
BAGGING AND RANDOM FORESTS



BACKGROUND: RESAMPLING TECHNIQUES

We briefly review a technique called bootstrap on which bagging and random forests are based.

Bootstrap
Bootstrap (or resampling) is a technique for improving the quality of estimators.

Resampling = sampling from the empirical distribution

Application to ensemble methods
• We will use resampling to generate weak learners for classification.
• We discuss two classifiers which use resampling: Bagging and random forests.
• Before we do so, we consider the traditional application of Bootstrap, namely improving

estimators.
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BOOTSTRAP: BASIC ALGORITHM

Given
• A sample x̃1, . . . , x̃n.

• An estimator Ŝ for a statistic S.

Bootstrap algorithm
1. Generate B bootstrap samples B1, . . . ,BB. Each bootstrap sample is obtained by

sampling n times with replacement from the sample data. (Note: Data points can appear
multiple times in any Bb.)

2. Evaluate the estimator on each bootstrap sample:

Ŝb := Ŝ(Bb)

(That is: We estimate S pretending that Bb is the data.)

3. Compute the bootstrap estimate of S by averaging over all bootstrap samples:

ŜBS :=
1
B

B∑

b=1

Ŝb
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EXAMPLE

Recall: Plug-in estimators for mean and variance

µ̂ :=
1
n

n∑

i=1

x̃i σ̂2 :=
1
n

n∑

i=1

(x̃i − µ̂)2

Bootstrap Variance Estimate
1. For b = 1, . . . ,B, generate a boostrap sample Bb. In detail:

For i = 1, . . . , n:
• Sample an index j ∈ {1, . . . , n}.
• Set x̃(b)

i := x̃j and add it to Bb.

2. For each b, compute mean and variance estimates:

µ̂b :=
1
n

n∑

i=1

x̃(b)
i σ̂2

b :=
1
n

n∑

i=1

(x̃(b)
i − µ̂b)2

3. Compute the bootstrap estimate:

σ̂2
BS :=

1
B

B∑

b=1

σ̂2
b
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HOW OFTEN DO WE SEE EACH SAMPLE?

Sample {x̃1, ..., x̃n}, bootstrap resamples B1, ...,BB.

In how many sets does a given xi occur?
Probability for xi not to occur in n draws:

Pr{x̃i 6∈ Bb} = (1− 1
n

)n

For large n:

lim
n→∞

(
1− 1

n

)n

=
1
e
≈ 0.3679

• Asymptotically, any x̃i will appear in ∼ 63% of the bootstrap resamples.
• Multiple occurrences possible.

How often is x̃i expected to occur?
The expected number of occurences of each x̃i is B.

Bootstrap estimate averages over reshuffled samples.
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BOOTSTRAP: APPLICATIONS IN STATISTICS

Estimate variance of estimators
• Since estimator Ŝ depends on (random) data, it is a random variable.
• The more this variable scatters, the less we can trust our estimate.
• If scatter is high, we can expect the values Ŝb to scatter as well.
• In previous example, this means: Estimating the variance of the variance estimator.

Variance reduction
• Averaging over the individual bootstrap samples can reduce the variance in Ŝ.

• In other words: ŜBS typically has lower variance than Ŝ.
• This is the property we will use for classicifation in the following.

As alternative to cross validation
To estimate prediction error of classifier:

• For each b, train on Bb, estimate risk on points not in Bb.
• Average risk estimates over bootstrap samples.
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BAGGING

Idea
• Recall Boosting: Weak learners are deterministic, but selected to exhibit high variance.
• Strategy now: Randomly distort data set by resampling.
• Train weak learners on resampled training sets.
• Resulting algorithm: Bagging (= Bootstrap aggregation)
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REPRESENTATION OF CLASS LABELS

For Bagging with K classes, we represent class labels as vectors:

xi in class k as yi =




0
...
0
1
0
...
0




←− kth entry

This way, we can average together multiple class labels:

