
DEEP NETWORKS AS FEATURE EXTRACTORS

• The network on the right is a classifier
f : Rd → {0, 1}.

• Suppose we subdivide the network into
the first K − 1 layer and the final layer, by
defining

F(x) := f (K−1) ◦ . . . ◦ f (1)(x)

• The entire network is then

f (x) = f (K) ◦ F(x)

• The function f (K) is a two-class logistic
regression classifier.

• We can hence think of f as a feature
extraction F followed by linear
classification f (K).

x1 x2

. . .

xd

. . .

. . .

...
...

...

. . .

= f (1)

= f (2)

= f (K)

f (K)(•) = σ(
〈

w(K), •
〉
)

Peter Orbanz · Applied Data Mining 302

A SIMPLE EXAMPLE

6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x, ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

. . .x1 x64

f1 f2 f3

h1 h2

w11
w12 w64,1

w64,2

• Problem: Classify characters into three
classes (E, F and L).

• Each digit given as a 8× 8 = 64 pixel
image

• Neural network: 64 input units (=pixels)
• 2 hidden units
• 3 binary output units, where fi(x) = 1

means image is in class i.
• Each hidden unit has 64 input weights,

one per pixel. The weight values can be
plottes as 8× 8 images.

Peter Orbanz · Applied Data Mining 303

A SIMPLE EXAMPLE
6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x, ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x, ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

training data (with random noise) weight values of h1 and h2 plotted as images

h1 h2

• Dark regions = large weight values.
• Note the weights emphasize regions that distinguish characters.
• We can think of weight (= each pixel) as a feature.
• The features with large weights for h1 distinguish {E,F} from L.
• The features for h2 distinguish {E,L} from F.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Peter Orbanz · Applied Data Mining 304

EXAMPLE: AUTOENCODERS

An example for the effect of layer are autoencoders.
• An autoencoder is a neural network that is trained on its own input: If the network has

weights W and represents a function fW, training solves the optimization problem

min
W
‖x− fW(x)‖2

or something similar for a different norm.
• That seems pointless at first glance: The network tries to approximate the identity

function using its (possibly nonlinear) component functions.
• However: If the layers in the middle have much fewer nodes that those at the top and

bottom, the network learns to compress the input.

Peter Orbanz · Applied Data Mining 305

AUTOENCODERS

x

f (1)

f (2)

f (3)

f (x) ≈ x

Layers have same width: No effect

x

f (1)

f (2)

f (3)

f (x) ≈ x

Narrow middle layers: Compression effect

• Train network on many images.
• Once trained: Input an image x.

• Store x′ := f (2)(x). Note x′ has fewer dimensions than x→ compression.

• To decompress x′: Input it into f (3) and apply the remaining layers of the network
→ reconstruction f (x) ≈ x of x.

Peter Orbanz · Applied Data Mining 306

AUTOENCODERS

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Illustration: K. Murphy, Machine Learning: A Bayesian perspective, MIT Press 2012Peter Orbanz · Applied Data Mining 307

CROSS-CORRELATION OPERATIONS

Definition
Suppose we define a small (here: 3× 3) matrix

K =




k−1,−1 k−1,0 k−1,1
k0,−1 k0,0 k0,1
k1,−1 k1,0 k1,1




For a large matrix A, we define the cross-correlation of A and K as the matrix A� K with
entries

(A� K)ij := aijk0,0 + ai−1,j−1k−1,−1 + . . . =

1∑

m,n=−1

ai+m,j+nkm,n

Remarks
• K is sometimes called a kernel. Caution: The term kernel is used for several, different

concepts in both mathematics and machine learning.
• We can similarly define the cross-correlation if K is of size 5× 5 etc. The numbers of

rows and columns should be odd, so that k00 is at the center of K.

Peter Orbanz · Applied Data Mining 308

CROSS-CORRELATION FOR IMAGES

A = =

• Recall that we can represent a grayscale image as a matrix A.
• We can then define a kernel matrix K and compute the cross-correlation A� K.

