
BOOSTING

Boosting
• Arguably the most popular (and historically the first) ensemble method.
• Weak learners can be trees (decision stumps are popular), Perceptrons, etc.
• Requirement: It must be possible to train the weak learner on a weighted training set.

Overview
• Boosting adds weak learners one at a time.
• A weight value is assigned to each training point.
• At each step, data points which are currently classified correctly are weighted down (i.e.

the weight is smaller the more of the weak learners already trained classify the point
correctly).

• The next weak learner is trained on the weighted data set: In the training step, the error
contributions of misclassified points are multiplied by the weights of the points.

• Roughly speaking, each weak learner tries to get those points right which are currently not
classified correctly.
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TRAINING WITH WEIGHTS

Example: Decision stump
A decision stump classifier for two classes is defined by

f ( x | j, t ) :=

{
+1 x(j) > t
−1 otherwise

where j ∈ {1, . . . , d} indexes an axis in Rd .

Weighted data
• Training data (x̃1, ỹ1), . . . , (x̃n, ỹn).
• With each data point x̃i we associate a weight wi ≥ 0.

Training on weighted data
Minimize the weighted misclassifcation error:

(j∗, t∗) := arg min
j,t

∑n
i=1 wiI{ỹi 6= f (x̃i|j, t)}∑n

i=1 wi
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ADABOOST

Input
• Training data (x̃1, ỹ1), . . . , (x̃n, ỹn)

• Algorithm parameter: Number M of weak learners

Training algorithm
1. Initialize the observation weights wi = 1

n for i = 1, 2, ..., n.

2. For m = 1 to M:

2.1 Fit a classifier gm(x) to the training data using weights wi.
2.2 Compute

errm :=

∑n
i=1 wiI{yi 6= gm(xi)}∑

i wi

2.3 Compute αm = log( 1−errm
errm

)

2.4 Set wi ← wi · exp(αm · I(yi 6= gm(xi))) for i = 1, 2, ..., n.

3. Output

f (x) := sign

(
M∑

m=1

αmgm(x)

)
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ADABOOST

Weight updates

αm = log
(1− errm

errm

)

w(m)
i = w(m-1)

i · exp(αm · I(yi 6= gm(xi)))

Hence:

w(m)
i =

{
w(m-1)

i if gm classifies xi correctly
w(m-1)

i · 1−errm
errm

if gm misclassifies xi
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ILLUSTRATION
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Circle = data points, circle size = weight.
Dashed line: Current weak learner. Green line: Aggregate decision boundary.
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EXAMPLE

AdaBoost test error (simulated data)

• Weak learners used are decision stumps.
• Combining many trees of depth 1 yields much better results than a single large tree.
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BOOSTING: PROPERTIES

Properties
• AdaBoost is one of most widely used classifiers in applications.
• Decision boundary is non-linear.
• Can handle multiple classes if weak learner can do so.

Test vs training error
• Most training algorithms (e.g. Perceptron) terminate when training error reaches

minimum.
• AdaBoost weights keep changing even if training error is minimal.
• Interestingly, the test error typically keeps decreasing even after training error has

stabilized at minimal value.
• It can be shown that this behavior can be interpreted in terms of a margin:

• Adding additional classifiers slowly pushes overall f towards a maximum-margin
solution.

• May not improve training error, but improves generalization properties.
• This does not imply that boosting magically outperforms SVMs, only that minimal

training error does not imply an optimal solution.
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BOOSTING AND FEATURE SELECTION

AdaBoost with Decision Stumps
• Once AdaBoost has trained a classifier, the weights αm tell us which of the weak learners

are important (i.e. classify large subsets of the data well).
• If we use Decision Stumps as weak learners, each fm corresponds to one axis.
• From the weights α, we can read off which axis are important to separate the classes.

