φ2)q̃2(φ2)dφ2

etc.

Why?

I If the "intermediate" parameters φ (or φ1,φ2, etc) have a well-defined meaning,
this can be a very useful way to derive a meaningful prior q.

I In problems with several related parameters, this permits "sharing" of
information.
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HIERARCHICAL MODELS

Practical aspects

I Permits use of well-studied, available models as "building blocks".

I Note: The parameters θ, φ can be regarded as layers of latent variables.

I Inference is possible using Markov chain sampling (later).

I Warning: Inference becomes more difficult with each additional layer.

Hierarchical models: Interpretation

I In practice, we start with a prior on θ, which has hyperparameters; we then add
a "hyperprior" on the hyperparameters, etc.

I It is easy to get confused and regard the various distributions involved as
"multiple priors".

I Keep in mind: This is a way to construct a single, overall prior q, which is
given by

q(θ) =

∫
q(θ|φ)q̃(φ)dφ

(or multiple integrals for multiple layers).
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BAYESIAN MIXTURE MODELS

AND ADMIXTURES



OVERVIEW

In the following
We will consider two variations:

I Bayesian mixture models (mixtures with priors).

I Admixtures, in which the generation of each observation (e.g. document) can be
influenced by several components (e.g. topics).

I One particular admixture model, called latent Dirichlet allocation, is one of the
most succesful machine learning models of the past ten years.

Inference: Sampling
These models are examples of models in which the exact posterior is intractable.
Inference uses Markov chain Monte Carlo sampling, which will be our main topic for
the last two lectures.
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BAYESIAN MIXTURE MODEL

Recall: Finite mixture models

π(x) =

K∑

k=1

ckp(x|θk) =

∫

T
p(x|θ)m(θ)dθ with m :=

K∑

k=1

ckδθk

All parameters are summarized in the mixing distribution m.

Bayesian mixture model: Idea
In a Bayesian model, parameters are random variables. Here, that means a random
mixing distribution:

M( . ) =

K∑

k=1

CkδΘk ( . )
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RANDOM MIXING DISTRIBUTION

How can we define a random distribution?
Since M is discrete with finitely many terms, we only have to generate the random
variables Ck and Θk:

M( . ) =

K∑

k=1

CkδΘk ( . )

More precisely
Specifically, the term BMM implies that all priors are natural conjugate priors. That
is:

I The mixture components p(x|θ) are an exponential family model.

I The prior on each Θk is a natural conjugate prior of p.

I The prior of the vector (C1, . . . ,CK) is a Dirichlet distribution.

Explanation: Dirichlet distribution

I When we sample from a finite mixture, we choose a component k from a
multinomial distribution with parameter vector (c1, . . . , ck).

I The conjugate prior of the multinomial is the Dirichlet distribution.
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THE DIRICHLET DISTRIBUTION

Recall: Probability simplex
The set of all probability distributions on K events is the
simplex
4K := {(c1, . . . , ck) ∈ RK | ck ≥ 0 and

∑
k cK = 1}.

e1

e2 e3

c1

c2

c3

Dirichlet distribution
The Dirichlet distribution is the distribution on4K with
density

qDirichlet(c1:K |α, g1:K) :=
1

K(α, g1:K)
exp
( K∑

k=1

(αgk−1) log(ck)
)

Parameters:

I g1:K ∈ 4K : Mean parameter, i.e. E[c1:K ] = g1:K .

I α ∈ R+: Concentration.
Larger α→ sharper concentration around g1:K .
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THE DIRICHLET DISTRIBUTION

In all plots, g1:K =
( 1

3 ,
1
3 ,

1
3

)
. Light colors = large density values.

Density plots

α = 1.8 α = 10

As heat maps

α = 0.8
Large density values

at extreme points

α = 1
Uniform distribution

on4K

α = 1.8
Density peaks

around its mean

α = 10
Peak sharpens

with increasing α
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MULTINOMIAL-DIRICHLET MODEL

Model
The Dirichlet is the natural conjugate prior on the multinomial parameters. If we
observe hk counts in category k, the posterior is

Π(c1:K |h1, . . . , hk) = qDirichlet(c1:K |α+ n, (αg1 + h1, . . . , αgK + hK))

where n =
∑

k hk is the total number of observations.

Illustration: One observation
Suppose K = 3 and we obtain a single observation in category 3.

This extreme point
correponds to k = 3.

