
A =

A�K =

• Here, the input layer representing A and the consecutive layer representing A�K are
visualized as sheets.

• The layer that computes A�K is often called a convolutional layer, although
cross-correlation layer would be more accurate. (There is another operation called a
convolution that is similar to cross-correlation, but not identical.)

• Neural networks that contain convolutional layers are called convolutional neural
networks, even if not every layer is a convolution. Typically, the first hidden layer
performs a convolution.

• Almost all networks used for image processing and computer vision problems are
convolutional neural networks.
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COMPUTING SEVERAL CROSS-CORRELATIONS IN
PARRALEL

a31 a32 a33

a21 a22 a23

a11 a12 a13

(A� K)22 (A� K′)22

• We start with the same network as before that computes (A�K)22.
• For each input vertex, we add a second connection and collect all of these in a second

(linear) unit. That is, the second layer now has two units.
• The connections to the first node on the second layer still use the weights given by K.

(The weights are omitted above since the figure would get too crowded.)
• Now specify a second 3× 3 matrix K′. Use its entries as weights for the additional

connections, collected by the second linear unit.
• The network now computes (A�K)22 (as output of one unit in the second layer) and

(A�K′)22 (as output of the other one).
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OBJECT RECOGNITION TASKS

• An important benchmark problem is object recognition.
• The task is, roughly: An image is fed into a multiclass classifier, and the classifier should

output the label of a/the “dominant” object in the image.
• For a picture of a car with background, the label would be “car”, possibly plus a specific

type or model.
• The current state of the art for this problem are (convolutional) neural networks whose

input is the entire image (i.e. there is no prior feature extraction step).
• The next two slides illustrate models that performed best in comparisons organized as a

contest in 2012 and 2014.
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STATE-OF-THE-ART IN 2012

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

• This is an illustration (taken from the research article) of the convolutional network that
first demonstrated enourmous improvements in computer vision benchmark tasks.

• “Stride of 4” refers to a convolutional layer that applies 96 kernels in parallel.
• Each of the big blocks in the figure represents a convolutional layer.
• In between the convolutional layers, additional operations are performed (“pooling” and a

form of normalization).
• “Pooling” refers to operations that collect outputs from a rectangular patch adjacent units

and summarize them in a single unit. That reduces layer size.
• “Dense” refers to a layer that is fully connected (all possible edges from one layer to the

next are present). These are located at towards the output end of the network, where layer
size has already been reduced.
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STATE-OF-THE-ART IN 2014
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• Layers: Convolution (blue), pooling (red), various others.
• This network was designed by Google (the one of the previous page in academia).

Szegedy et al: “Going deeper with convolutions”Peter Orbanz · Applied Data Mining 324



MACHINE LEARNING BENCHMARKS

How do we evaluate which methods work?
• The basic evaluation of data mining/machine learning methods is conducted by individual

research groups and reported in scientific articles.
• These results use different data sets, different cross-validation setups, etc. That makes

them hard to compare.
• It is easy to cheat, too. That is not in anyone’s long-term interest as a researcher, but it

happens.
• It is easy to make mistakes, e.g. by getting your cross-validation wrong.

Benchmark data sets
• Benchmark data sets are sets of labelled data used by many researchers to make results

more comparable.
• Early examples in computer vision are the Berkeley Segmentation Dataset and Benchmark

(2001, for image segmentation) and the Caltech 101 dataset (2004, for object
categorization).
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BENCHMARK COMPETITIONS

Challenges
• To make evaluation (not just data) comparable, some research groups organize

competitions (often called “challenges” in computer vision and machine learning).
• The organizers specify a task (e.g. a classification problem) and a performance goal (e.g.

“achieve minimal classification error on the test data”).
• Research groups can sign up to participate.
• A set of labelled data is made available to participants, for use as training data.
• The organizers hold out a test data set (which is kept secret). At the end of the

competition, all participating groups submit their final trained model, the organizers run it
on the test data, and report the results.

ILSVRC
• The best-known example is the ImageNet Large-Scale Visual Recognition Challenge (or

ILSVRC). which evaluates how well an algorithm can perform certain vision tasks, like
classifiying and locating objects in images.

