BACKPROPAGATION

Neural network training optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w})$$

The application of gradient descent to this problem is called *backpropagation*.

Backpropagation is gradient descent applied to $J(\mathbf{w})$ in a feed-forward network.

Deriving backpropagation

- We have to evaluate the derivative $\nabla_{\mathbf{w}} J(\mathbf{w})$.
- Since *J* is additive over training points, $J(\mathbf{w}) = \sum_n J_n(\mathbf{w})$, it suffices to derive $\nabla_{\mathbf{w}} J_n(\mathbf{w})$.

The next few slides were written for a different class, and you are not expected to know their content. I show them only to illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.
mustrate the interesting way in which gradient descent interieaves with the feed-forward architecture.

BACKPROPAGATION

Deriving backpropagation

- We have to evaluate the derivative $\nabla_{\mathbf{w}} J(\mathbf{w})$.
- Since *J* is additive over training points, $J(\mathbf{w}) = \sum_n J_n(\mathbf{w})$, it suffices to derive $\nabla_{\mathbf{w}} J_n(\mathbf{w})$.

CHAIN RULE

Recall from calculus: Chain rule

Consider a composition of functions $f \circ g(x) = f(g(x))$.

$$\frac{d(f \circ g)}{dx} = \frac{df}{dg} \frac{dg}{dx}$$

If the derivatives of f and g are f' and g', that means: $\frac{d(f \circ g)}{dx}(x) = f'(g(x))g'(x)$

Application to feed-forward network

Let $\mathbf{w}^{(k)}$ denote the weights in layer k. The function represented by the network is

$$f_{\mathbf{w}}(\mathbf{x}) = f_{\mathbf{w}}^{(K)} \circ \cdots \circ f_{\mathbf{w}}^{(1)}(\mathbf{x}) = f_{\mathbf{w}^{(K)}}^{(K)} \circ \cdots \circ f_{\mathbf{w}^{(1)}}^{(1)}(\mathbf{x})$$

To solve the optimization problem, we have to compute derivatives of the form

$$\frac{d}{d\mathbf{w}}D(f_{\mathbf{w}}(\mathbf{x}_n),y_n) = \frac{dD(\bullet,y_n)}{df_{\mathbf{w}}}\frac{df_{\mathbf{w}}}{d\mathbf{w}}$$

DECOMPOSING THE DERIVATIVES

- The chain rule means we compute the derivates layer by layer.
- Suppose we are only interested in the weights of layer *k*, and keep all other weights fixed. The function *f* represented by the network is then

$$f_{\mathbf{w}^{(k)}}(\mathbf{x}) = f^{(K)} \circ \cdots \circ f^{(k+1)} \circ f_{\mathbf{w}^{(k)}}^{(k)} \circ f^{(k-1)} \circ \cdots \circ f^{(1)}(\mathbf{x})$$

• The first k-1 layers enter only as the function value of \mathbf{x} , so we define

$$\mathbf{z}^{(k)} := f^{(k-1)} \circ \cdots \circ f^{(1)}(\mathbf{x})$$

and get

$$f_{\mathbf{w}^{(k)}}(\mathbf{x}) = f^{(K)} \circ \cdots \circ f^{(k+1)} \circ f_{\mathbf{w}^{(k)}}^{(k)}(\mathbf{z}^{(k)})$$

• If we differentiate with respect to $\mathbf{w}^{(k)}$, the chain rule gives

$$\frac{d}{d\mathbf{w}^{(k)}} f_{\mathbf{w}^{(k)}}(\mathbf{x}) = \frac{df^{(K)}}{df^{(K-1)}} \cdots \frac{df^{(k+1)}}{df^{(k)}} \cdot \frac{df_{\mathbf{w}^{(k)}}^{(k)}}{d\mathbf{w}^{(k)}}$$

WITHIN A SINGLE LAYER

- Each $f^{(k)}$ is a vector-valued function $f^{(k)}: \mathbb{R}^{d_k} \to \mathbb{R}^{d_{k+1}}$.
- It is parametrized by the weights $\mathbf{w}^{(k)}$ of the kth layer and takes an input vector $\mathbf{z} \in \mathbb{R}^{d_k}$.
- We write $f^{(k)}(\mathbf{z}, \mathbf{w}^{(k)})$.