Prior: Mean at the center. Posterior: Shifted mean, increased concentration.
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BAYESIAN MIXTURE MODELS

Definition
A model of the form

π(x) =

K∑

k=1

ckp(x|θk) =

∫

T
p(x|θ)M(θ)dθ

is called a Bayesian mixture model if p(x|θ) is an exponential family model and M
a random mixing distribution, where:

I Θ1, . . . ,Θk ∼iid q( . |λ, y), where q is a natural conjugate prior for p.

I (C1, . . . ,CK) is sampled from a K-dimensional Dirichlet distribution.
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BAYESIAN MIXTURE: INFERENCE

Posterior distribution
The posterior of a BMM under observations x1, . . . , xn is (up to normalization):

Π(c1:K , θ1:K |x1:n) ∝
n∏

i=1

( K∑

k=1

ckp(xi|θk)
)( K∏

k=1

q(θk|λ, y)
)

qDirichlet(c1:K)

The posterior is analytically intractable

I Thanks to conjugacy, we can evaluate each term of the posterior.

I However: Due to the
∏K

k=1

(∑n
i=1 . . .

)
bit, the posterior has Kn terms!

I Even for 10 clusters and 100 observations, that is impossible to compute.

Solution
The posterior can be sampled with a very simple MCMC sampler (which looks
strikingly similar to an EM algorithm). We will discuss sampling algorithms in the
next lecture.
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TEXT MODELS

Recall: Multinomial text clustering
We assume the corpus is generated by a multinomial mixture model of the form

π(H) =

K∑

k=1

ckP(H|θk) ,

where P(H|θk) is multionmial.

I A document is represented by a histogram H.

I Topics θ1, . . . , θK .

I θkj = Pr{ word j in topic k}.

Problem
Each document is generated by a single topic; that is a very restrictive assumption.
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SAMPLING DOCUMENTS

Parameters
Suppose we consider a corpus with K topics and a vocubulary of d words.

I φ ∈ 4K topic proportions (φk = Pr{ topic k}).
I θ1, . . . , θK ∈ 4d topic parameter vectors (θkj = Pr{ word j in topic k}).

Note: For random generation of documents, we assume that φ and the topic parameters θk are given (they

properties of the corpus). To train the model, they have to be learned from data.

Model 1: Multinomial mixture
To sample a document containing M words:

1. Sample topic k ∼ Multinomial(φ).

2. For i = 1, . . . ,M: Sample wordi ∼ Multinomial(θk).

The entire document is sample from topic k.
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LATENT DIRICHLET ALLOCATION

Mixtures of topics
Whether we sample words or entire documents makes a big difference.

I When we sample from the multinomial mixture, we choose a topic at random,
then sample the entire document from that topic.

I For several topics to be represented in the document, we have to sample each
word individually (i.e. choose a new topic for each word).

I Problem: If we do that in the mixture above, every document has the same topic
proportions.

Model 2: Admixture model
Each document explained as a mixture of topics, with mixture weights c1:K .

1. Sample topic proportions c1:K ∼ Dirichlet(φ).

2. For i = 1, . . . ,M:

2.1 Sample topic for word i as ki ∼ Multinomial(c1:K).
2.2 Sample wordi ∼ Multinomial(θk).

This model is known as Latent Dirichlet Allocation (LDA).
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COMPARISON: LDA AND BMM

Observation
LDA is almost a Bayesian mixture model: Both use multinomial components and a
Dirichlet prior on the mixture weights. However, they are not identical.

Comparison

Bayesian MM Admixture (LDA)

Sample c1:K ∼ Dirichlet(φ). Sample c1:K ∼ Dirichlet(φ).
Sample topic k ∼ Multinomial(c1:K). For i = 1, . . . ,M:
For i = 1, . . . ,M: Sample topic ki ∼ Multinomial(c1:K).

Sample wordi ∼ Multinomial(θk). Sample wordi ∼ Multinomial(θki ).

In admixtures:

I c1:K is generated at random, once for each document.

I Each word is sampled from its own topic.

What do we learn in LDA?
LDA explains each document by a separate parameter c1:K ∈ 4K . That is, LDA
models documents as topic proportions.

Peter Orbanz · Statistical Machine Learning 474 / 523



EXAMPLE: MIXTURE OF TOPICS

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.
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SAMPLING ALGORITHMS

In general

I A sampling algorithm is an algorithm that outputs samples x1, x2, . . . from a
given distribution P or density p.

I Sampling algorithms can for example be used to approximate expectations:

Ep[f (X)] ≈ 1
n

n∑

i=1

f (xi)

Inference in Bayesian models
Suppose we work with a Bayesian model whose posterior Π cannot be computed
analytically.