• In 2012, a “deep” neural network drastically improved on previous ILSVRC results. That
was one of the triggers for the current interest of the tech industry in machine learning.
The network is the one picture on slide 323.
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of objects in 636,748 images and video frames, but it is not
available for free. Several datasets provide pixel-level seg-
mentations: for example, MSRC dataset (Criminisi 2004)
with 591 images and 23 object classes, Stanford Background
Dataset (Gould et al. 2009) with 715 images and 8 classes,
and the Berkeley Segmentation dataset (Arbelaez et al. 2011)
with 500 images annotated with object boundaries. Open-
Surfaces segments surfaces from consumer photographs and
annotates them with surface properties, including material,
texture, and contextual information (Bell et al. 2013).

The closest to ILSVRC is the PASCAL VOC dataset
(Everingham et al. 2010, 2014), which provides a standard-
ized test bed for object detection, image classification, object
segmentation, person layout, and action classification. Much
of the design choices in ILSVRC have been inspired by
PASCAL VOC and the similarities and differences between
the datasets are discussed at length throughout the paper.
ILSVRC scales up PASCAL VOC’s goal of standardized
training and evaluation of recognition algorithms by more
than an order of magnitude in number of object classes
and images: PASCAL VOC 2012 has 20 object classes and
21,738 images compared to ILSVRC2012 with 1000 object
classes and 1,431,167 annotated images.

The recently released COCO dataset (Lin et al. 2014b)
contains more than 328,000 images with 2.5 million object
instances manually segmented. It has fewer object categories
than ILSVRC (91 in COCO versus 200 in ILSVRC object
detection) but more instances per category (27K on average
compared to about 1K in ILSVRC object detection). Further,
it contains object segmentation annotations which are not
currently available in ILSVRC. COCO is likely to become
another important large-scale benchmark.

Large-Scale Annotation ILSVRC makes extensive use of
Amazon Mechanical Turk to obtain accurate annotations
(Sorokin and Forsyth 2008). Works such as (Welinder et al.
2010; Sheng et al. 2008;Vittayakorn andHays2011) describe
quality control mechanisms for this marketplace. Vondrick
et al. (2012) provides a detailed overview of crowdsourc-
ing video annotation. A related line of work is to obtain
annotations through well-designed games, e.g. (von Ahn
and Dabbish 2005). Our novel approaches to crowdsourc-
ing accurate image annotations are in Sects. 3.1.3, 3.2.1
and 3.3.3.

Standardized Challenges There are several datasets with
standardized online evaluation similar to ILSVRC: the afore-
mentioned PASCALVOC (Everingham et al. 2012), Labeled
Faces in the Wild (Huang et al. 2007) for unconstrained
face recognition, Reconstruction meets Recognition (Urta-
sun et al. 2014) for 3D reconstruction and KITTI (Geiger
et al. 2013) for computer vision in autonomous driving. These
datasets alongwith ILSVRC help benchmark progress in dif-

ferent areas of computer vision. Works such as (Torralba and
Efros 2011) emphasize the importance of examining the bias
inherent in any standardized dataset.

1.2 Paper Layout

We begin with a brief overview of ILSVRC challenge tasks
in Sect. 2. Dataset collection and annotation are described at
length in Sect. 3. Section 4 discusses the evaluation criteria
of algorithms in the large-scale recognition setting. Section 5
provides an overview of the methods developed by ILSVRC
participants.

Section6 contains an in-depth analysis of ILSVRCresults:
Sect. 6.1 documents the progress of large-scale recognition
over the years, Sect. 6.2 concludes that ILSVRC results are
statistically significant, Sect. 6.3 thoroughly analyzes the cur-
rent state of the field of object recognition, and Sect. 6.4
compares state-of-the-art computer vision accuracy with
human accuracy. We conclude and discuss lessons learned
from ILSVRC in Sect. 7.

2 Challenge Tasks

The goal of ILSVRC is to estimate the content of photographs
for the purpose of retrieval and automatic annotation. Test
images are presented with no initial annotation, and algo-
rithms have to produce labelings specifying what objects are
present in the images. New test images are collected and
labeled especially for this competition and are not part of the
previously published ImageNet dataset (Deng et al. 2009).

ILSVRC over the years has consisted of one or more of
the following tasks (years in parentheses):3

(1) Image classification (2010–2014): Algorithms produce a
list of object categories present in the image.