1
n

(y1 + . . .+ yn) =




p1
...

pk
...

pK




We can interpret pk as the probability that one of the n points is in class k.
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BAGGING: ALGORITHM

Training
For b = 1, . . . ,B:

1. Draw a bootstrap sample Bb of size n from training data.

2. Train a classifier fb on Bb.

Classification
• Compute

favg(x) :=
1
B

B∑

b=1

fb(x)

This is a vector of the form favg(x) = (p1(x), . . . , pk(x)).
• The Bagging classifier is given by

fBagging(x) := arg max
k
{p1(x), . . . , pk(x)} ,

i.e. we predict the class label which most weak learners have voted for.
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EXAMPLE: BAGGING TREES

• Two classes, each with Gaussian
distribution in R5.

• Note the variance between
bootstrapped trees.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.9. Bagging trees on simulated dataset.
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RANDOM FORESTS

Bagging vs. Boosting
• Bagging works particularly well for trees, since trees have high variance.
• Boosting typically outperforms bagging with trees.
• The main culprit is usually dependence: Boosting is better at reducing correlation

between the trees than bagging is.

Random Forests
Modification of bagging with trees designed to further reduce correlation.

• Tree training optimizes each split over all dimensions.
• Random forests choose a different subset of dimensions at each split.
• Optimal split is chosen within the subset.
• The subset is chosen at random out of all dimensions {1, . . . , d}.
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RANDOM FORESTS: ALGORITHM

Training
Input parameter: m (positive integer with m < d)

For b = 1, . . . ,B:
1. Draw a bootstrap sample Bb of size n from training data.

2. Train a tree classifier fb on Bb, where each split is computed as follows:
• Select m axes in Rd at random.
• Find the best split (j∗, t∗) on this subset of dimensions.
• Split current node along axis j∗ at t∗.

Classification
Exactly as for bagging: Classify by majority vote among the B trees. More precisely:

• Compute favg(x) := (p1(x), . . . , pk(x)) := 1
B

∑B
b=1 fb(x)

• The Random Forest classification rule is

fBagging(x) := arg max
k
{p1(x), . . . , pk(x)}
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RANDOM FORESTS

Remarks
• Recommended value for m is m = b

√
dc or smaller.

• RF typically achieve similar results as boosting. Implemented in most packages, often as
standard classifier.

Example: Synthetic Data
• This is the RF classification boundary on

the synthetic data we have already seen a
few times.

• Note the bias towards axis-parallel
alignment.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 15

Random Forest Classifier
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FIGURE 15.11. Random forests versus 3-NN on the
mixture data. The axis-oriented nature of the individ-
ual trees in a random forest lead to decision regions
with an axis-oriented flavor.
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APPLICATION: CANCER DIAGNOSIS



OVERVIEW

Kidney cancer diagnosis: Clinical procedure
• Take tissue sample from patient’s kidney
• Preprocess sample and photograph under microscope
• A pathologist looks at the image and diagnosis patient on scale from healthy to advanced

stage cancer

Task
• Empirically, the results vary significantly between pathologists
• The objective is to build a classifier that produces a diagnosis using the same scale as the

pathologist, hopefully with more stable results.

Peter Orbanz · Applied Data Mining 250



DATA ANALYSIS PIPELINE
Experiment

Preprocessing

Raw data (measurements)

Feature extraction

Working data

Mark patterns

Split

Training data
(patterns marked)

Test data
(patterns marked)

Training
(calibration) Trained model

Apply on
test data

Error estimate

Peter Orbanz · Applied Data Mining 251



PREPROCESSING

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 521

Fig. 8. Labeling matrix with majority vote (top) and confidence matrix with confidence average (bottom) of five domain experts classifying 180 ccRCC nuclei into atypical
(red)  and normal (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