I We will see that it can still be possible to sample from Π.

I Doing so, we obtain samples θ1, θ2, . . . distributed according to Π.

I This reduces posterior estimation to a density estimation problem
(i.e. estimate Π from θ1, θ2, . . .).
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PREDICTIVE DISTRIBUTIONS

Posterior expectations
If we are only interested in some statistic of the posterior of the form EΠ[f (Θ)] (e.g.
the posterior mean EΠ[Θ], we can again approximate by

EΠ[f (Θ)] ≈ 1
m

m∑

i=1

f (θi) .

Example: Predictive distribution
The posterior predictive distribution is our best guess of what the next data point
xn+1 looks like, given the posterior under previous observations:

p(xn+1|x1, . . . , xn) :=

∫

T
p(xn+1|θ)Π(θ|x1, . . . , xn)dθ .

This is one of the key quantities of interest in Bayesian statistics.

Computation from samples
The predictive is a posterior expectation, and can be approximated as a sample
average:

p(xn+1|x1:n) = EΠ[p(xn+1|Θ)] ≈ 1
m

m∑

i=1

p(xn+1|θi)
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BASIC SAMPLING: AREA UNDER CURVE

Say we are interested in a probability density p on the interval [a, b].

x

p(x)

a b

A

yi

xi

Key observation
Suppose we can define a uniform distribution UA on the blue area A under the curve.
If we sample

(x1, y1), (x2, y2), . . . ∼iid UA

and discard the vertical coordinates yi, the xi are distributed according to p,

x1, x2, . . . ∼iid p .

Problem: Defining a uniform distribution is easy on a rectangular area, but difficult
on an arbritrarily shaped one.
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REJECTION SAMPLING ON THE INTERVAL

Solution: Rejection sampling
We can enclose p in box, and sample uniformly from the box B.

x

p(x)

a b

c

B

I We can sample (xi, yi) uniformly on B by sampling

xi ∼ Uniform[a, b] and yi ∼ Uniform[0, c] .

I If (xi, yi) ∈ A (that is: if yi ≤ p(xi)), keep the sample.
Otherwise: discard it ("reject" it).

Result: The remaining (non-rejected) samples are uniformly distributed on A.
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SCALING

This strategy still works if we scale the vertically by some constant k > 0:

x
a b

c

B

x
a b

k · c

B

We simply sample yi ∼ Uniform[0, kc] instead of yi ∼ Uniform[0, c].

Consequence
For sampling, it is sufficient if p is known only up to normalization
(i.e. if only the shape of p is known).
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DISTRIBUTIONS KNOWN UP TO SCALING

Sampling methods usually assume that we can evaluate the target distribution p up to
a constant. That is:

p(x) =
1
Z̃

p̃(x) ,

and we can compute p̃(x) for any given x, but we do not know Z̃.

We have to pause for a moment and convince ourselves that there are useful
examples where this assumption holds.

Example 1: Simple posterior
For an arbitrary posterior computed with Bayes’ theorem, we could write

Π(θ|x1:n) =

∏n
i=1 p(xi|θ)q(θ)

Z̃
with Z̃ =

∫

T

n∏

i=1

p(xi|θ)q(θ)dθ .

Provided that we can compute the numerator, we can sample without computing the
normalization integral Z̃.
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DISTRIBUTIONS KNOWN UP TO SCALING

Example 2: Bayesian Mixture Model
Recall that the posterior of the BMM is (up to normalization):

Π(c1:K , θ1:K |x1:n) ∝
n∏

i=1

( K∑

k=1

ckp(xi|θk)
)( K∏

k=1

q(θk|λ, y)
)

qDirichlet(c1:K)

We already know that we can discard the normalization constant, but can we evaluate
the non-normalized posterior Π̃?

I The problem with computing Π̃ (as a function of unknowns) is that the term∏n
i=1

(∑K
k=1 . . .

)
blows up into Kn individual terms.

I If we evaluate Π̃ for specific values of c, x and θ,
∑K

k=1 ckp(xi|θk) collapses to a
single number for each xi, and we just have to multiply those n numbers.

So: Computing Π̃ as a formula in terms of unknowns is difficult; evaluating it for
specific values of the arguments is easy.

Peter Orbanz · Statistical Machine Learning 483 / 523



DISTRIBUTIONS KNOWN UP TO SCALING

Example 3: Markov random field
In a MRF, the nomrmalization function is the real problem.