(2) Single-object localization (2011–2014): Algorithms pro-
duce a list of object categories present in the image, along
with an axis-aligned bounding box indicating the position
and scale of one instance of each object category.

(3) Object detection (2013–2014): Algorithms produce a list
of object categories present in the image along with an
axis-aligned bounding box indicating the position and
scale of every instance of each object category.

This section provides an overview and history of each of the
three tasks. Table 1 shows summary statistics.

3 In addition, ILSVRC in 2012 also included a taster fine-grained clas-
sification task, where algorithms would classify dog photographs into
one of 120 dog breeds (Khosla et al. 2011). Fine-grained classification
has evolved into its own Fine-Grained classification challenge in 2013
(Berg et al. 2013), which is outside the scope of this paper.
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Fig. 7 Tasks in ILSVRC. The first column shows the ground truth labeling on an example image, and the next three show three sample outputs
with the corresponding evaluation score

4.1 Image Classification

The scale of ILSVRCclassification task (1000 categories and
more than a million of images) makes it very expensive to
label every instance of every object in every image. There-
fore, on this dataset only one object category is labeled in
each image. This creates ambiguity in evaluation. For exam-
ple, an image might be labeled as a “strawberry” but contain
both a strawberry and an apple. Then an algorithmwould not
know which one of the two objects to name. For the image
classification task we allowed an algorithm to identify mul-
tiple (up to 5) objects in an image and not be penalized as
long as one of the objects indeed corresponded to the ground
truth label. Figure 7 (top row) shows some examples.

Concretely, each image i has a single class label Ci . An
algorithm is allowed to return 5 labels ci1, . . . ci5, and is con-
sidered correct if ci j = Ci for some j .

Let the error of a prediction di j = d(ci j ,Ci ) be 1 if ci j ̸=
Ci and 0 otherwise. The error of an algorithm is the fraction
of test images on which the algorithm makes a mistake:

error = 1
N

N∑

i=1

min
j

di j (1)

We used two additional measures of error. First, we evalu-
ated top-1 error. In this case algorithmswere penalized if their
highest-confidence output label ci1 did not match ground
truth class Ci . Second, we evaluated hierarchical error. The
intuition is that confusing two nearby classes (such as two
different breeds of dogs) is not as harmful as confusing a dog
for a container ship. For the hierarchical criteria, the cost of
one misclassification, d(ci j ,Ci ), is defined as the height of
the lowest common ancestor of ci j and Ci in the ImageNet
hierarchy. The height of a node is the length of the longest
path to a leaf node (leaf nodes have height zero).

However, in practice we found that all three measures
of error (top-5, top-1, and hierarchical) produced the same
ordering of results. Thus, since ILSVRC2012 we have been
exclusively using the top-5 metric which is the simplest and
most suitable to the dataset.

123

from Russakovsky et al: “ImageNet Large Scale Visual Recognition Challenge”Peter Orbanz · Applied Data Mining 328



CROSS VALIDATION SETUP

218 Int J Comput Vis (2015) 115:211–252

Table 2 Scale of ILSVRC image classification task (minimum per class - maximum per class)

Year Train images
(per class)

Val images
(per class)

Test images
(per class)

Image classification annotations (1000 object classes)

ILSVRC2010 1,261,406 (668–3047) 50,000 (50) 150,000 (150)

ILSVRC2011 1,229,413 (384–1300) 50,000 (50) 100,000 (100)

ILSVRC2012-14 1,281,167 (732–1300) 50,000 (50) 100,000 (100)

The numbers in parentheses correspond to (minimum per class–maximum per class). The 1000 classes change from year to year but are consistent
between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for
single-object localization

Table 3 Scale of additional annotations for the ILSVRC single-object localization task (minimum per class - maximum per class)

Year Train images
with bbox
annotations
(per class)

Train bboxes
annotated (per
class)

Val images
with bbox
annotations
(per class)

Val bboxes
annotated
(per class)

Test images
with bbox
annotations

Additional annotations for single-object localization (1000 object classes)

ILSVRC2011 315,525 (104–1256) 344,233 (114–1502) 50,000 (50) 55,388 (50–118) 100,000

ILSVRC2012-14 523,966 (91–1268) 593,173 (92–1418) 50,000 (50) 64,058 (50–189) 100,000

The numbers in parentheses correspond to (minimum per class–maximum per class). The 1000 classes change from year to year but are consistent
between image classification and single-object localization tasks in the same year. All images from the image classification task may be used for
single-object localization

test image and a subset of the training images are annotated
with axis-aligned bounding boxes around every instance of
this object.