Fig. 9. A computational pathology framework for investigating the proliferation marker MIB-1 in clear cell renal cell carcinoma. Following the definition in Section 1.1
the  framework consists of three parts: (i) the covariate data X existing of images of TMA  spots was generated in a trial at the University Hospital Zürich. Extensive labeling
experiments were conducted to generate a gold standard comprising atypical cell nuclei and background samples. (ii) Image analysis consisted of learning a relational detection
forest  (RDF) and conducting mean shift clustering for nuclei detection. Subsequently, the staining of detected nuclei was  determined based on their color histograms. (iii)
Using  this system, TMA  spots of 133 RCC patients were analyzed. Finally, the subgroup of patients with high expression of the proliferation marker was compared to the
group  with low expression using the Kaplan–Meier estimator.

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 521

Fig. 8. Labeling matrix with majority vote (top) and confidence matrix with confidence average (bottom) of five domain experts classifying 180 ccRCC nuclei into atypical
(red)  and normal (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

Fig. 9. A computational pathology framework for investigating the proliferation marker MIB-1 in clear cell renal cell carcinoma. Following the definition in Section 1.1
the  framework consists of three parts: (i) the covariate data X existing of images of TMA  spots was generated in a trial at the University Hospital Zürich. Extensive labeling
experiments were conducted to generate a gold standard comprising atypical cell nuclei and background samples. (ii) Image analysis consisted of learning a relational detection
forest  (RDF) and conducting mean shift clustering for nuclei detection. Subsequently, the staining of detected nuclei was  determined based on their color histograms. (iii)
Using  this system, TMA  spots of 133 RCC patients were analyzed. Finally, the subgroup of patients with high expression of the proliferation marker was compared to the
group  with low expression using the Kaplan–Meier estimator.

T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530 519

Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 !m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

1. Tissue sample is “stained” with
marking fluid

2. Thin slice is cut and placed on
microscope slide

3. Sample is photographed under
microscope

4. Tumor cells absorb more marker
fluid and tend to be darker

From: Fuchs & Buhmann, Computerized Medical Imaging and Graphics Vol. 35, 2011.Peter Orbanz · Applied Data Mining 252



LABELING

518 T.J. Fuchs, J.M. Buhmann / Computerized Medical Imaging and Graphics 35 (2011) 515– 530

Fig. 2. Tablet PC labeling applications for (i) global staining estimation; (ii) nuclei
detection and (iii) nuclei classification (from top to bottom).

(cf. Fig. 2). During the setup phase the user can adjust these views to
simulate his usual workflow as good as possible. During the exper-
iment the expert has to select a class for each nucleus and rate his
confidence. Thus, he has the choice between six buttons: atypical
certainly, atypical probably, atypical maybe, normal certainly, nor-
mal  probably and normal maybe. After classifying all nuclei, which

have been classified as tumor, are displayed again and the patholo-
gist has to estimate if the nucleus is stained or not. Again he has to
rate his confidence in his own  decision on a scale of three levels. To
test the intra pathologist’s variability a subset of nuclei was queried
twice but the images were flipped and rotated by 90◦ at the second
display to hamper recognition.

The results for inter-pathologist variability for the binary classi-
fication task are plotted in Fig. 5a. Out of 180 nuclei all five experts
agreed on 24 nuclei to be normal and 81 nuclei to be atypical,
respectively cancerous. For the other 75 nuclei (42%) the pathol-
ogists disagreed.

The analysis of the intra-pathologist error is shown in Fig. 5b.
The overall intra classification error is 21.2%. This means that every
fifth nucleus was  classified by an expert first as atypical and the
second time as normal or vice versa. The self-assessment of con-
fidence allows us also to analyze single pathologists. For example
Fig. 5c shows the results of a very self-confident pathologist who
is always very certain of his decisions but ends up with an error
of 30% in the replication experiment. Fig. 5d on the other hand is
the result of a very cautious expert who  is rather unsure of his
decision, but with a misclassification error of 18% he performs
significantly better than the previous one. The important lesson
learned is, that self-assessment is not a reliable information to
learn from. The intuitive notion, to use only training samples which
were classified with high confidence by domain experts is not
valid.