For example, recall the Ising model:

p(θ1:n) =
1

Z(β)
exp
( ∑

(i,j) is an edge

βI{θi = θj}
)

The normalization function is

Z(β) =
∑

θ1:n∈{0,1}n

exp
( ∑

(i,j) is an edge

βI{θi = θj}
)

and hence a sum over 2n terms. The general Potts model is even more difficult.

On the other hand, evaluating

p̃(θ1:n) = exp
( ∑

(i,j) is an edge

βI{θi = θj}
)

for a given configuration θ1:n is straightforward.
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REJECTION SAMPLING ON Rd

If we are not on the interval, sampling uniformly from an enclosing box is not
possible (since there is no uniform distribution on all of R or Rd).

Solution: Proposal density
Instead of a box, we use another distribution q to enclose p:

x

p(x)

a b

B

To generate B under q, we apply similar logic as before backwards:

I Sample xi ∼ q.

I Sample yi ∼ Uniform[0, q(xi)].

q is always a simple distribution which we can sample and evaluate.
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REJECTION SAMPLING ON Rd

x

p(x)

a b

B

I Choose a simple distribution q from which we know how to sample.

I Scale p̃ such that p̃(x) < q(x) everywhere.

I Sampling: For i = 1, 2, . . . ,:

1. Sample xi ∼ q.
2. Sample yi ∼ Uniform[0, q(xi)].
3. If yi < p̃(xi), keep xi.
4. Else, discard xi and start again at (1).

I The surviving samples x1, x2, . . . are distributed according to p.
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FACTORIZATION PERSPECTIVE

The rejection step can be interpreted in terms of probabilities and densities.

Factorization
We factorize the target distribution or density p as

p(x) = q(x) · A(x)

distribution from which we
know how to sample

probability function we can evaluate
once a specific value of x is given

Sampling from the factorization

sampling x from p = sampling x from q + coin flip with probability A(x)

By "coin flip", we mean a binary variable with Pr(1) = A(x) (ie a Bernoulli variable).

Sampling Bernoulli variables with uniform variables

Z ∼ Bernoulli(A(x)) ⇔ Z = I{U < A(x)} where U ∼ Uniform[0, 1] .
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INDEPENDENCE

If we draw proposal samples xi i.i.d. from q, the resulting sequence of accepted
samples produced by rejection sampling is again i.i.d. with distribution p. Hence:

Rejection samplers produce i.i.d. sequences of samples.

Important consequence
If samples x1, x2, . . . are drawn by a rejection sampler, the sample average

1
m

m∑

i=1

f (xi)

(for some function f ) is an unbiased estimate of the expectation Ep[f (X)].
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EFFICIENCY

The fraction of accepted samples is the ratio |A||B| of the areas under the curves p̃ and q.

x

p(x)

a b

If q is not a reasonably close approximation of p, we will end up rejecting a lot of
proposal samples.
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AN IMPORTANT BIT OF IMPRECISE INTUITION

Example figures for sampling methods tend to look

like this.
A high-dimensional distribution of correlated RVs will

look rather more like this.

Sampling is usually used in multiple dimensions. Reason, roughly speaking:

I Intractable posterior distributions arise when there are several interacting
random variables. The interactions make the joint distribution complicated.

I In one-dimensional problems (1 RV), we can usually compute the posterior
analytically.

I Independent multi-dimensional distributions factorize and reduce to
one-dimensional case.

Warning: Never (!!!) use sampling if you can solve analytically.
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WHY IS NOT EVERY SAMPLER A REJECTION SAMPLER?

We can easily end up in situations where we accept only one in 106 (or 1010, or
1020,. . . ) proposal samples. Especially in higher dimensions, we have to expect this
to be not the exception but the rule.
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MOTIVATION

Suppose we rejection-sample a distribution like this:

region of interest

Once we have drawn a sample in the narrow region of interest, we would like to
continue drawing samples within the same region. That is only possible if each
sample depends on the location of the previous sample.

Proposals in rejection sampling are i.i.d. Hence, once we have found the region
where p concentrates, we forget about it for the next sample.
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MCMC: IDEA

Recall: Markov chain
I A sufficiently nice Markov chain (MC) has an invariant distribution Pinv.

I Once the MC has converged to Pinv, each sample xi from the chain has marginal
distribution Pinv.

Markov chain Monte Carlo
We want to sample from a distribution with density p. Suppose we can define a MC
with invariant distribution Pinv ≡ p. If we sample x1, x2, . . . from the chain, then once
it has converged, we obtain samples

xi ∼ p .