Layer-wise derivative

Since $f^{(k)}$ and $f^{(k-1)}$ are vector-valued, we get a Jacobian matrix

$$\frac{df^{(k+1)}}{df^{(k)}} = \begin{pmatrix}
\frac{\partial f_1^{(k+1)}}{\partial f_1^{(k)}} & \cdots & \frac{\partial f_1^{(k+1)}}{\partial f_{d_k}^{(k)}} \\
\vdots & & \vdots \\
\frac{\partial f_1^{(k+1)}}{\partial f_1^{(k)}} & \cdots & \frac{\partial f_1^{(k+1)}}{\partial f_{d_k}^{(k)}}
\end{pmatrix} =: \Delta^{(k)}(\mathbf{z}, \mathbf{w}^{(k+1)})$$

- $\Delta^{(k)}$ is a matrix of size $d_{k+1} \times d_k$.
- The derivatives in the matrix quantify how $f^{(k+1)}$ reacts to changes in the argument of $f^{(k)}$ if the weights $\mathbf{w}^{(k+1)}$ and $\mathbf{w}^{(k)}$ of both functions are fixed.

BACKPROPAGATION ALGORITHM

Let $\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(K)}$ be the current settings of the layer weights. These have either been computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass

We start with an input vector **x** and compute

$$\mathbf{z}^{(k)} := f^{(k)} \circ \cdots \circ f^{(1)}(\mathbf{x})$$

for all layers k.

Step 2: Backward pass

• Start with the last layer. Update the weights $\mathbf{w}^{(K)}$ by performing a gradient step on

$$D(f^{(K)}(\mathbf{z}^{(K)},\mathbf{w}^{(K)}),y)$$

regarded as a function of $\mathbf{w}^{(K)}$ (so $\mathbf{z}^{(K)}$ and y are fixed). Denote the updated weights $\tilde{\mathbf{w}}^{(K)}$.

• Move backwards one layer at a time. At layer k, we have already computed updates $\tilde{\mathbf{w}}^{(K)}, \ldots, \tilde{\mathbf{w}}^{(k+1)}$. Update $\mathbf{w}^{(k)}$ by a gradient step, where the derivative is computed as

$$\Delta^{(K-1)}(\mathbf{z}^{(K-1)}, \tilde{\mathbf{w}}^{(K)}) \cdot \ldots \cdot \Delta^{(k)}(\mathbf{z}^{(k)}, \tilde{\mathbf{w}}^{(k+1)}) \frac{df^{(k)}}{d\mathbf{w}^{(k)}}(\mathbf{z}, \mathbf{w}^{(k)})$$

On reaching level 1, go back to step 1 and recompute the $\mathbf{z}^{(k)}$ using the updated weights.

SUMMARY: BACKPROPAGATION

• Backpropagation is a gradient descent method for the optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{N} D(f_{\mathbf{w}}(\mathbf{x}_i), y_i)$$

D must be chosen such that it is additive over data points.

- It alternates between forward passes that update the layer-wise function values $\mathbf{z}^{(k)}$ given the current weights, and backward passes that update the weights using the current $\mathbf{z}^{(k)}$.
- The layered architecture means we can (1) compute each $\mathbf{z}^{(k)}$ from $\mathbf{z}^{(k-1)}$ and (2) we can use the weight updates computed in layers $K, \ldots, k+1$ to update weights in layer k.

FEATURE EXTRACTION

Features

- Raw measurement data is typically not used directly as input for a learning algorithm. Some form of preprocessing is applied first.
- We can think of this preprocessing as a function, e.g.

 \mathbf{F} : raw data space $\longrightarrow \mathbb{R}^d$

(\mathbb{R}^d is only an example, but a very common one.)

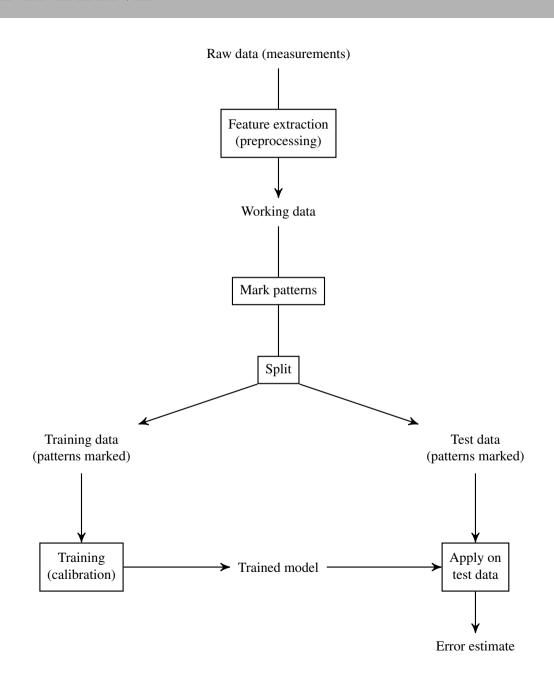
• If the raw measurements are $\mathbf{m}_1, \dots, \mathbf{m}_N$, the data points which are fed into the learning algorithm are the images $\mathbf{x}_n := \mathbf{F}(\mathbf{m}_n)$.