In defense of human pathologists it has to be mentioned that
these experiments represent the most general way  to conduct a
TMA  analysis and analogous studies in radiology report similar
results [10,11]. In practice, domain experts focus only on regions
of TMA  spots which are very well processed, which have no stain-
ing artifacts or which are not blurred. The nuclei analyzed in this
experiment were randomly sampled from the whole set of detected
nuclei to mimic  the same precondition which an algorithm would
encounter in routine work. Reducing the analysis to perfectly pro-
cessed regions would most probably decrease the intra-pathologist
error.

2.3.3. Staining estimation
The most common task in manual TMA  analysis requires to esti-

mate the staining. To this end a domain expert briefly (e.g. several
seconds) views the spot of a patients and estimates the number of
stained atypical cells without resorting to actual nuclei counting.
This procedure is iterated for each spot on a TMA-slide to get an esti-
mate for each patient in the study. It is important to note that, due
to the lack of competitive algorithms, the results of nearly all TMA
studies are based on this kind of subjective estimations. To inves-
tigate estimation consistency we presented 9 randomly selected
TMA spots to 14 trained pathologists of the University Hospital
Zurich.

The estimations of the experts varied by up to 20% as shown
in Fig. 6a. As depicted in Fig. 6b the standard deviation between
the experts grows linearly with the average estimated amount of
staining. The high variability demonstrates the subjectivity of the
estimation process. It is interesting to note that the ranking of TMA
spots according to their staining degree is much more consistent
than the direct estimation of the continuous percentage value (cf.
Fig. 7).

This uncertainty is especially critical for types of cancer for
which the clinician chooses the therapy based on the estimated
staining percentage. This result not only motivates but emphasizes
the need for more objective estimation procedures than current
practice. Research in this field should be stimulated by the hope,
that computational pathology approaches do not only automate
such estimation processes but also produce better reproducible and
more objective results than human judgment.
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in Fig. 6a. As depicted in Fig. 6b the standard deviation between
the experts grows linearly with the average estimated amount of
staining. The high variability demonstrates the subjectivity of the
estimation process. It is interesting to note that the ranking of TMA
spots according to their staining degree is much more consistent
than the direct estimation of the continuous percentage value (cf.
Fig. 7).

This uncertainty is especially critical for types of cancer for
which the clinician chooses the therapy based on the estimated
staining percentage. This result not only motivates but emphasizes
the need for more objective estimation procedures than current
practice. Research in this field should be stimulated by the hope,
that computational pathology approaches do not only automate
such estimation processes but also produce better reproducible and
more objective results than human judgment.

A pathologist uses a software with a graphical user interface to (1) mark the locations of nuclei
and (2) label nuclei as healthy/cancerous.
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COMPARISON BETWEEN EXPERTS (1)
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Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 !m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

• Five experts label the same set of nuclei (180 in total)
• For each data point (nucleus), count the number of votes (0, . . . , 5) in favor of “tumor”
• The diagram above is a histogram of the vote counts for the 180 data points
• All five experts agree if the count is 0 (all say healthy) or 5 (all say tumor)
• (The small red/green bars are the vote proportions, so they encode the same information

as the numbers at the bottom.)
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COMPARISON BETWEEN EXPERTS (2)
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Fig. 6. (a) Results for 4 TMA  spots from the labeling experiment conducted to investigate the inter pathologist variability for estimating nuclear staining. 14 trained pathologists
estimated MIB-1 staining on 9 TMA  spots. The boxplots show a large disagreement between pathologist on spots with an averages staining of more than 10%. The absolute
estimated percentage is plotted on the y-axis. Spot 1 for example, yields a standard deviation of more than 20%. (b) The standard deviation grows linearly with the average
estimated staining.