This sampling technique is called Markov chain Monte Carlo (MCMC).

Note: For a Markov chain, xi+1 can depend on xi, so at least in principle, it is
possible for an MCMC sampler to "remember" the previous step and remain in a
high-probability location.
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CONTINUOUS MARKOV CHAIN

The Markov chains we discussed so far had a finite state space X. For MCMC, state
space now has to be the domain of p, so we often need to work with continuous state
spaces.

Continuous Markov chain
A continuous Markov chain is defined by an initial distribution Pinit and conditional
probability t(y|x), the transition probability or transition kernel.

In the discrete case, t(y = i|x = j) is the entry pij of the transition matrix p.

Example: A Markov chain on R2

We can define a very simple Markov chain by sampling

xi+1 ∼ g( . |xi, σ
2)

where g(x|µ, σ2) is a spherical Gaussian with fixed
variance. In other words, the transition distribution is

t(xi+1|xi) := g(xi+1|xi, σ
2) .

xi

A Gaussian (gray contours) is

placed around the current point

xi to sample xi+1.
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INVARIANT DISTRIBUTION

Recall: Finite case
I The invariant distribution Pinv is a distribution on the finite state space X of the

MC (i.e. a vector of length |X|).
I "Invariant" means that, if xi is distributed according to Pinv, and we execute a

step xi+1 ∼ t( . |xi) of the chain, then xi+1 again has distribution Pinv.

I In terms of the transition matrix p:

p · Pinv = Pinv

Continuous case
I X is now uncountable (e.g. X = Rd).

I The transition matrix p is substituted by the conditional probability t.

I A distribution Pinv with density pinv is invariant if
∫

X
t(y|x)pinv(x)dx = pinv(y)

This is simply the continuous analogue of the equation
∑

i pij(Pinv)i = (Pinv)j.
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MARKOV CHAIN SAMPLING

We run the Markov chain n for
steps. Each step moves from the
current location xi to a new xi+1.

We "forget" the order and regard
the locations x1:n as a random

set of points.

If p (red contours) is both the
invariant and initial distribution,
each xi is distributed as xi ∼ p.

Problems we need to solve
1. We have to construct a MC with invariant distribution p.

2. We cannot actually start sampling with x1 ∼ p; if we knew how to sample from
p, all of this would be pointless.

3. Each point xi is marginally distributed as xi ∼ p, but the points are not i.i.d.
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CONSTRUCTING THE MARKOV CHAIN

Given is a continuous target distribution with density p.

Metropolis-Hastings (MH) kernel

1. We start by defining a conditional probability q(y|x) on X.
q has nothing to do with p. We could e.g. choose q(y|x) = g(y|x, σ2), as in the previous example.

2. We define a rejection kernel A as

A(xn+1|xn) := min
{

1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}

The normalization of p cancels in the quotient, so knowing p̃ is again enough.

3. We define the transition probability of the chain as

t(xi+1|xi) := q(xi+1|xi)A(xi+1|xi)+δxi (xi+1)c(xi) where c(xi) :=

∫
q(y|xi)(1−A(y|xi))dy

Sampling from the MH chain
At each step i + 1, generate a proposal x∗ ∼ q( . |xi) and Ui ∼ Uniform[0, 1].

I If Ui ≤ A(x∗|xi), accept proposal: Set xi+1 := x∗.

I If Ui > A(x∗|xi), reject proposal: Set xi+1 := xi.

total probability that
a proposal is sampled

and then rejected
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PROBLEM 1: INITIAL DISTRIBUTION

Recall: Fundamental theorem on Markov chains
Suppose we sample x1 ∼ Pinit and xi+1 ∼ t( . |xi). This defines a distribution Pi of xi,
which can change from step to step. If the MC is nice (recall: recurrent and
aperiodic), then

Pi → Pinv for i→∞ .

Note: Making precise what aperiodic means in a continuous state space is a bit more technical than in the

finite case, but the theorem still holds. We will not worry about the details here.

Implication

I If we can show that Pinv ≡ p, we do not have to know how to sample from p.

I Instead, we can start with any Pinit, and will get arbitrarily close to p for
sufficiently large i.
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BURN-IN AND MIXING TIME

The number m of steps required until Pm ≈ Pinv ≡ p is called the mixing time of the
Markov chain. (In probability theory, there is a range of definitions for what exactly
Pm ≈ Pinv means.)

