BAGGING AND RANDOM FORESTS



BACKGROUND: RESAMPLING TECHNIQUES

We briefly review a technique called bootstrap on which bagging and random forests are based.

Bootstrap

Bootstrap (or resampling) is a technique for improving the quality of estimators.

Resampling = sampling from the empirical distribution

Application to ensemble methods

e We will use resampling to generate weak learners for classification.
e We discuss two classifiers which use resampling: Bagging and random forests.

e Before we do so, we consider the traditional application of Bootstrap, namely improving
estimators.
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BOOTSTRAP: BASIC ALGORITHM

Given

e AsampleXxp,...,Xy.

e An estimator S for a statistic S.

Bootstrap algorithm

1. Generate B bootstrap samples 1, . . ., Bg. Each bootstrap sample is obtained by
sampling n times with replacement from the sample data. (Note: Data points can appear
multiple times in any B;.)

2. Evaluate the estimator on each bootstrap sample:
S, =S (Bp)
(That is: We estimate S pretending that B3, is the data.)

3. Compute the bootstrap estimate of S by averaging over all bootstrap samples:

| B
Spg 1= — S
Bs B;b
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EXAMPLE

Recall: Plug-in estimators for mean and variance
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i=1

Bootstrap Variance Estimate
1. Forb=1,...,B, generate a boostrap sample ;. In detail:
Fori=1,...,n:
e Sample anindexj € {1,...,n}.
e Set fil.(b) := X; and add it to BBj.

2. For each b, compute mean and variance estimates:

~ 1 . ~(b ) 1 e ~(b ~ \2
22 ::—le.() Op ZZ—Z(X,'()—L%)
n “ n“
i=1 i=1
3. Compute the bootstrap estimate:
| B
A2 )
Ops = B Zgb
b=1
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How OFTEN DO WE SEE EACH SAMPLE?

Sample {Xi, ..., X, }, bootstrap resamples By, ..., Bp.
In how many sets does a given x; occur?
Probability for x; not to occur in n draws:
- 1,
Pri{Xi ¢ By} = (1——)
For large n:

) 1\" 1
lim (1 — — = — ~ 0.3679
e

n— 0o n

e Asymptotically, any X; will appear in ~ 63% of the bootstrap resamples.

e Multiple occurrences possible.

How often is X; expected to occur?

The expected number of occurences of each x; is B.

Bootstrap estimate averages over reshuffled samples.
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BOOTSTRAP: APPLICATIONS IN STATISTICS

Estimate variance of estimators
e Since estimator S depends on (random) data, it is a random variable.
e The more this variable scatters, the less we can trust our estimate.
e [f scatter is high, we can expect the values S}, to scatter as well.

e In previous example, this means: Estimating the variance of the variance estimator.

Variance reduction
e Averaging over the individual bootstrap samples can reduce the variance in S.

e In other words: Sgs typically has lower variance than S.

e This is the property we will use for classicifation in the following.

As alternative to cross validation

To estimate prediction error of classifier:

e For each b, train on B3}, estimate risk on points not in 5.

e Average risk estimates over bootstrap samples.
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Idea

e Recall Boosting: Weak learners are deterministic, but selected to exhibit high variance.
e Strategy now: Randomly distort data set by resampling.
e Train weak learners on resampled training sets.

e Resulting algorithm: Bagging (= Bootstrap aggregation)
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For Bagging with K classes, we represent class labels as vectors:
"
0
I | <— kthentry
0

o/

This way, we can average together multiple class labels:

X; in class &k as Vi

(Pl\
1(y1+...+yn)= ék
n

./

We can interpret py as the probability that one of the n points is in class k.
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Training
Forb=1,...,B:
1. Draw a bootstrap sample B, of size n from training data.

2. Train a classifier f, on Bj,.

Classification

e Compute
| B
Jave (X) 1= 2 > fi(x)

This is a vector of the form f,,. (X) = (p1(X), ..., pr(X)).
e The Bagging classifier is given by

fBagging(X) i— arg mka’X{pl (X)7 s 7pk(X)} ’

i.e. we predict the class label which most weak learners have voted for.
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Original Tree

b=1
x.1<0.555

b=2

x.1<0.395 x.2<0.205

0 1 1 0 0 1 0 1
b=3 b=4
X.2<0.285 x.3 <0.985
0
. . 1
e Two classes, each with Gaussian 1 o ' ° o
. . . . 1 1 1
distribution in R?.
e Note the variance between b=6 b=7 b=8
x.1<0.395 x.1<0.395 x.3<0.985

bootstrapped trees.
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RANDOM FORESTS

Bagging vs. Boosting

e Bagging works particularly well for trees, since trees have high variance.
* Boosting typically outperforms bagging with trees.

e The main culprit is usually dependence: Boosting is better at reducing correlation
between the trees than bagging is.