2.4. Expert variability in fluorescence microscopy

Complementary to immunohistochemical TMA  analysis, flu-
orescence microscopy is applied often for high-throughput
screening of molecular phenotypes. A comprehensive study evalu-
ating the performance of domain experts regarding the detection of
lymphocytes is presented by Nattkemper et al. [12]. In a best case,
a medium-skilled expert needs on average one hour for analyz-
ing a fluorescence micrograph. Each micrograph contains between
100 and 400 cells and is of size 658 × 517 pixel. Four exemplary
micrographs were blindly evaluated by five experts. To evaluate
the inter-observer variability Nattkemper et al. [12] define a gold
standard comprising all cell positions in a micrograph that were
detected by at least two experts.

Averaged over of CD3, CD4, CD7 and CD8 the sensitivity of the
four biomedical experts is varying between 67.5% and 91.2% and
the positive predictive value (PPV) between 75% and 100%. Thus
the average detection error over all biomedical experts and micro-
graphs is approximately 17%. Although fluorescence images appear
to be easier to analyze due to their homogeneous background,

this high detection error indicates the difficulty of this analysis
task. These results corroborates the findings in the ccRCC detection
experiment described in Section 2.1.

2.5. Generating a gold standard

The main benefit of labeling experiments, like the ones
described before, is not to point out the high variability between
pathologists or even their inconsistencies in repeated annotations
of identical data, but to generate a gold standard. In absence of an
objective ground truth measurement process, a gold standard is
crucial for the use of statistical learning, first for learning a clas-
sifier or regressor and second for validating the statistical model.
Section 5 shows an example how the information gathered in the
experiments of Section 2.3 can be used to train a computational
pathology system.

Besides labeling application which are developed for specific
scenarios as the one described in Section 2.3 several other possi-
bilities exist to acquire data in pathology in a structured manner.
Although software for tablet PCs is the most convenient approach

Fig. 7. Comparison between ranking and continuous staining estimation of nine renal cell carcinoma TMA  spots with MIB-1 staining. The experiment was conducted by 14
trained pathologists and demonstrates the high consistency of the ranking data compared to the conventional direct estimation of the percentage of stained atypical nuclei.

Results for 14 pathologists labeling four patients.
• Each box in the boxplot represents one patient.
• Box plot: The line in the middle of each box is the median. The upper and lower box

boundary are the third and first quartile, respectively. The horizontal bars at either end of
the dashed vertical line represent one standard deviation around the mean.

• In three of the four cases, disagreement between experts is substantial.
• Plot on the right: The standard deviation increases linearly with the overall number of

stained nuclei. (Roughly, the more cancer cells there are, the more volatile the diagnosis
becomes.)
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Fig. 3. Tissue microarray analysis (TMA): primary tissue samples are taken from a cancerous kidney (a). Then tissue cylinders of a 0.6 mm diameter are extracted from the
primary tumor material of different patients and arrayed in a recipient paraffin block (b). Slices of 0.6 !m are cut off the paraffin block and are immunohistochemically
stained (c). These slices are scanned as whole slide images and tiled into single images representing different patients. Image (d) depicts a TMA  spot of clear cell renal cell
carcinoma stained with MIB-1 (Ki-67) antigen. (e) shows details of the same spot containing stained and non-stained nuclei of normal as well as atypical cells.