In MC samplers, the first m samples are also called the burn-in phase. The first m
samples of each run of the sampler are discarded:

x1, . . . , xm−1, xm, xm+1, . . .

Burn-in;
discard.

Samples from
(approximately) p;

keep.

Convergence diagnostics
In practice, we do not know how large j is. There are a number of methods for
assessing whether the sampler has mixed. Such heuristics are often referred to as
convergence diagnostics.
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PROBLEM 2: SEQUENTIAL DEPENDENCE

Even after burn-in, the samples from a MC are not i.i.d.

Strategy

I Estimate empirically how many steps L are needed for xi and xi+L to be
approximately independent. The number L is called the lag.

I After burn-in, keep only every Lth sample; discard samples in between.

Estimating the lag
The most commen method uses the autocorrelation
function:

Auto(xi, xj) :=
E[xi − µi] · E[xj − µj]

σiσj

We compute Auto(xi, xi+L) empirically from the sample for
different values of L, and find the smallest L for which the
autocorrelation is close to zero.

Autocorrelation Plots

We can get autocorrelation plots using the autocorr.plot()
function.

> autocorr.plot(mh.draws)
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CONVERGENCE DIAGNOSTICS

There are about half a dozen popular convergence crieteria; the one below is an example.

Gelman-Rubin criterion
I Start several chains at random. For each chain k,

sample xk
i has a marginal distribution Pk

i .

I The distributions of Pk
i will differ between chains in

early stages.

I Once the chains have converged, all Pi = Pinv are
identical.

I Criterion: Use a hypothesis test to compare Pk
i for

different k (e.g. compare P2
i against null hypothesis

P1
i ). Once the test does not reject anymore, assume

that the chains are past burn-in.

Reference: A. Gelman and D. B. Rubin: "Inference from Iterative Simulation Using Multiple Sequences", Statistical Science, Vol. 7 (1992) 457-511.
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STOCHASTIC HILL-CLIMBING

The Metropolis-Hastings rejection kernel was defined as:

A(xn+1|xn) = min
{

1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}
.

Hence, we certainly accept if the second term is larger than 1, i.e. if

q(xi|xi+1)p(xi+1) > q(xi+1|xi)p(xi) .

That means:
I We always accept the proposal xi+1 if it increases the probability under p.
I If it decreases the probability, we still accept with a probability which depends

on the difference to the current probability.

Hill-climbing interpretation

I The MH sampler somewhat resembles a gradient ascent algorithm on p, which
tends to move in the direction of increasing probability p.

I However:
I The actual steps are chosen at random.
I The sampler can move "downhill" with a certain probability.
I When it reaches a local maximum, it does not get stuck there.
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SELECTING A PROPOSAL DISTRIBUTION

Everyone’s favorite example: Two Gaussians

red = target distribution p
gray = proposal distribution q

I Var[q] too large:
Will overstep p; many rejections.

I Var[q] too small:
Many steps needed to achieve good
coverage of domain.

If p is unimodal and can be roughly
approximated by a Gaussian, Var[q]
should be chosen as smallest covariance
component of p.

More generally
For complicated posteriors (recall: small regions of concentration, large
low-probability regions in between) choosing q is much more difficult. To choose q
with good performance, we already need to know something about the posterior.

There are many strategies, e.g. mixture proposals (with one component for large
steps and one for small steps).
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SUMMARY: MH SAMPLER

I MCMC samplers construct a MC with invariant distribution p.

I The MH kernel is one generic way to construct such a chain from p and a
proposal distribution q.

I Formally, q does not depend on p (but arbitrary choice of q usually means bad
performance).

I We have to discard an initial number m of samples as burn-in to obtain samples
(approximately) distributed according to p.

I After burn-in, we keep only every Lth sample (where L = lag) to make sure the
xi are (approximately) independent.

x1, . . . , xm−1, xm, xm+1, . . . , xm+L−1, xm+L, xm+L+1, . . . xm+2L−1, xm+2L, . . .

Burn-in;
discard.

Samples correlated
with xj; discard.

Samples correlated
with xj+L; discard.

Keep. Keep. Keep.
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MARKOV RANDOM FIELDS



OVERVIEW

A Markov random field is an undirected graphical model. We start with an
undirected graph:

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

wi+1,j+1

wi−1,i

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

A random variable Θi is associated with each vertex. Two random variables interact
if they are neighbors in the graph.
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NEIGHBORHOOD GRAPH

I We define a neighborhood graph, which is a weighted, undirected graph:

N = (VN ,WN )

vertex set
set of edge weights

The vertices vi ∈ VN are often referred to as sites.