Every bounding box is required to be as small as possi-
ble while including all visible parts of the object instance.
An alternate annotation procedure could be to annotate the
full (estimated) extent of the object: e.g., if a person’s legs
are occluded and only the torso is visible, the bounding box
could be drawn to include the likely location of the legs.How-
ever, this alternative procedure is inherently ambiguous and
ill-defined, leading to disagreement among annotators and
among researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only anno-
tating visible object parts (Russell et al. 2007; Everingham
et al. 2010).5

3.2.1 Bounding Box Object Annotation System

We summarize the crowdsourced bounding box annotation
system described in detail in Su et al. (2012). The goal is
to build a system that is fully automated, highly accurate,
and cost-effective. Given a collection of images where the

5 Some datasets such as PASCAL VOC (Everingham et al. 2010)
and LabelMe (Russell et al. 2007) are able to provide more detailed
annotations: for example, marking individual object instances as being
truncated. We chose not to provide this level of detail in favor of anno-
tating more images and more object instances.

object of interest has been verified to exist, for each image
the system collects a tight bounding box for every instance
of the object.

There are two requirements:

– Quality Each bounding box needs to be tight, i.e. the
smallest among all bounding boxes that contains all visi-
ble parts of the object. This facilitates the object detection
learning algorithms by providing the precise location of
each object instance;

– CoverageEvery object instance needs to have a bounding
box. This is important for training localization algorithms
because it tells the learning algorithms with certainty
what is not the object.

The core challenge of building such a system is effectively
controlling the data qualitywithminimal cost. Our key obser-
vation is that drawing a bounding box is significantly more
difficult and time consuming than giving answers to multi-
ple choice questions. Thus quality control through additional
verification tasks ismore cost-effective than consensus-based
algorithms. This leads to the followingworkflowwith simple
basic subtasks:

(1) Drawing A worker draws one bounding box around one
instance of an object on the given image.

123

size of smallest
class

size of largest
class

• The data is split into a large training set, plus a validation and a test set.
• Research groups download the training set.
• The validation data sits on a server on which research groups can upload their trained

models. The server runs the model on the validation data and reports the accuracy
estimate to the researchers, who can use this feedback to improve their model.

• The test data is withheld. After a submission deadline, all submitted models are run on the
test data to produce an “official” result.
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EXAMPLE ILSVRC RULES

Example Rules
• Each research group is limited to two validation steps per week. (One team famously

cheated its way around this rule in 2015.)
• There are separate contests that do or do not permit additional training data to be used.

Crowdsourcing
• The data is collected from image search engines.
• It does not come with reliable labels for training, validation and testing.
• The class labels are added by crowdsourcing.
• The labels are structured hierarchically, i.e. there is a meta-category “cars” which contains

specific types of cars as subcategories. The challenge task is to predict the most specific
labels (the leaves in the hierarchy tree).

• The next two slides illustrate how the categories are structured.
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Fig. 5 Consider the problem of
binary multi-label annotation.
For each input (e.g., image) and
each label (e.g., object), the goal
is to determine the presence or
absense (plus or minus) of the
label (e.g., decide if the object is
present in the image).
Multi-label annotation becomes
much more efficient when
considering real-world structure
of data: correlation between
labels, hierarchical organization
of concepts, and sparsity of
labels

Fig. 6 Our algorithm dynamically selects the next query to efficiently determine the presence or absence of every object in every image. Green
denotes a positive annotation and red denotes a negative annotation. This toy example illustrates a sample progression of the algorithm for one
label (cat) on a set of images

categorize at higher semantic levels (Thorpe et al. 1996),
e.g. humans can determine the presence of an animal in
an image as fast as every type of animal individually.
This leads to substantial cost savings.

(3) Sparsity The values of labels for each image tend to be
sparse, i.e. an image is unlikely to contain more than a
dozen types of objects, a small fraction of the hundreds
of object categories. This enables rapid elimination of
many objects by quickly filling in no.With a high degree
of sparsity, an efficient algorithm can have a cost which
grows logarithmicallywith the number of objects instead
of linearly.