Fig. 4. (a) A quarter of an RCC TMA  spot used for the nuclei detection experiment. (b) Annotations of one expert, indicating atypical nuclei in black and normal ones in red.
(c)  Overlay of detected nuclei from expert one (blue circles) and expert two (red crosses). (d) Disagreement between the two  domain experts regarding the detection task.
Nuclei which were labeled only by pathologist one are shown in blue and the nuclei found only by expert two are depicted in red. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)

Fig. 5. (a) Inter-pathologist classification variability based on 180 nuclei labeled by five domain experts. The experts agree on 105 out of 180 nuclei (blue bars: 24 normal,
81  atypical). (b–d) Confusion matrices including reader confidence for intra-observer variability in nuclei classification: (b) The combined result of all five experts yields an
intra  pathologist classification error of 21.2%. (c) Example of an extremely self-confident pathologist with 30% error. (d) A very cautions pathologist with a misclassification
error  of 18%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

input image locations marked by one expert

classification by one expert disagreement between two experts
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RANDOM FOREST CLASSIFIER

Data
“Relative images” of individual cell nuclei, i.e. the difference between a nucleus image and a
background patch from the same tissue sample image. That makes results less sensitive to
variations between tissue samples.

Training
1. Nuclei are hand-labeled by pathologists.

2. A random forest classifier is trained on the relative images (as training data points) and the
labels (as training labels).

Diagnosis of a new tissue sample image
1. Input: Entire tissue sample image.

2. Find nuclei using an image segmentation algorithm.

3. Extract subimages of these nuclei and apply random forest classifier.

4. Diagnose according to ratio of healthy to cancerous cells.
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DATA ANALYSIS PIPELINE
Experiment

Preprocessing

Raw data (measurements)

Feature extraction

Working data

Mark patterns

Split

Training data
(patterns marked)

Test data
(patterns marked)

Training
(calibration) Trained model

Apply on
test data

Error estimate

extract tissue samples

mark and photograph

images

find and extract cell nuclei

cell nuclei images

annotate as healthy/cancerous

images

random forest classifier
classifies cells as healthy/cancerous

Peter Orbanz · Applied Data Mining 258



RESULTS
Relational Detection Forests 375

Fig. 2. Precision/Recall plot of cross validation results on the renal clear cell cancer (RCC)
dataset. For Relational Detection Forests (RDF) curves for the nine single patients and their av-
erage (bold) are depicted. RDF with the proposed feature base outperforms previous approaches
based on SVM clustering [14], mathematical morphology and combined methods [15]. The inter
pathologist performance is depicted in the top right corner.

3.2 Clear Cell Renal Cell Carcinoma (ccRCC)

Detection Accuracy: Three fold cross validation was employed to analyze the detec-
tion accuracy of RDFs. The nine completely labeled patients were randomly split up
into three sets. For each fold the ensemble classifier was learned on six patients and
tested on the the other three. During tree induction, at each split 500 features were sam-
pled from the feature generator. Trees were learned to a maximum depth of 10 and the
minimum leave size was set to 1. The forest converges after 150 to an out of bag (OOB)
error of approximately 2%. Finally, on the test images each pixel was classified and
mean shift was run on a grid with δ = 5.

Figure 2 shows precision/recall plot for single patients and the average result of the
RDF object detector. The algorithm is compared to point estimates of several state of
the art methods: SVM clustering was successfully employed to detect nuclei in H&E
stained images of brain tissue by [14]. SVMmorph [15] is an unsupervised morpholog-
ical [16] approach for detection combined with an supervised support vector machine
for filtering. The marker for the pathologists shows the mean detection accuracy if al-
ternately one expert is used as gold standard. On average the pathologists disagree on
15% of the nuclei.

Although only grayscale features were used for RDF it outperforms all previous ap-
proaches which also utilize texture and color. This observation can be a cue for further

Precision/Recall plot for the random forest method (“RDF”) compared to other classifiers. The
“true label” for each data point is a randomly selected pathologist. The performance of
pathologists (red dot) is the average of the aggregate result for all remaining pathologists.
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REMARKS

This application illustrates a number of challenges encountered in applications:
• Generating label information is work-intensive.
• The comparison experiments show that the training/test labels themselves have limited

reliability.
• These methods are now several years old. Neural networks developed in the last few years

might be able to improve the feature extraction step. (More on neural networks and
feature extraction later.)
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