I The edge weights are scalars wij ∈ R. Since the graph is undirected, the
weights are symmetric (wij = wji).

I An edge weight wij = 0 means "no edge between vi and vj".

Neighborhoods
The set of all neighbors of vj in the graph,

∂ (i) := { j |wij 6= 0}

is called the neighborhood of vj.

vi

purple = ∂ (i)
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MARKOV RANDOM FIELDS

Given a neighborhood graphN , associate with each site vi ∈ VN a RV Θi.

The Markov property
We say that the joint distribution P of (Θ1, . . . ,Θn) satisfies the Markov property
with respect toN if

P[Θi|Θj, j 6= i] = P[Θi|Θj, j ∈ ∂ (i)] .

The set {Θj, j ∈ ∂ (i)} of random variables indexed by neighbors of vi is called the
Markov blanket of Θi.

In words
The Markov property says that each Θi is conditionally independent of the remaining
variables given its Markov blanket.

Definition
A distribution P(Θ1, . . . ,Θn) which satisfies the
Markov property for a given graphN is called a
Markov random field.

Θi

Markov blanket of Θi
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USE OF MRFS

MRFs on grids

I We will only be interested in neighborhood
graphs which are 2-dimensional grids.

I MRFs on grids are used in spatial statistics to
model spatial interactions between RVs.

In general

I Modeling systems of dependent RVs is one
of the hardest problems in probability.

I MRFs model dependence, but break it down
to a limited number of interactions to make
the model tractable.

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

2-dimensional grid graph with

4-neighborhoods
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ENERGY FUNCTIONS

Probabilities and energies
A density p(x) can always be written in the form

p(x) =
1
Z

exp(−H(x)) where H : X→ R+

and Z is a normalization constant. The function H is called an energy function or
cost function.

MRF energy
In particular, we can write a MRF with RVs Θ1:n as

p(θ1, . . . , θn) =
1
Z

exp(−H(θ1, . . . , θn))
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THE POTTS MODEL

Definition
SupposeN = (VN ,WN ) a neighborhood graph with n vertices and β > 0 a
constant. Then

p(θ1:n) :=
1

Z(β,WN )
exp
(
β
∑

i,j

wijI{θi = θj}
)

defines a joint distribution of n random variables Θ1, . . . ,Θn. This distribution is
called the Potts model.

Interpretation

I If wij > 0: The overall probability increases if Θi = Θj.

I If wij < 0: The overall probability decreases if Θi = Θj.

I If wij = 0: No interaction between Θi and Θj.

Positive weights encourage smoothness.
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EXAMPLE

Ising model
The simplest choice is wij = 1 if (i, j) is an edge.

p(θ1:n) =
1

Z(β)
exp
( ∑

(i,j) is an edge

βI{θi = θj}
)

IfN is a d-dim. grid, this model is called the Ising model.

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

2-dimensional grid graph with

4-neighborhoods

Example
Samples from an Ising model on a 56× 56 grid graph.

Increasing β −→
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MRFS AS SMOOTHNESS PRIORS

We consider a spatial problem with observations Xi. Each i is a location on a grid.

Spatial model
Suppose we model each Xi by a distribution P(x|θi), i.e. each location i has its own
parameter variable Θi.

p( . |θi)

Θi Θi+1

Θj Θj+1

Xi Xi+1

Xj Xj+1

unobserved

observed

We can think of P( . |θi) as an emission probability, similar to an HMM.

Spatial smoothing

I We can define the joint distribution (Θ1, . . . ,Θn) as a MRF on the grid graph.

I For positive weights, the MRF will encourage the model to explain neighbors
Xi and Xj by the same parameter value. → Spatial smoothing.
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EXAMPLE: SEGMENTATION OF NOISY IMAGES

Mixture model
I A BMM can be used for image segmentation.

I The BMM prior on the component parameters is a
natural conjugate prior q(θ).

I In the spatial setting, we index the parameter of each
Xi separately as θi. For K mixture components, θ1:n

contains only K different values.

I The joint BMM prior on θ1:n is

qBMM(θ1:n) =

n∏

i=1

q(θi) .

Smoothing term
We multiply the BMM prior qBMM(θ) with an MRF prior

qMRF(θ1:n) =
1

Z(β)
exp
(
β
∑

wij 6=0

I{θi = θj}
)

This encourages spatial smoothnes of the segmentation.
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is observed. We thus conclude that, maybe not surprisingly,
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sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
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SAMPLING AND INFERENCE

MRFs pose two main computational problems.