Random Forests
Modification of bagging with trees designed to further reduce correlation.

e Tree training optimizes each split over all dimensions.
e Random forests choose a different subset of dimensions at each split.
e Optimal split is chosen within the subset.

e The subset is chosen at random out of all dimensions {1, ...,d}.
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RANDOM FORESTS: ALGORITHM

Training
Input parameter: m (positive integer with m < d)

Forb=1,...,B:
1. Draw a bootstrap sample B, of size n from training data.
2. Train a tree classifier f;, on Bj,, where each split is computed as follows:

e Select m axes in R, at random.
e Find the best split (j*,*) on this subset of dimensions.
e Split current node along axis j* at t*.

Classification

Exactly as for bagging: Classify by majority vote among the B trees. More precisely:

¢ Compute fug(x) = (p1(x), -, pr(x)) = & S8, fy(x)

e The Random Forest classification rule is

fBagging (X) = arg mkaX{pl (X)7 SR 7pk(X)}

Peter Orbanz - Applied Data Mining

247



Remarks

¢ Recommended value for m is m = |+/d| or smaller.

e RF typically achieve similar results as boosting. Implemented in most packages, often as

standard classifier.

Example: Synthetic Data

e This is the RF classification boundary on
the synthetic data we have already seen a

few times.

e Note the bias towards axis-parallel

alignment.
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APPLICATION: CANCER DIAGNOSIS



OVERVIEW

Kidney cancer diagnosis: Clinical procedure

e Take tissue sample from patient’s kidney
e Preprocess sample and photograph under microscope

e A pathologist looks at the image and diagnosis patient on scale from healthy to advanced
stage cancer

Task

e Empirically, the results vary significantly between pathologists

e The objective is to build a classifier that produces a diagnosis using the same scale as the
pathologist, hopefully with more stable results.
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Experiment

Preprocessing

Raw data (measurements)

Feature extraction

Working data

Mark patterns

Split

/

Training data Test data
(patterns marked) (patterns marked)
Training . Apply on

R . > >
(calibration) Trained model test data
Error estimate
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Slide scanning and
tiling of TMA into spots

1. Tissue sample is “stained” with
marking fluid

2. Thin slice is cut and placed on

microscope slide

3. Sample is photographed under

© 95080000 00006cA0 000E6ILS
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microscope

4. Tumor cells absorb more marker
fluid and tend to be darker

From: Fuchs & Buhmann, Computerized Medical Imaging and Graphics Vol. 35, 2011.
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LLABELING
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A pathologist uses a software with a graphical user interface to (1) mark the locations of nuclei

and (2) label nuclei as healthy/cancerous.
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COMPARISON BETWEEN EXPERTS (1)
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e Five experts label the same set of nuclei (180 in total)

e For each data point (nucleus), count the number of votes (0O, . .., 5) in favor of “tumor”
e The diagram above is a histogram of the vote counts for the 180 data points

o All five experts agree if the count is O (all say healthy) or 5 (all say tumor)

e (The small red/green bars are the vote proportions, so they encode the same information
as the numbers at the bottom.)
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COMPARISON BETWEEN EXPERTS (2)
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Results for 14 pathologists labeling four patients.

e Each box in the boxplot represents one patient.

e Box plot: The line in the middle of each box is the median. The upper and lower box
boundary are the third and first quartile, respectively. The horizontal bars at either end of
the dashed vertical line represent one standard deviation around the mean.

e In three of the four cases, disagreement between experts is substantial.

e Plot on the right: The standard deviation increases linearly with the overall number of
stained nuclei. (Roughly, the more cancer cells there are, the more volatile the diagnosis
becomes.)
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disagreement between two experts
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From: Fuchs & Buhmann, Computerized Medical Imaging and Graphics Vol. 35, 2011.

input image
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classification by one expert
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RANDOM FOREST CLASSIFIER

Data

“Relative images” of individual cell nuclei, i.e. the difference between a nucleus image and a
background patch from the same tissue sample image. That makes results less sensitive to
variations between tissue samples.

Training

1. Nuclei are hand-labeled by pathologists.

2. A random forest classifier is trained on the relative images (as training data points) and the
labels (as training labels).

Diagnosis of a new tissue sample image

Input: Entire tissue sample image.
Find nuclei using an image segmentation algorithm.

Extract subimages of these nuclei and apply random forest classifier.

e

Diagnose according to ratio of healthy to cancerous cells.
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Experiment < extract tissue samples
Preprocessing < mark and photograph
Raw data (measurements) 3 images
Feature extraction < find and extract cell nuclei
Working data < cell nuclei images
Mark patterns < annotate as healthy/cancerous
Split
Training data Test data
(patterns marked) (patterns marked)
\ random forest classifier
classifies cells as healthy/cancerous
Training . Apply on
o >
(calibration) Trained model test data
Error estimate
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Recall

Precision/Recall plot for the random forest method (“RDF’) compared to other classifiers. The
“true label” for each data point is a randomly selected pathologist. The performance of
pathologists (red dot) is the average of the aggregate result for all remaining pathologists.
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This application illustrates a number of challenges encountered in applications:
e Generating label information is work-intensive.

e The comparison experiments show that the training/test labels themselves have limited
reliability.

e These methods are now several years old. Neural networks developed in the last few years
might be able to improve the feature extraction step. (More on neural networks and
feature extraction later.)
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