MEASURING CLASSIFIER PERFORMANCE

Error Counting

Error types in a two-class problem

- False positives (type I error): True label is -1, predicted label is +1.
- False negative (type II error): True label is +1, predicted label is -1.

We write TP = # true positives, FP = # false positives, TN = # true negatives, FN = # false negatives

Error rate

$$ER = \frac{\# \text{ wrong predictions}}{\# \text{ observations}} = \frac{FP + FN}{FP + FN + TP + TN}$$

Does not distinguish errors between classes.

Relevance

Distinction between error types is crucial e.g. if:

- Classes differ significantly in size
- One type of error has worse consequences than other

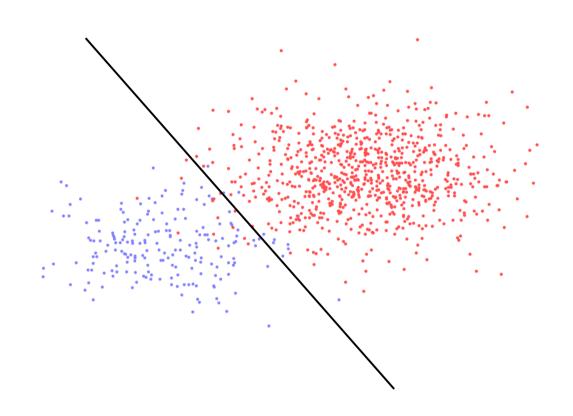
The different types of errors can be summarized in a matrix as

	positive label	negative label
predicted positive	TP/n	FP/n
predicted negative	FN/n	TN/n

where n is the number of observations.

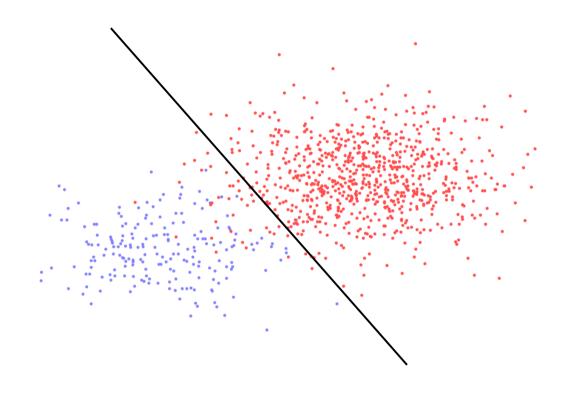
This is called a **confusion matrix** or **contingency table**.

DEPENDENCE ON PARAMETERS



- Suppose a classifier is determined by some parameter θ .
- As we change θ , the number of false positives and false negatives changes.
- We hence have parameter-dependent quantities $TP(\theta)$, $TN(\theta)$, etc.

DEPENDENCE ON PARAMETERS

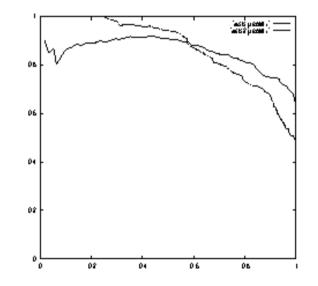


- Suppose a classifier is determined by some parameter θ .
- As we change θ , the number of false positives and false negatives changes.
- We hence have parameter-dependent quantities $TP(\theta)$, $TN(\theta)$, etc.

One summary measure of classifier performance are precision and recall:

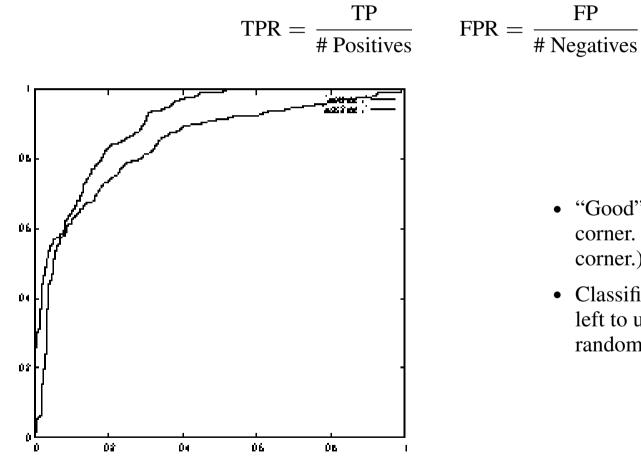
$$\mathbf{Precision}(\theta) := \frac{\mathrm{TP}(\theta)}{\mathrm{TP}(\theta) + \mathrm{FP}(\theta)} \qquad \qquad \mathbf{Recall}(\theta) := \frac{\mathrm{TP}(\theta)}{\mathrm{TP}(\theta) + \mathrm{FN}(\theta)}$$