We propose algorithmic strategies that exploit the above
intuitions. The key is to select a sequence of queries for
humans such that we achieve the same labeling results with
only a fraction of the cost of the naïve approach. The main
challenges include how tomeasure cost and utility of queries,
how to construct good queries, and how to dynamically order
them. A detailed description of the generic algorithm, along
with theoretical analysis and empirical evaluation, is pre-
sented in Deng et al. (2014).

Application of the Generic Multi-class Labeling Algorithm
to Our Setting The generic algorithm automatically selects
the most informative queries to ask based on object label sta-
tistics learned from the training set. In our case of 200 object

classes, since obtaining the training set was by itself chal-
lenging we chose to design the queries by hand. We created
a hierarchy of queries of the type “is there a... in the image?”
For example, one of the high-level questions was “is there an
animal in the image?” We ask the crowd workers this ques-
tion about every image we want to label. The children of the
“animal” question would correspond to specific examples of
animals: for example, “is there a mammal in the image?” or
“is there an animal with no legs?” To annotate images effi-
ciently, these questions are asked only on images determined
to contain an animal. The 200 leaf node questions correspond
to the 200 target objects, e.g., “is there a cat in the image?”.
A few sample iterations of the algorithm are shown in Fig. 6.

Algorithm 1 is the formal algorithm for labeling an image
with the presence or absence of each target object category.
With this algorithm in mind, the hierarchy of questions was
constructed following the principle that false positives only
add extra cost whereas false negatives can significantly affect
the quality of the labeling. Thus, it is always better to stick
with more general but less ambiguous questions, such as “is
there a mammal in the image?” as opposed to asking overly
specific but potentially ambiguous questions, such as “is
there an animal that can climb trees?” Constructing this hier-
archy was a surprisingly time-consuming process, involving
multiple iterations to ensure high accuracy of labeling and
avoid question ambiguity. Appendix 1 shows the constructed
hierarchy.
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◦ wind instrument: a musical instrument in which the sound is produced by an enclosed column of air that is moved
by the breath (such as trumpet, french horn, harmonica, flute, etc)

◦ (17) trumpet: a brass musical instrument with a narrow tube and a flared bell, which is played by means of
valves. often has 3 keys on top
◦ (18) french horn: a brass musical instrument consisting of a conical tube that is coiled into a spiral, with a flared
bell at the end
◦ (19) trombone: a brass instrument consisting of a long tube whose length can be varied by a u-shaped slide
◦ (20) harmonica
◦ (21) flute: a high-pitchedmusical instrument that looks like a straight tube and is usually played sideways (please
do not confuse with oboes, which have a distinctive straw-like mouth piece and a slightly flared end)
◦ (22) oboe: a slender musical instrument roughly 65cm long with metal keys, a distinctive straw-like mouthpiece
and often a slightly flared end (please do not confuse with flutes)
◦ (23) saxophone: a musical instrument consisting of a brass conical tube, often with a u-bend at the end

• food: something you can eat or drink (includes growing fruit, vegetables and mushrooms, but does not include living
animals)

◦ food with bread or crust: pretzel, bagel, pizza, hotdog, hamburgers, etc
◦ (24) pretzel
◦ (25) bagel, beigel
◦ (26) pizza, pizza pie
◦ (27) hotdog, hot dog, red hot
◦ (28) hamburger, beefburger, burger

◦ (29) guacamole
◦ (30) burrito
◦ (31) popsicle (ice cream or water ice on a small wooden stick)
◦ fruit

◦ (32) fig
◦ (33) pineapple, ananas
◦ (34) banana
◦ (35) pomegranate
◦ (36) apple
◦ (37) strawberry
◦ (38) orange
◦ (39) lemon

◦ vegetables
◦ (40) cucumber, cuke
◦ (41) artichoke, globe artichoke
◦ (42) bell pepper
◦ (43) head cabbage

◦ (44) mushroom
• items that run on electricity (plugged in or using batteries); including clocks, microphones, traffic lights, computers,
etc

◦ (45) remote control, remote
◦ electronics that blow air

◦ (46) hair dryer, blow dryer
◦ (47) electric fan: a device for creating a current of air by movement of a surface or surfaces (please do not
consider hair dryers)

◦ electronics that can play music or amplify sound
◦ (48) tape player
◦ (49) iPod