Terminology
The dimensions of Rd (= the measurements) are often called the features of the data. The
process of selecting features which contain important information for the problem is called
feature selection. Thus, AdaBoost with Decision Stumps can be used to perform feature
selection.
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SPAM DATA

• Tree classifier: 9.3% overall
error rate

• Boosting with decision stumps:
4.5%

• Figure shows feature selection
results of Boosting.
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HOMEWORK: A PRIMITIVE ENSEMBLE

x−

x+

Idea
• Try to implement the “randomly throwing out hyperplanes” idea directly.
• Strategy: Build a “weak lerner” by selecting two points at random and let them determine

a hyperplane.
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HOMEWORK: A PRIMITIVE ENSEMBLE

x−

x+

Weak classifier
• Choose two training data points x− and x+, one in each class.
• Place an affine plane “in the middle” between the two:

w :=
x+ − x−

‖x+ − x−‖ and c :=
〈

w, x− +
1
2

(x+ − x−)
〉

• Choose the orientation with smaller training error: Define weak classifier as

f ( . ) = sgn(〈 . , v〉 − c) where either v := w or v := −w .
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HOMEWORK: A PRIMITIVE ENSEMBLE

x−

x+

Ensemble training
• Split the available data into to equally sized parts (training and test).

• Select m pairs of points (x−1 , x
+
1 ), . . . , (x−m , x+

m ) uniformly (with replacement).

• For each such pair (x−i , x
+
i ), compute the classifer fi given by (vi, ci) as described above.

• The overall classifier gm is defined as the majority vote

gm(x) = sgn
( m∑

j=1

fi(x)
)

= sgn
( m∑

j=1

sgn(〈vi, x〉 − ci)
)
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APPLICATION: FACE DETECTION



FACE DETECTION

Searching for faces in images
Two problems:

• Face detection Find locations of all faces in image. Two classes.
• Face recognition Identify a person depicted in an image by recognizing the face. One

class per person to be identified + background class (all other people).
Face detection can be regarded as a solved problem. Face recognition is not solved.

Face detection as a classification problem
• Divide image into patches.
• Classify each patch as "face" or "not face"

Reference: Viola & Jones, “Robust real-time face detection”, Int. Journal of Computer Vision, 2004.

Peter Orbanz · Applied Data Mining 224



CLASSIFIER CASCADES

Unbalanced Classes
• Our assumption so far was that both classes are roughly of the same size.
• Some problems: One class is much larger.
• Example: Face detection.

• Image subdivided into small quadratic
patches.

• Even in pictures with several people, only
small fraction of patches usually represent
faces.

Standard classifier training
Suppose positive class is very small.

• Training algorithm can achieve good error rate by classifiying all data as negative.
• The error rate will be precisely the proportion of points in positive class.

Image source: WikipediaPeter Orbanz · Applied Data Mining 225



CLASSIFIER CASCADES

Addressing class imbalance
• We have to change cost function: False negatives (= classify face as background)

are expensive.
• Consequence: Training algorithm will focus on keeping proportion of false

negatives small.
• Problem: Will result in many false positives (= background classified as face).

Cascade approach
• Use many classifiers linked in a chain structure ("cascade").
• Each classifier eliminates part of the negative class.
• With each step down the cascade, class sizes become more even.
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CLASSIFIER CASCADES

Training a cascade
Use imbalanced loss, with very low false negative
rate for each fj.

1. Train classifier f1 on entire training data set.

2. Remove all x̃i in negative class which f1
classifies correctly from training set.

3. On smaller training set, train f2.

4. ...

5. On remaining data at final stage, train fk .

Classifying with a cascade
• If any fj classifies x as negative, f (x) = −1.
• Only if all fj classify x as positive, f (x) = +1.

x

f1

f2

. . .

fk

−

−

− +

+1

+1

+1

−1

−1

−1 +1
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WHY DOES A CASCADE WORK?

We have to consider two rates

false positive rate FPR(fj) =
#negative points classified as "+1"
#negative training points at stage j

recall (detection rate) Recall(fj) =
#correctly classified positive points
#positive training points at stage j

We want to achieve a low value of FPR(f ) and a high value of Recall(f ).

Class imbalance
In face detection example:

• Number of faces classified as background is (size of face class)× (1− Recall(f ))

• We would like to see a decently high detection rate, say 90%

• Number of background patches classified as faces is
(size of background class)× (FPR(f ))

• Since background class is huge, FPR(f ) has to be very small to yield roughly the same
amount of errors in both classes.
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WHY DOES A CASCADE WORK?

Cascade recall
The rates of the overall cascade classifier f are

FPR( f ) =

k∏

j=1

FPR( fj) Recall( f ) =

k∏

j=1

Recall( fj)

• Suppose we use a 10-stage cascade (k = 10)
• Each Recall( fj) is 99% and we permit FPR( fj) of 30%.