A **precision/recall plot** eveluates precision and recall on validation/test data for a range of different values of θ , and plots precision (vertical axis) against recall (horizontal axis):



- Each point in the plot represents a classifier, for one value of θ .
- Ideally, both precision and recall are high, so "good values" are in the upper right corner.

A plot of the *true positive rate* (TPR) versus the *false positive rate* (FPR) is called a **receiver operating characteristic** (ROC) curve:



- "Good" region: Upper left corner. (P/R: Upper *right* corner.)
- Classifier below diagonal (lower left to upper right): Worse than random decision.

INTERPOLATION IN ROC CURVES

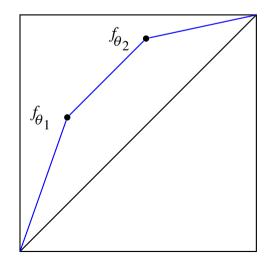
Linear interpolation of classifiers

- Given: Classifiers $f_{\theta_1}, f_{\theta_2}$, interpolation parameter $\lambda \in [0, 1]$.
- Define new classifier f_{λ} as: Randomly choose output of f_{θ_1} with probability λ , output of f_{θ_2} with probability 1λ .

Error rates under interpolation

 $\operatorname{TPR}(f_{\lambda}) = \lambda \operatorname{TPR}(f_{\theta_1}) + (1 - \lambda) \operatorname{TPR}(f_{\theta_2})$

The same holds for FPR, ER (but not for Precision and Recall).



- ROC plot: Every point represents a classifier performance.
- Consequence: A classifier with performance represented by a point on a straight line between f_{θ_1} and f_{θ_2} in the plot can be constructed by linear interpolation.
- The perfomance values constructable from existing classifiers in this way are called *achievable*.

INTERPOLATION IN ROC CURVES

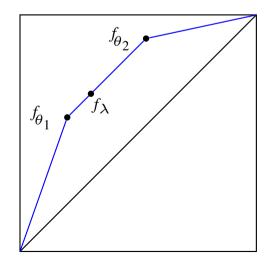
Linear interpolation of classifiers

- Given: Classifiers $f_{\theta_1}, f_{\theta_2}$, interpolation parameter $\lambda \in [0, 1]$.
- Define new classifier f_{λ} as: Randomly choose output of f_{θ_1} with probability λ , output of f_{θ_2} with probability 1λ .

Error rates under interpolation

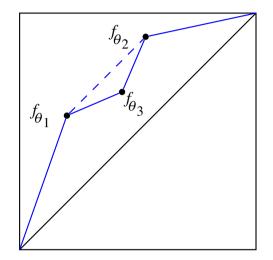
 $TPR(f_{\lambda}) = \lambda TPR(f_{\theta_1}) + (1 - \lambda) TPR(f_{\theta_2})$

The same holds for FPR, ER (but not for Precision and Recall).



- ROC plot: Every point represents a classifier performance.
- Consequence: A classifier with performance represented by a point on a straight line between f_{θ_1} and f_{θ_2} in the plot can be constructed by linear interpolation.
- The perfomance values constructable from existing classifiers in this way are called *achievable*.

ROC INTERPOLATION: CONVEX HULL



In general

- Suppose classifiers $f_{\theta_1}, f_{\theta_2}, f_{\theta_3}$ are given:
- If the objective is to optimize ROC performance, f_{θ_3} is worthless.
- We can always obtain a better classifiers by interpolating f_{θ_1} and f_{θ_2} .

- Recall the interpolation formula $\lambda \text{TPR}(f_{\theta_1}) + (1 \lambda)\text{TPR}(f_{\theta_2})$ is a convex combination.
- If $\{f_{\theta_1}, \ldots, f_{\theta_k}\}$ are given: Any convex combination of these is achievable.

For given classifiers $\{f_{\theta_1}, \ldots, f_{\theta_k}\}$, the convex hull of these classifiers in the ROC plot is achievable.