BOOSTING

Boosting

- Arguably the most popular (and historically the first) ensemble method.
- Weak learners can be trees (decision stumps are popular), Perceptrons, etc.
- Requirement: It must be possible to train the weak learner on a *weighted* training set.

Overview

- Boosting adds weak learners one at a time.
- A weight value is assigned to each training point.
- At each step, data points which are currently classified correctly are weighted down (i.e. the weight is smaller the more of the weak learners already trained classify the point correctly).
- The next weak learner is trained on the *weighted* data set: In the training step, the error contributions of misclassified points are multiplied by the weights of the points.
- Roughly speaking, each weak learner tries to get those points right which are currently not classified correctly.

TRAINING WITH WEIGHTS

Example: Decision stump

A decision stump classifier for two classes is defined by

$$f(\mathbf{x} | j, t) := \begin{cases} +1 & x^{(j)} > t \\ -1 & \text{otherwise} \end{cases}$$

where $j \in \{1, \ldots, d\}$ indexes an axis in \mathbb{R}^d .

Weighted data

- Training data $(\tilde{\mathbf{x}}_1, \tilde{y}_1), \ldots, (\tilde{\mathbf{x}}_n, \tilde{y}_n)$.
- With each data point $\tilde{\mathbf{x}}_i$ we associate a weight $w_i \geq 0$.

Training on weighted data

Minimize the *weighted* misclassification error:

$$(j^*, t^*) := \arg\min_{j, t} \frac{\sum_{i=1}^n w_i \mathbb{I}\{\tilde{y}_i \neq f(\tilde{\mathbf{x}}_i | j, t)\}}{\sum_{i=1}^n w_i}$$

AdaBoost

Input

- Training data $(\tilde{\mathbf{x}}_1, \tilde{y}_1), \ldots, (\tilde{\mathbf{x}}_n, \tilde{y}_n)$
- Algorithm parameter: Number *M* of weak learners

Training algorithm

- 1. Initialize the observation weights $w_i = \frac{1}{n}$ for i = 1, 2, ..., n.
- 2. For m = 1 to M:
 - 2.1 Fit a classifier $g_m(x)$ to the training data using weights w_i .
 - 2.2 Compute

$$\operatorname{err}_{m} := \frac{\sum_{i=1}^{n} w_{i} \mathbb{I}\{y_{i} \neq g_{m}(x_{i})\}}{\sum_{i} w_{i}}$$

2.3 Compute
$$\alpha_m = \log(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m})$$

2.4 Set $w_i \leftarrow w_i \cdot \exp(\alpha_m \cdot \mathbb{I}(y_i \neq g_m(x_i)))$ for $i = 1, 2, ..., n$.

3. Output

$$f(x) := \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m g_m(x)\right)$$

AdaBoost

Weight updates

$$\alpha_m = \log\left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right)$$
$$w_i^{(m)} = w_i^{(m-1)} \cdot \exp(\alpha_m \cdot \mathbb{I}(y_i \neq g_m(x_i)))$$

Hence:

$$w_i^{(m)} = \begin{cases} w_i^{(m-1)} \\ w_i^{(m-1)} \cdot \frac{1 - \operatorname{err}_m}{\operatorname{err}_m} \end{cases}$$

if g_m classifies x_i correctly if g_m misclassifies x_i

Weighted classifier

$$f(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m g_m(x)\right)$$

ILLUSTRATION

Circle = data points, circle size = weight.

Dashed line: Current weak learner. Green line: Aggregate decision boundary.

AdaBoost test error (simulated data)

- Weak learners used are decision stumps.
- Combining many trees of depth 1 yields much better results than a single large tree.

BOOSTING: PROPERTIES

Properties

- AdaBoost is one of most widely used classifiers in applications.
- Decision boundary is non-linear.
- Can handle multiple classes if weak learner can do so.

Test vs training error

- Most training algorithms (e.g. Perceptron) terminate when training error reaches minimum.
- AdaBoost weights keep changing even if training error is minimal.
- Interestingly, the *test error* typically keeps decreasing even *after* training error has stabilized at minimal value.
- It can be shown that this behavior can be interpreted in terms of a margin:
 - Adding additional classifiers slowly pushes overall *f* towards a maximum-margin solution.
 - May not improve training error, but improves generalization properties.
- This does *not* imply that boosting magically outperforms SVMs, only that minimal training error does not imply an optimal solution.