◦ (50) microphone, mike
◦ computer and computer peripherals: mouse, laptop, printer, keyboard, etc

◦ (51) computer mouse
◦ (52) laptop, laptop computer
◦ (53) printer (please do not consider typewriters to be printers)
◦ (54) computer keyboard

◦ (55) lamp
◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven
◦ (57) toaster
◦ (58) waffle iron
◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (60) vacuum, vacuum cleaner
◦ (61) dishwasher, dish washer, dishwashing machine
◦ (62) washer, washing machine: an electric appliance for washing clothes
◦ (63) traffic light, traffic signal, stoplight
◦ (64) tv or monitor: an electronic device that represents information in visual form
◦ (65) digital clock: a clock that displays the time of day digitally

• kitchen items: tools,utensils and appliances usually found in the kitchen
◦ electric cooking appliance (an appliance which generates heat to cook food or boil water)

◦ (56) microwave, microwave oven
◦ (57) toaster
◦ (58) waffle iron
◦ (59) coffee maker: a kitchen appliance used for brewing coffee automatically

◦ (61) dishwasher, dish washer, dishwashing machine
◦ (66) stove
◦ things used to open cans/bottles: can opener or corkscrew

◦ (67) can opener (tin opener)
◦ (68) corkscrew

◦ (69) cocktail shaker
◦ non-electric item commonly found in the kitchen: pot, pan, utensil, bowl, etc

◦ (70) strainer
◦ (71) frying pan (skillet)
◦ (72) bowl: a dish for serving food that is round, open at the top, and has no handles (please do not confuse with
a cup, which usually has a handle and is used for serving drinks)
◦ (73) salt or pepper shaker: a shaker with a perforated top for sprinkling salt or pepper
◦ (74) plate rack
◦ (75) spatula: a turner with a narrow flexible blade
◦ (76) ladle: a spoon-shaped vessel with a long handle; frequently used to transfer liquids from one container to
another

◦ (77) refrigerator, icebox
• furniture (including benches)

◦ (78) bookshelf: a shelf on which to keep books
◦ (79) baby bed: small bed for babies, enclosed by sides to prevent baby from falling
◦ (80) filing cabinet: office furniture consisting of a container for keeping papers in order
◦ (81) bench (a long seat for several people, typically made of wood or stone)
◦ (82) chair: a raised piece of furniture for one person to sit on; please do not confuse with benches or sofas, which
are made for more people
◦ (83) sofa, couch: upholstered seat for more than one person; please do not confuse with benches (which are made
of wood or stone) or with chairs (which are for just one person)
◦ (84) table

• clothing, article of clothing: a covering designed to be worn on a person’s body
◦ (85) diaper: Garment consisting of a folded cloth drawn up between the legs and fastened at the waist; worn by
infants to catch excrement
◦ swimming attire: clothes used for swimming or bathing (swim suits, swim trunks, bathing caps)

◦ (86) swimming trunks: swimsuit worn by men while swimming
◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering
◦ (88) maillot: a woman’s one-piece bathing suit

◦ necktie: a man’s formal article of clothing worn around the neck (including bow ties)
◦ (89) bow tie: a man’s tie that ties in a bow

◦ (90) tie: a long piece of cloth worn for decorative purposes around the neck or shoulders, resting under the shirt
collar and knotted at the throat (NOT a bow tie)

◦ headdress, headgear: clothing for the head (hats, helmets, bathing caps, etc)
◦ (87) bathing cap, swimming cap: a cap worn to keep hair dry while swimming or showering
◦ (91) hat with a wide brim
◦ (92) helmet: protective headgear made of hard material to resist blows

◦ (93) miniskirt, mini: a very short skirt
◦ (94) brassiere, bra: an undergarment worn by women to support their breasts
◦ (95) sunglasses

• living organism (other than people): dogs, snakes, fish, insects, sea urchins, starfish, etc.
◦ living organism which can fly

◦ (96) bee
◦ (97) dragonfly
◦ (98) ladybug
◦ (99) butterfly
◦ (100) bird

◦ living organism which cannot fly (please don’t include humans)
◦ living organism with 2 or 4 legs (please don’t include humans):

◦ mammals (but please do not include humans)
◦ feline (cat-like) animal: cat, tiger or lion