Problem 1: Sampling
Generate samples from the joint distribution of (Θ1, . . . ,Θn).

Problem 2: Inference
If the MRF is used as a prior, we have to compute or approximate the posterior
distribution.

Solution
I MRF distributions on grids are not analytically tractable. The only known

exception is the Ising model in 1 dimension.

I Both sampling and inference are based on Markov chain sampling algorithms.
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THE GIBBS SAMPLER



GIBBS SAMPLING

By far the most widely used MCMC algorithm is the Gibbs sampler.

Full conditionals
Suppose p is a distribution on RD, so x = (x1, . . . , xD). The conditional probability of
the entry xd given all other entries,

p(xd|x1, . . . , xd−1, xd+1, . . . , xD)

is called the full conditional distribution of xD.

Gibbs sampling
The Gibbs sampler is a special case of the Metropolis-Hastings algorithm which uses
the full conditionals to generate proposals.

I Gibbs sampling is only applicable if we can compute the full conditionals for
each dimension d.

I If so, it provides us with a generic way to derive a proposal distribution.
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THE GIBBS SAMPLER

Proposal distribution
Suppose p is a distribution on RD, so each sample is of the form xi = (xi,1, . . . , xi,D).
We generate a proposal xi+1 coordinate by coordinate as follows:

xi+1,1 ∼ p( . |xi,2, . . . , xi,D)

...

xi+1,d ∼ p( . |xi+1,1, . . . , xi+1,d−1, xi,d+1, . . . , xi,D)

...

xi+1,D ∼ p( . |xi+1,1, . . . , xi+1,D−1)

Note: Each new xi+1,d is immediately used in the update of the next dimension d + 1.

A Metropolis-Hastings algorithms with proposals generated as above is called a
Gibbs sampler.

No rejections
It is straightforward to show that the Metropolis-Hastings acceptance probability for
each xi+1,d+1 is 1, so proposals in Gibbs sampling are always accepted.
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EXAMPLE: MRF

In a MRF with D nodes, each dimension d corresponds to one vertex.

Full conditionals
In a grid with 4-neighborhoods for instance, the
Markov property implies that

p(θd|θ1, . . . , θd−1, θd+1, . . . , θD) = p(θd|θleft, θright, θup, θdown)

ΘdΘleft Θright

Θdown

Θup

Specifically: Potts model with binary weights
Recall that, for sampling, knowing only p̃ (unnormalized) is sufficient:

p̃(θd|θ1, . . . , θd−1, θd+1, . . . , θD) =

exp
(
β(I{θd = θleft}+ I{θd = θright}+ I{θd = θup}+ I{θd = θdown}

)

This is clearly very efficiently computable.
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EXAMPLE: MRF

Sampling the Potts model
Each step of the sampler generates a sample

θi = (θi,1, . . . , θi,D) ,

where D is the number of vertices in the grid.

Gibbs sampler
Each step of the Gibbs sampler generates n updates according to

θi+1,1 ∼ p( . |θi+1,1, . . . , θi+1,d−1, θi,d+1, . . . , θi,D)

∝ exp
(
β(I{θi+1,d = θleft}+ I{θi+1,d = θright}+ I{θi+1,d = θup}+ I{θi+1,d = θdown})

)
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EXAMPLE: BURN-IN MATTERS

This example is due to Erik Sudderth (Brown University).

MRFs as "segmentation" priors
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).(...&/0"1$023%4&

I MRFs where introduced as tools for image smoothing and segmentation by D.
and S. Geman in 1984.

I They sampled from a Potts model with a Gibbs sampler, discarding 200
iterations as burn-in.

I Such a sample (after 200 steps) is shown above, for a Potts model in which each
variable can take one out of 5 possible values.

I These patterns led computer vision researchers to conclude that MRFs are
"natural" priors for image segmentation, since samples from the MRF resemble
a segmented image.
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EXAMPLE: BURN-IN MATTERS

E. Sudderth ran a Gibbs sampler on the same model and sampled after 200 iterations (as the Geman brothers did),
and again after 10000 iterations:
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200 iterations
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10000 iterations

Chain 1 Chain 5

I The "segmentation" patterns are not sampled from the MRF distribution
p ≡ Pinv, but rather from P200 6= Pinv.

I The patterns occur not because MRFs are "natural" priors for segmentations,
but because the sampler’s Markov chain has not mixed.

I MRFs are smoothness priors, not segmentation priors.
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