AdaBoost with Decision Stumps

- Once AdaBoost has trained a classifier, the weights α_m tell us which of the weak learners are important (i.e. classify large subsets of the data well).
- If we use Decision Stumps as weak learners, each f_m corresponds to one axis.
- From the weights α , we can read off which axis are important to separate the classes.

Terminology

The dimensions of \mathbb{R}^d (= the measurements) are often called the **features** of the data. The process of selecting features which contain important information for the problem is called **feature selection**. Thus, AdaBoost with Decision Stumps can be used to perform feature selection.

Spam Data

- Tree classifier: 9.3% overall error rate
- Boosting with decision stumps: 4.5%
- Figure shows feature selection results of Boosting.

HOMEWORK: A PRIMITIVE ENSEMBLE

Idea

- Try to implement the "randomly throwing out hyperplanes" idea directly.
- Strategy: Build a "weak lerner" by selecting two points at random and let them determine a hyperplane.

HOMEWORK: A PRIMITIVE ENSEMBLE

Weak classifier

- Choose two training data points \mathbf{x}^- and \mathbf{x}^+ , one in each class.
- Place an affine plane "in the middle" between the two:

$$\mathbf{w} := \frac{\mathbf{x}^+ - \mathbf{x}^-}{\|\mathbf{x}^+ - \mathbf{x}^-\|}$$
 and $c := \langle \mathbf{w}, \mathbf{x}^- + \frac{1}{2}(\mathbf{x}^+ - \mathbf{x}^-) \rangle$

• Choose the orientation with smaller training error: Define weak classifier as

$$f(.) = \operatorname{sgn}(\langle ., \mathbf{v} \rangle - c)$$
 where either $\mathbf{v} := \mathbf{w}$ or $\mathbf{v} := -\mathbf{w}$

HOMEWORK: A PRIMITIVE ENSEMBLE

Ensemble training

- Split the available data into to equally sized parts (training and test).
- Select *m* pairs of points $(\mathbf{x}_1^-, \mathbf{x}_1^+), \ldots, (\mathbf{x}_m^-, \mathbf{x}_m^+)$ uniformly (with replacement).
- For each such pair $(\mathbf{x}_i^-, \mathbf{x}_i^+)$, compute the classifier f_i given by (\mathbf{v}_i, c_i) as described above.
- The overall classifier g_m is defined as the majority vote

$$g_m(\mathbf{x}) = \operatorname{sgn}\left(\sum_{j=1}^m f_i(\mathbf{x})\right) = \operatorname{sgn}\left(\sum_{j=1}^m \operatorname{sgn}(\langle \mathbf{v}_i, \mathbf{x} \rangle - c_i)\right)$$

APPLICATION: FACE DETECTION

FACE DETECTION

Searching for faces in images

Two problems:

- Face detection Find locations of all faces in image. Two classes.
- **Face recognition** Identify a person depicted in an image by recognizing the face. One class per person to be identified + background class (all other people).

Face detection can be regarded as a solved problem. Face recognition is not solved.

Face detection as a classification problem

- Divide image into patches.
- Classify each patch as "face" or "not face"

Reference: Viola & Jones, "Robust real-time face detection", Int. Journal of Computer Vision, 2004.

CLASSIFIER CASCADES

Unbalanced Classes

- Our assumption so far was that both classes are roughly of the same size.
- Some problems: One class is much larger.
- Example: Face detection.
 - Image subdivided into small quadratic patches.
 - Even in pictures with several people, only small fraction of patches usually represent faces.

Standard classifier training

Suppose positive class is very small.

- Training algorithm can achieve good error rate by classifiying *all* data as negative.
- The error rate will be precisely the proportion of points in positive class.

Addressing class imbalance

- We have to change cost function: False negatives (= classify face as background) are expensive.
- Consequence: Training algorithm will focus on keeping proportion of false negatives small.
- Problem: Will result in many false positives (= background classified as face).

