DEEP NETWORKS AS FEATURE EXTRACTORS

xl x2 Xd

e The network on the right is a classifier l

f:RY = {0, 1} Q }:fm
Suppose we subdivide the network into \
the first K — 1 layer and the final layer, by
defining \ /
f (K=1) ¢ .

F(x) := o (x)

e The entire network is then : : :
F(x) = £ o F(x) lm >< l
e The function fX) is a two-class logistic Q e
regression classifier. \

e We can hence think of f as a feature O
extraction F followed by linear

classification f(X).

} _ )

FO (o) = a((w), )
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A SIMPLE EXAMPLE
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Problem: Classify characters into three
classes (E, F and L).

Each digit given as a 8 X 8 = 64 pixel
image

Neural network: 64 input units (=pixels)
2 hidden units

3 binary output units, where f;(x) = 1
means image is in class i.

Each hidden unit has 64 input weights,
one per pixel. The weight values can be
plottes as 8 X 8 images.
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i

training data (with random noise) weight values of 4| and hy plotted as images

Dark regions = large weight values.

Note the weights emphasize regions that distinguish characters.
We can think of weight (= each pixel) as a feature.

The features with large weights for /; distinguish {E,F} from L.
The features for A, distinguish {E,L} from F.

Peter Orbanz - Applied Data Mining Mlustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001 304



EXAMPLE: AUTOENCODERS

An example for the effect of layer are autoencoders.

e An autoencoder is a neural network that is trained on its own input: If the network has
weights W and represents a function fyy, training solves the optimization problem

min [x — fw(x)

or something similar for a different norm.

e That seems pointless at first glance: The network tries to approximate the identity
function using its (possibly nonlinear) component functions.

e However: If the layers in the middle have much fewer nodes that those at the top and
bottom, the network learns to compress the input.
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AUTOENCODERS

X X
£ £
F2) f@
£ £
f(x) ~x f(x) ~ x
Layers have same width: No effect Narrow middle layel‘:: Compression effect

Train network on many images.

Once trained: Input an image Xx.

Store X’ := f(?)(x). Note x’ has fewer dimensions than x — compression.

To decompress x’: Input it into f (3) and apply the remaining layers of the network
— reconstruction f(x) ~ x of x.
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Mlustration: K. Murphy, Machine Learning: A Bayesian perspective, MIT Press 2012

Peter Orbanz - Applied Data Mining



CROSS-CORRELATION OPERATIONS

Definition
Suppose we define a small (here: 3 X 3) matrix

For a large matrix A, we define the cross-correlation of A and K as the matrix A © K with

entries
1

(A ©K)jj := ajjkoo + ai—1 j—1k—1,—1 + ... = Z Qi t-m,j4-nkm,n

m,n—=—1

Remarks

e K is sometimes called a kernel. Caution: The term kernel is used for several, different
concepts in both mathematics and machine learning.

e We can similarly define the cross-correlation if K is of size 5 X 5 etc. The numbers of
rows and columns should be odd, so that kg is at the center of K.
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CROSS-CORRELATION FOR IMAGES

Peter Orbanz -

[ B - R o I o I - BN > ]

51

6 8 0

0
0 © 0 26 115 215 255 255 255 255 255 236
0

6 10 74 169 169 109 169 154 123

@ 71 227 255 255 226 202 146 134 73 47

0 92 252 255 213 162 8
31 246 250 103 ©

172 255 189 @
253185 0 0O

161 255 92 6 ©
161 255 26 6 O
165 255 120 6 O

3

0
0
0
0
66

g
g
g
g
11

0
0
0
0

e 6 0 ©
@ 6 0
g 6 0
g 6 0
¢ 6 0 0 0

0
e 0
e 0
e 0

60

[ B v I o T o R e )

8

Lo R o B BN« B s B e P e

0

75 164 183 183 145 183 136 7
197 255 255 255 255 255 255 255 202 17
251 201 4 27 243 255 267 110 72 72 53 79 190 255 170