• We obtain Recall( f ) = 0.9910 ≈ 0.90 and FPR( f ) = 0.310 ≈ 6× 10−6
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VIOLA-JONES DETECTOR

Objectives
• Classification step should be computationally efficient.
• Expensive training affordable.

Strategy
• Extract very large set of measurements (features), i.e. d in Rd large.
• Use Boosting with decision stumps.
• From Boosting weights, select small number of important features.
• Class imbalance: Use Cascade.

Classification step
Compute only the selected features from input image.
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FEATURE EXTRACTION

Extraction method
1. Enumerate possible windows (different shapes

and locations) by j = 1, . . . , d.

2. For training image i and each window j,
compute

xij := average of pixel values in gray block(s)
− average of pixel values in white block(s)

3. Collect values for all j in a vector
xi := (xi1, . . . , xid) ∈ Rd .

Robust Real-Time Face Detection 139

together yield an extremely reliable and efficient face
detector. Section 5 will describe a number of experi-
mental results, including a detailed description of our
experimental methodology. Finally Section 6 contains
a discussion of this system and its relationship to re-
lated systems.

2. Features

Our face detection procedure classifies images based
on the value of simple features. There are many moti-
vations for using features rather than the pixels directly.
The most common reason is that features can act to en-
code ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. For this system
there is also a second critical motivation for features:
the feature-based system operates much faster than a
pixel-based system.

The simple features used are reminiscent of Haar
basis functions which have been used by Papageorgiou
et al. (1998). More specifically, we use three kinds of
features. The value of a two-rectangle feature is the
difference between the sum of the pixels within two
rectangular regions. The regions have the same size
and shape and are horizontally or vertically adjacent
(see Fig. 1). A three-rectangle feature computes the
sum within two outside rectangles subtracted from the
sum in a center rectangle. Finally a four-rectangle fea-
ture computes the difference between diagonal pairs of
rectangles.

Given that the base resolution of the detector is
24 × 24, the exhaustive set of rectangle features is

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

quite large, 160,000. Note that unlike the Haar basis,
the set of rectangle features is overcomplete.3

2.1. Integral Image

Rectangle features can be computed very rapidly using
an intermediate representation for the image which we
call the integral image.4 The integral image at location
x, y contains the sum of the pixels above and to the left
of x, y, inclusive:

i i(x, y) =
∑

x ′≤x,y′≤y

i(x ′, y′),

where i i(x, y) is the integral image and i(x, y) is the
original image (see Fig. 2). Using the following pair of
recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (1)

i i(x, y) = i i(x − 1, y) + s(x, y) (2)

(where s(x, y) is the cumulative row sum, s(x, −1) =
0, and i i(−1, y) = 0) the integral image can be com-
puted in one pass over the original image.

Using the integral image any rectangular sum can be
computed in four array references (see Fig. 3). Clearly
the difference between two rectangular sums can be
computed in eight references. Since the two-rectangle
features defined above involve adjacent rectangular
sums they can be computed in six array references,
eight in the case of the three-rectangle features, and
nine for four-rectangle features.

One alternative motivation for the integral im-
age comes from the “boxlets” work of Simard et al.

Figure 2. The value of the integral image at point (x, y) is the sum
of all the pixels above and to the left.

The dimension is huge
• One entry for (almost) every possible location of a rectangle in image.
• Start with small rectangles and increase edge length repeatedly by 1.5.
• In Viola-Jones paper: Images are 384× 288 pixels, d ≈ 160000.
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SELECTED FEATURES

First two selected features
144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

200 features are selected in total.
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TRAINING THE CASCADE

Training procedure
1. User selects acceptable rates (FPR and Recall) for each level of the cascade.

2. At each level of the cascade:
• Train a boosting classifier.
• Gradually increase the number of selected features until required rates are achieved.

Use of training data
Each training step uses:

• All positive examples (= faces).
• Negative examples (= non-faces) misclassified at previous cascade layer.
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EXAMPLE RESULTS

152 Viola and Jones

Figure 10. Output of our face detector on a number of test images from the MIT + CMU test set.