Cascade approach

- Use many classifiers linked in a chain structure ("cascade").
- Each classifier eliminates part of the negative class.
- With each step down the cascade, class sizes become more even.

CLASSIFIER CASCADES

Training a cascade

Use imbalanced loss, with very low false negative rate for each f_j .

- 1. Train classifier f_1 on entire training data set.
- 2. Remove all $\tilde{\mathbf{x}}_i$ in negative class which f_1 classifies correctly from training set.
- 3. On smaller training set, train f_2 .
- 4. ...
- 5. On remaining data at final stage, train f_k .

Classifying with a cascade

- If any f_j classifies **x** as negative, $f(\mathbf{x}) = -1$.
- Only if all f_j classify **x** as positive, $f(\mathbf{x}) = +1$.

We have to consider two rates

false positive rate	$\mathbf{FDP}(f_{\cdot}) =$	#negative points classified as "+1"
Taise positive fate	$\Gamma(\mathbf{K}(j)) =$	$\frac{1}{\#}$ megative training points at stage <i>j</i>
recall (detection rate)	$\operatorname{Recall}(f_{\cdot})$ –	#correctly classified positive points
	$\operatorname{Recall}(f_j) =$	#positive training points at stage j

We want to achieve a low value of FPR(f) and a high value of Recall(f).

Class imbalance

In face detection example:

- Number of faces classified as background is (size of face class) \times (1 Recall(f))
- We would like to see a decently high detection rate, say 90%
- Number of background patches classified as faces is (size of background class) × (FPR(f))
- Since background class is huge, FPR(*f*) has to be *very* small to yield roughly the same amount of errors in both classes.

Cascade recall

The rates of the overall cascade classifier f are

$$\operatorname{FPR}(f) = \prod_{j=1}^{k} \operatorname{FPR}(f_j)$$
 $\operatorname{Recall}(f) = \prod_{j=1}^{k} \operatorname{Recall}(f_j)$

- Suppose we use a 10-stage cascade (k = 10)
- Each Recall (f_j) is 99% and we permit FPR (f_j) of 30%.
- We obtain $\text{Recall}(f) = 0.99^{10} \approx 0.90$ and $\text{FPR}(f) = 0.3^{10} \approx 6 \times 10^{-6}$

Objectives

- Classification step should be computationally efficient.
- Expensive training affordable.

Strategy

- Extract very large set of measurements (features), i.e. d in \mathbb{R}^d large.
- Use Boosting with decision stumps.
- From Boosting weights, select small number of important features.
- Class imbalance: Use Cascade.

Classification step

Compute only the selected features from input image.

FEATURE EXTRACTION

Extraction method

- 1. Enumerate possible windows (different shapes and locations) by $j = 1, \ldots, d$.
- 2. For training image *i* and each window *j*, compute
 - x_{ij} := average of pixel values in gray block(s)
 - average of pixel values in white block(s)
- 3. Collect values for all *j* in a vector $\mathbf{x}_i := (x_{i1}, \dots, x_{id}) \in \mathbb{R}^d$.

The dimension is huge

- One entry for (almost) every possible location of a rectangle in image.
- Start with small rectangles and increase edge length repeatedly by 1.5.
- In Viola-Jones paper: Images are 384×288 pixels, $d \approx 160000$.

First two selected features

200 features are selected in total.

Peter Orbanz · Applied Data Mining

Training procedure

- 1. User selects acceptable rates (FPR and Recall) for each level of the cascade.
- 2. At each level of the cascade:
 - Train a boosting classifier.
 - Gradually increase the number of selected features until required rates are achieved.

Use of training data

Each training step uses:

- All positive examples (= faces).
- Negative examples (= non-faces) misclassified at previous cascade layer.

EXAMPLE RESULTS

Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130 images and 507 faces.

Detector	False detections								
	10	31	50	65	78	95	167	422	
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%	94.1%	
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2%	93.7%	_	
Rowley-Baluja-Kanade	83.2%	86.0%	_	_	_	89.2%	90.1%	89.9%	
Schneiderman-Kanade	_	_	_	94.4%	_	_	_	_	
Roth-Yang-Ahuja	_	_	_	_	(94.8%)	_	_	_	