@ 209 255 44 147 231 1682 8
G 80 253 227209 30 ©

0
0
0

e Recall that we can represent a grayscale image as a matrix A.

e We can then define a kernel matrix K and compute the cross-correlation A ® K.
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EFFECT OF CROSS-CORRELATION ON IMAGES

e Consider again a 3 X 3 kernel

k1,1 k—10 k—1, ' 1
K = k(),_l k(),() k()’l with (A ® K)ij = Z ai+m,j+nkm,n
ki,—1 k1,0 ki1 mn—=—1

e Consider the pixel value a;; at location i, in A. In the new image A © K, a;; is the sum of
element-wise producs of K and the direct neighborhood of a;;:

k_1,—1ai—1j—1 k_10ai—1; k_1,10i—1 41
(A ® K)ij — sum of entries of k(),_lai,j_l ko oaij ko,lai,j_|_1
ki, —1aiy1 j—1 kioait1 K1,1Gi+1,j+1

o In other words, (A ® K);; is a weighted average of a;; and its neighbors.

e The next few slides illustrate the effect of different choices of K.

Peter Orbanz - Applied Data Mining

310



EXAMPLES

For the identity kernel, nothing happens:

=

1
o O O
oS = O
o O O
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EXAMPLES

If all entries of K are identical, each pixel in the image is “averaged together” with its
neighbors. That results in blurring:

O[O —\O|—
O |—O|—\O|—
O |—O|—\O|—
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EXAMPLES

Since diagonal neighbors are further away than horizontal/vertical ones, we can give them
smaller weights. This is also called a “Gaussian blur’:
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EXAMPLES

We can increase the size of K, which means we are mixing a;; with more neighbors. Here is a
5 X 5 Gaussian blur:

1 4 6 4
L[4 16 24 16
—— |6 24 36 24
256 {4 16 24 16

1 4 6 4

— A~ B

AGOK = ~ I - o 5..'""“"9“"": .
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EXAMPLES

The opposite effect is sharpening: We give the neighbors negative weights. If two adjacent
points look different, A ® K substracts them from each other, so they look even more different:

AOK =

Note the entries of K add up to 1.
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EXAMPLES

A more drastic form of sharpening is edge detection:

[
oo | —
|

OO0 | =00 | =00 | —
OO0 | =00 | =00 | —

oo |—

T

Here, the entries of K add up to 0, so (A ® K);; is visible only if a;; is very different from its neighbors.
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EXAMPLES

This kernel find points that are similar to their lower left and upper right neighbor, and different
from their upper left and lower right one. That means it detects diagonal edges:

—1 0 1
K=10 | 0
1 0 -1

AOK =

Peter Orbanz - Applied Data Mining 317



CROSS-CORRELATION AS A NEURAL NETWORK

fA) = (AOK)n

ap alz as
e Suppose we build a neural network one input unit for each entry of | a1 a2 a3

asg azp  d4sjz

e We use the entries of K as weights and connect everything to a single linear unit (“linear
unit” means ¢(x) = x).

e The network then computes the sum of the weighted inputs, which by definition of A© K
is just (A@K)zz.

e We can obtain another entry (A©®K);; by replacing the input values with another
submatrix of A.
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(AOK)xn

fA) = (A0 K)n
) (ii) (iii)

e Neural network layers whose units are arranged in a two-dimensional grid are often
visualized as “sheets” as in (i1) and (i11).

e The network (1) collects information from a small portion of the input layer, as visualized
in (i1).

e We can use a similar network (with different input values but identical weights) to
similarly compute (A®K)73, (A®K)a4, etc as in (iii).

e In that manner, we can compute every entry of (A®K) and arrange these entries on
another grid of units as the next layer.

e In other words: We attach a network of the form (1) to every 3 X 3 patch of input values.
All these networks use the same weights, given by the matrix K. The two-layer network so
obtained computes (A®K). If we changed the weights to some other matrix K’, it would
compute (AOK").
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