6. Conclusions

We have presented an approach for face detection
which minimizes computation time while achieving
high detection accuracy. The approach was used to con-
struct a face detection system which is approximately
15 times faster than any previous approach. Preliminary
experiments, which will be described elsewhere, show
that highly efficient detectors for other objects, such as
pedestrians or automobiles, can also be constructed in
this way.

This paper brings together new algorithms, represen-
tations, and insights which are quite generic and may
well have broader application in computer vision and
image processing.

The first contribution is a new a technique for com-
puting a rich set of image features using the integral
image. In order to achieve true scale invariance, almost
all face detection systems must operate on multiple
image scales. The integral image, by eliminating the
need to compute a multi-scale image pyramid, reduces
the initial image processing required for face detection
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RESULTS

Robust Real-Time Face Detection 151

Table 3. Detection rates for various numbers of false positives on the MIT + CMU test set containing 130
images and 507 faces.

False detections

Detector 10 31 50 65 78 95 167 422

Viola-Jones 76.1% 88.4% 91.4% 92.0% 92.1% 92.9% 93.9% 94.1%

Viola-Jones (voting) 81.1% 89.7% 92.1% 93.1% 93.1% 93.2% 93.7% –

Rowley-Baluja-Kanade 83.2% 86.0% – – – 89.2% 90.1% 89.9%

Schneiderman-Kanade – – – 94.4% – – – –

Roth-Yang-Ahuja – – – – (94.8%) – – –

regime (i.e. single point on the ROC curve). To make
comparison with our detector easier we have listed our
detection rate for the same false positive rate reported
by the other systems. Table 3 lists the detection rate
for various numbers of false detections for our system
as well as other published systems. For the Rowley-
Baluja-Kanade results (Rowley et al., 1998), a number
of different versions of their detector were tested yield-
ing a number of different results. While these various
results are not actually points on a ROC curve for a
particular detector, they do indicate a number of dif-
ferent performance points that can be achieved with
their approach. They did publish ROC curves for two
of their detectors, but these ROC curves did not rep-
resent their best results. For the Roth-Yang-Ahuja de-
tector (Roth et al., 2000), they reported their result on
the MIT + CMU test set minus 5 images containing
line drawn faces removed. So their results are for a sub-
set of the MIT + CMU test set containing 125 images
with 483 faces. Presumably their detection rate would
be lower if the full test set was used. The parenthe-
ses around their detection rate indicates this slightly
different test set. The Sung and Poggio face detec-
tor (Sung and Poggio, 1998) was tested on the MIT
subset of the MIT + CMU test set since the CMU
portion did not exist yet. The MIT test set contains
23 images with 149 faces. They achieved a detection
rate of 79.9% with 5 false positives. Our detection
rate with 5 false positives is 77.8% on the MIT test
set.

Figure 10 shows the output of our face detector on
some test images from the MIT + CMU test set.

5.7.1. A Simple Voting Scheme Further Improves
Results. The best results were obtained through the
combination of three detectors trained using different
initial negative examples, slightly different weighting

on negative versus positive errors, and slightly different
criteria for trading off false positives for classifier size.
These three systems performed similarly on the final
task, but in some cases errors were different. The detec-
tion results from these three detectors were combined
by retaining only those detections where at least 2 out
of 3 detectors agree. This improves the final detection
rate as well as eliminating more false positives. Since
detector errors are not uncorrelated, the combination
results in a measurable, but modest, improvement over
the best single detector.

5.7.2. Failure Modes. By observing the performance
of our face detector on a number of test images we have
noticed a few different failure modes.

The face detector was trained on frontal, upright
faces. The faces were only very roughly aligned so
there is some variation in rotation both in plane and out
of plane. Informal observation suggests that the face
detector can detect faces that are tilted up to about ±15
degrees in plane and about ±45 degrees out of plane
(toward a profile view). The detector becomes unreli-
able with more rotation than this.

We have also noticed that harsh backlighting in
which the faces are very dark while the background
is relatively light sometimes causes failures. It is in-
teresting to note that using a nonlinear variance nor-
malization based on robust statistics to remove out-
liers improves the detection rate in this situation. The
problem with such a normalization is the greatly in-
creased computational cost within our integral image
framework.

Finally, our face detector fails on significantly oc-
cluded faces. If the eyes are occluded for example, the
detector will usually fail. The mouth is not as important
and so a face with a covered mouth will usually still be
detected.
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