
CLASSIFICATION



ASSUMPTIONS AND TERMINOLOGY

In a classification problem, we record measurements x1, x2, . . ..

We assume:
1. All measurements can be represented as elements of a Euclidean Rd .

2. Each xi belongs to exactly one out of K categories, called classes. We express this using
variables yi ∈ [K], called class labels:

yi = k ⇔ "xi in class k"

3. The classes are characterized by the (unknown!) joint distribution of (X, Y), whose
density we denote p(x, y). The conditional distribution with density p(x|y = k) is called
the class-conditional distribution of class k.

4. The only information available on the distribution p is a set of example measurements
with labels,

(x̃1, ỹ1), . . . , (x̃n, ỹn) ,

called the training data.
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CLASSIFIERS

Definition
A classifier is a function

f : Rd [K] ,

i.e. a function whose argument is a measurement and whose output is a class label.

Learning task
Using the training data, we have to estimate a good classifier. This estimation procedure is also
called training.

A good classifier should generalize well to new data. Ideally, we would like it to perform with
high accuracy on data sampled from p, but all we know about p is the training data.

Simplifying assumption
We first develop methods for the two-class case (K=2), which is also called binary
classification. In this case, we use the notation

y ∈ {−1,+1} instead of y ∈ {1, 2}
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SUPERVISED AND UNSUPERVISED LEARNING

Supervised vs. unsupervised
Fitting a model using labeled data is called supervised learning. Fitting a model when only
x̃1, . . . , x̃n are available, but no labels, is called unsupervised learning.

Types of supervised learning methods
• Classification: Labels are discrete, and we estimate a classifier f : Rd [K],
• Regression: Labels are real-valued (y ∈ R), and we estimate a continuous function

f : Rd R. This functions is called a regressor.
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A VERY SIMPLE CLASSIFIER

Algorithm
1. On training data, fit a Gaussian into each class (by MLE).

Result: Densities g(x|µ⊕,Σ⊕) and g(x|µ	,Σ	)

2. Classify a new point x according to which density assigns larger value:

yi :=

{
+1 if g(x|µ⊕,Σ⊕) > g(x|µ	,Σ	)

−1 otherwise

Resulting classifier
• Hyperplane if Σ⊕=Σ	 = constant · diag(1, . . . , 1) (“isotropic” Gaussians).
• Curved surface otherwise.
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A VERY SIMPLE CLASSIFIER
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Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d − 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|ωi) and the
boundaries for the case P (ω1) = P (ω2). In the 3-dimensional case, the grid plane
separates R1 from R2.

wi =
1

σ2
µi (52)

and

wi0 =
−1

2σ2
µt

iµi + ln P (ωi). (53)

We call wi0 the threshold or bias in the ith direction. threshold

bias
A classifier that uses linear discriminant functions is called a linear machine. This

linear
machine

kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = gj(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

wt(x − x0) = 0, (54)

where

w = µi − µj (55)

and

x0 =
1

2
(µi + µj) − σ2

‖µi − µj‖2
ln

P (ωi)

P (ωj)
(µi − µj). (56)

This equation defines a hyperplane through the point x0 and orthogonal to the
vector w. Since w = µi − µj , the hyperplane separating Ri and Rj is orthogonal to
the line linking the means. If P (ωi) = P (ωj), the second term on the right of Eq. 56
vanishes, and thus the point x0 is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P (ωi) #= P (ωj),
the point x0 shifts away from the more likely mean. Note, however, that if the variance
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Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.
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DISCUSSION

Possible weakness
1. Distributional assumption.

2. Density estimates emphasize main bulk of data. Critical region for classification is at
decision boundary, i.e. region between classes.

Consequence
• Classification algorithms focus on class boundary.
• Technically, this means: We focus on estimating a good decision surface (e.g. a

hyperplane) between the classes; we do not try to estimate a distribution.

Our program in the following
• First develop methods for the linear case, i.e. separate two classes by a hyperplane.
• Then: Consider methods that do not require the decision surface (= the boundary between

classes) to be linear (= a straight line or plane).
• Dealing with more than two classes.
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MEASURING PERFORMANCE: LOSS FUNCTIONS

Definition
A loss function is a function

L : [K]× [K] [0,∞) ,

which we read as

L : (true class label y, classifier output f (x)) 7−→ loss value .

Example: The two most common loss functions
1. The 0-1 loss is used in classification. It counts mistakes:

L0-1(y, f (x)) =

{
0 f (x) = y
1 f (x) 6= y

2. Squared-error loss is used in regression:

Lse(y, f (x)) := ‖y− f (x)||22
Its value depends on how far off we are: Small errors hardly count, large ones are very
expensive.
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RISK

Motivation
It may be a good strategy to allow (even expensive) errors for values of x which are very
unlikely to occur

Definition
The risk R(f ) of a classifier f is its expected loss under p. If you prefer equations:

R(f ) := Ep[L(y, f (x)] =

∫
L(y, f (x))p(x, y)dxdy =

K∑

y=1

∫
L(y, f (x))p(x, y)dx .

When we train f , we do not know p, and have to approximate R using the data:

The empirical risk R̂n(f ) is the plug-in estimate of R(f ), evaluated on the training sample
(x̃1, ỹ1), . . . , (x̃n, ỹn):

R̂n(f ) :=
1
n

n∑

i=1

L(ỹi, f (x̃i))
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