◦ (101) domestic cat
◦ (102) tiger
◦ (103) lion

◦ canine (dog-like animal): dog, hyena, fox or wolf
◦ (104) dog, domestic dog, canis familiaris
◦ (105) fox: wild carnivorous mammal with pointed muzzle and ears and a bushy tail (please do not
confuse with dogs)

◦ animals with hooves: camels, elephants, hippos, pigs, sheep, etc
◦ (106) elephant
◦ (107) hippopotamus, hippo
◦ (108) camel
◦ (109) swine: pig or boar
◦ (110) sheep: woolly animal, males have large spiraling horns (please do not confuse with antelope
which have long legs)
◦ (111) cattle: cows or oxen (domestic bovine animals)
◦ (112) zebra
◦ (113) horse
◦ (114) antelope: a graceful animal with long legs and horns directed upward and backward

◦ (115) squirrel
◦ (116) hamster: short-tailed burrowing rodent with large cheek pouches
◦ (117) otter
◦ (118) monkey
◦ (119) koala bear
◦ (120) bear (other than pandas)
◦ (121) skunk (mammal known for its ability fo spray a liquid with a strong odor; they may have a single
thick stripe across back and tail, two thinner stripes, or a series of white spots and broken stripes
◦ (122) rabbit
◦ (123) giant panda: an animal characterized by its distinct black and white markings
◦ (124) red panda: Reddish-brown Old World raccoon-like carnivore

◦ (125) frog, toad
◦ (126) lizard: please do not confuse with snake (lizards have legs)
◦ (127) turtle
◦ (128) armadillo
◦ (129) porcupine, hedgehog

◦ living organism with 6 or more legs: lobster, scorpion, insects, etc.
◦ (130) lobster: large marine crustaceans with long bodies and muscular tails; three of their five pairs of legs
have claws
◦ (131) scorpion
◦ (132) centipede: an arthropod having a flattened body of 15 to 173 segments each with a pair of legs, the
foremost pair being modified as prehensors
◦ (133) tick (a small creature with 4 pairs of legs which lives on the blood of mammals and birds)
◦ (134) isopod: a small crustacean with seven pairs of legs adapted for crawling
◦ (135) ant

◦ living organism without legs: fish, snake, seal, etc. (please don’t include plants)
◦ living organism that lives in water: seal, whale, fish, sea cucumber, etc.

◦ (136) jellyfish
◦ (137) starfish, sea star
◦ (138) seal
◦ (139) whale
◦ (140) ray: a marine animal with a horizontally flattened body and enlarged winglike pectoral fins with
gills on the underside
◦ (141) goldfish: small golden or orange-red fishes

◦ living organism that slides on land: worm, snail, snake
◦ (142) snail
◦ (143) snake: please do not confuse with lizard (snakes do not have legs)

• vehicle: any object used to move people or objects from place to place
◦ a vehicle with wheels

◦ (144) golfcart, golf cart
◦ (145) snowplow: a vehicle used to push snow from roads
◦ (146) motorcycle (or moped)
◦ (147) car, automobile (not a golf cart or a bus)
◦ (148) bus: a vehicle carrying many passengers; used for public transport
◦ (149) train
◦ (150) cart: a heavy open wagon usually having two wheels and drawn by an animal
◦ (151) bicycle, bike: a two wheeled vehicle moved by foot pedals
◦ (152) unicycle, monocycle

◦ a vehicle without wheels (snowmobile, sleighs)
◦ (153) snowmobile: tracked vehicle for travel on snow
◦ (154) watercraft (such as ship or boat): a craft designed for water transportation

◦ (155) airplane: an aircraft powered by propellers or jets
• cosmetics: toiletry designed to beautify the body

◦ (156) face powder
◦ (157) perfume, essence (usually comes in a smaller bottle than hair spray
◦ (158) hair spray
◦ (159) cream, ointment, lotion
◦ (160) lipstick, lip rouge

• carpentry items: items used in carpentry, including nails, hammers, axes, screwdrivers, drills, chain saws, etc
◦ (161) chain saw, chainsaw
◦ (162) nail: pin-shaped with a head on one end and a point on the other
◦ (163) axe: a sharp tool often used to cut trees/ logs
◦ (164) hammer: a blunt hand tool used to drive nails in or break things apart (please do not confuse with axe, which
is sharp)
◦ (165) screwdriver
◦ (166) power drill: a power tool for drilling holes into hard materials