Peter Orbanz · Applied Data Mining 309

EFFECT OF CROSS-CORRELATION ON IMAGES

• Consider again a 3× 3 kernel

K =




k−1,−1 k−1,0 k−1,1
k0,−1 k0,0 k0,1
k1,−1 k1,0 k1,1


 with (A� K)ij =

1∑

m,n=−1

ai+m, j+nkm,n

• Consider the pixel value aij at location i, j in A. In the new image A� K, aij is the sum of
element-wise producs of K and the direct neighborhood of aij:

(A� K)ij = sum of entries of




k−1,−1ai−1,j−1 k−1,0ai−1,j k−1,1ai−1,j+1
k0,−1ai,j−1 k0,0aij k0,1ai,j+1

k1,−1ai+1,j−1 k1,0ai+1,j k1,1ai+1,j+1




• In other words, (A� K)ij is a weighted average of aij and its neighbors.
• The next few slides illustrate the effect of different choices of K.

Peter Orbanz · Applied Data Mining 310

EXAMPLES

For the identity kernel, nothing happens:

A = K =




0 0 0
0 1 0
0 0 0




A� K =

Peter Orbanz · Applied Data Mining 311

EXAMPLES

If all entries of K are identical, each pixel in the image is “averaged together” with its
neighbors. That results in blurring:

A = K =




1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9




A� K =

Peter Orbanz · Applied Data Mining 312

EXAMPLES

Since diagonal neighbors are further away than horizontal/vertical ones, we can give them
smaller weights. This is also called a “Gaussian blur”:

A = K =
1
16




1 2 1
2 4 2
1 2 1




A� K =

Peter Orbanz · Applied Data Mining 313

EXAMPLES

We can increase the size of K, which means we are mixing aij with more neighbors. Here is a
5× 5 Gaussian blur:

A = K =
1

256




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1




A� K =

Peter Orbanz · Applied Data Mining 314

EXAMPLES

The opposite effect is sharpening: We give the neighbors negative weights. If two adjacent
points look different, A� K substracts them from each other, so they look even more different:

A = K =




0 −1 0
−1 5 −1
0 −1 0




A� K =

Note the entries of K add up to 1.

Peter Orbanz · Applied Data Mining 315

EXAMPLES

A more drastic form of sharpening is edge detection:

A = K =



− 1

8 − 1
8 − 1

8
− 1

8 1 − 1
8

− 1
8 − 1

8 − 1
8




A� K =

Here, the entries of K add up to 0, so (A� K)ij is visible only if aij is very different from its neighbors.

Peter Orbanz · Applied Data Mining 316

EXAMPLES

This kernel find points that are similar to their lower left and upper right neighbor, and different
from their upper left and lower right one. That means it detects diagonal edges:

A = K =



−1 0 1
0 1 0
1 0 −1




A� K =

Peter Orbanz · Applied Data Mining 317

CROSS-CORRELATION AS A NEURAL NETWORK

k1,−1 k1,0 k1,1

a31 a32 a33

k0,−1 k0,0 k0,1

a21 a22 a23

k−1,−1 k−1,0
k−1,1

a11 a12 a13

f (A) = (A� K)22

φ(x)= x

• Suppose we build a neural network one input unit for each entry of




a11 a12 a13
a21 a22 a23
a31 a32 a33


.

• We use the entries of K as weights and connect everything to a single linear unit (“linear
unit” means φ(x) = x).

• The network then computes the sum of the weighted inputs, which by definition of A�K
is just (A�K)22.

• We can obtain another entry (A�K)ij by replacing the input values with another
submatrix of A.

Peter Orbanz · Applied Data Mining 318

k1,−1 k1,0 k1,1

a31 a32 a33

k0,−1 k0,0 k0,1

a21 a22 a23

k−1,−1 k−1,0
k−1,1

a11 a12 a13

f (A) = (A� K)22

φ(x)= x

a 11
a 12

a 13

a 21
a 22

a 23

a 31
a 32

a 33

φ

(A�K)22

(A�K)23

(i) (ii) (iii)

• Neural network layers whose units are arranged in a two-dimensional grid are often
visualized as “sheets” as in (ii) and (iii).

• The network (i) collects information from a small portion of the input layer, as visualized
in (ii).

• We can use a similar network (with different input values but identical weights) to
similarly compute (A�K)23, (A�K)24, etc as in (iii).

• In that manner, we can compute every entry of (A�K) and arrange these entries on
another grid of units as the next layer.

• In other words: We attach a network of the form (i) to every 3× 3 patch of input values.
All these networks use the same weights, given by the matrix K. The two-layer network so
obtained computes (A�K). If we changed the weights to some other matrix K′, it would
compute (A�K′).

Peter Orbanz · Applied Data Mining 319