• school supplies: rulers, erasers, pencil sharpeners, pencil boxes, binders
◦ (167) ruler,rule: measuring stick consisting of a strip of wood or metal or plastic with a straight edge that is used
for drawing straight lines and measuring lengths
◦ (168) rubber eraser, rubber, pencil eraser
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Fig. 9 Performance ofwinning entries in the ILSVRC2010-2014 com-
petitions in each of the three tasks (details about the entries and
numerical results are in Sect. 5.1). There is a steady reduction of error
every year in object classification and single-object localization tasks,
and a 1.9× improvement in mean average precision in object detection.
There are two considerations in making these comparisons. (1) The
object categories used in ISLVRC changed between years 2010 and
2011, and between 2011 and 2012. However, the large scale of the data

(1000 object categories, 1.2 million training images) has remained the
same, making it possible to compare results. Image classification and
single-object localization entries shown here use only provided train-
ing data. (2) The size of the object detection training data has increased
significantly between years 2013 and 2014 (Sect. 3.3). Section 6.1 dis-
cusses the relative effects of training data increase versus algorithmic
improvements

region proposals (Arbeláez et al. 2014) pretrained on PAS-
CAL VOC 2012 data are used to extract region proposals,
regions are represented using convolutional networks, and a
multiple instance learning strategy is used to learn weakly
supervised object detectors to represent the image.

In the single-object localization with provided data track,
the winning team was VGG, which explored the effect of
convolutional neural network depth on its accuracy by using
three different architectures with up to 19 weight layers with
rectified linear unit non-linearity, building off of the imple-
mentation of Caffe (Jia 2013). For localization they used
per-class bounding box regression similar to OverFeat (Ser-
manet et al. 2013). In the single-object localization with
external data track, Adobe used 2000 additional ImageNet
classes to train the classifiers in an integrated convolutional
neural network framework for both classification and local-
ization, with bounding box regression. At test time they used
k-means to find bounding box clusters and rank the clusters
according to the classification scores.

In the object detection with provided data track, the win-
ning team NUS used the RCNN framework (Girshick et al.
2013) with the network-in-networkmethod (Lin et al. 2014a)
and improvements of (Howard 2014). Global context infor-
mation was incorporated following (Chen et al. 2014). In the
object detection with external data track, the winning team
was GoogLeNet (which also won image classification with
provided data). It is truly remarkable that the same team was
able to win at both image classification and object detection,
indicating that their methods are able to not only classify the
imagebasedon scene informationbut also accurately localize
multiple object instances. Just like most teams participating
in this track,GoogLeNet used the image classification dataset
as extra training data.

5.2 Large Scale Algorithmic Innovations

ILSVRC over the past 5 years has paved the way for several
breakthroughs in computer vision.

The field of categorical object recognition has dramati-
cally evolved in the large-scale setting. Section 5.1 docu-
ments the progress, starting from coded SIFT features and
evolving to large-scale convolutional neural networks domi-
nating at all three tasks of image classification, single-object
localization, and object detection. With the availability of so
much trainingdata (alongwith an efficient algorithmic imple-
mentation andGPU computing resources) it became possible
to learn neural networks directly from the image data, with-
out needing to create multi-stage hand-tuned pipelines of
extracted features and discriminative classifiers. The major
breakthrough came in 2012 with the win of the SuperVision
team on image classification and single-object localization
tasks (Krizhevsky et al. 2012), and by 2014 all of the top
contestants were relying heavily on convolutional neural net-
works.

Further, over the past few years there has been a lot of
focus on large-scale recognition in the computer vision com-
munity . Best paper awards at top vision conferences in
2013 were awarded to large-scale recognition methods: at
CVPR 2013 to “Fast, Accurate Detection of 100,000 Object
Classes on a Single Machine” (Dean et al. 2013) and at
ICCV 2013 to “From Large Scale Image Categorization to
Entry-Level Categories” (Ordonez et al. 2013). Additionally,
several influential lines of research have emerged, such as
large-scale weakly supervised localization work of (Kuet-
tel et al. 2012) which was awarded the best paper award in
ECCV 2012 and large-scale zero-shot learning, e.g., (Frome
et al. 2013).
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