Terminology

- F is called a **feature map**.
- Its dimensions (the dimensions of its range space) are called **features**.
- The preprocessing step (= application of **F** to the raw data) is called **feature extraction**.

EXAMPLE PROCESSING PIPELINE

This is what a typical processing pipeline for a supervided learning propblem might look like.



FEATURE EXTRACTION VS LEARNING

Where does learning start?

- It is often a matter of definition where feature extraction stops and learning starts.
- If we have a perfect feature extractor, learning is trivial.
- For example:
 - Consider a classfication problem with two classes.
 - Suppose the feature extractor maps the raw data measurements of class 1 to a single point, and all data points in class to to a single distinct point.
 - Then classification is trivial.
 - That is of course what the classifier is supposed to do in the end (e.g. map to the points 0 and 1).

Multi-layer networks and feature extraction

- An interesting aspect of multi-layer neural networks is that their early layers can be interested as feature extraction.
- For certain types of problems (e.g. computer vision), features were long "hand-tuned" by humans.
- Features extracted by neural networks give much better results.
- Several important problems, such as object recognition and face recognition, have basically been solved in this way.

DEEP NETWORKS AS FEATURE EXTRACTORS

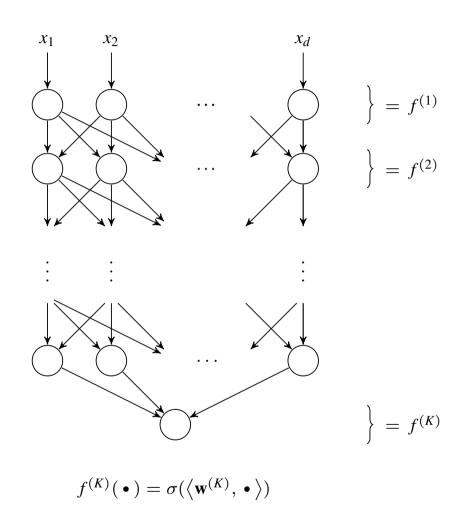
- The network on the right is a classifier $f: \mathbf{R}^d \to \{0, 1\}.$
- Suppose we subdivide the network into the first K-1 layer and the final layer, by defining

$$\mathbf{F}(\mathbf{x}) := f^{(K-1)} \circ \ldots \circ f^{(1)}(\mathbf{x})$$

• The entire network is then

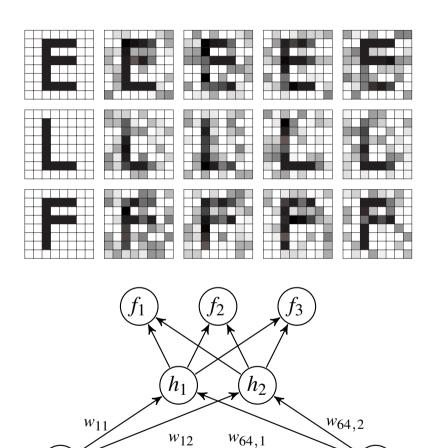
$$f(\mathbf{x}) = f^{(K)} \circ \mathbf{F}(\mathbf{x})$$

- The function $f^{(K)}$ is a two-class logistic regression classifier.
- We can hence think of f as a feature extraction \mathbf{F} followed by linear classification $f^{(K)}$.



Peter Orbanz · Applied Data Mining

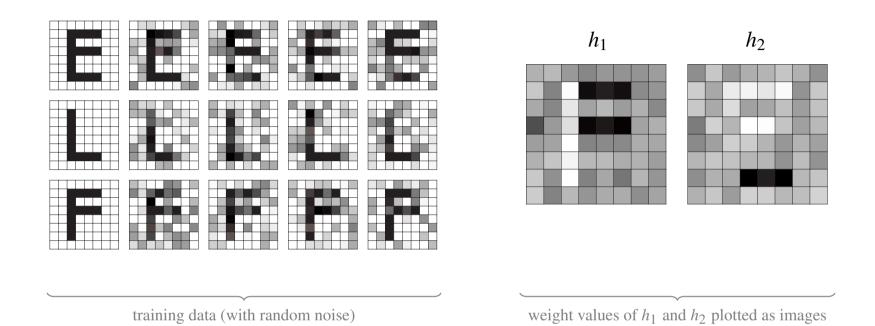
A SIMPLE EXAMPLE



- Problem: Classify characters into three classes (E, F and L).
- Each digit given as a $8 \times 8 = 64$ pixel image
- Neural network: 64 input units (=pixels)
- 2 hidden units
- 3 binary output units, where $f_i(\mathbf{x}) = 1$ means image is in class i.
- Each hidden unit has 64 input weights, one per pixel. The weight values can be plottes as 8 × 8 images.

Peter Orbanz · Applied Data Mining

A SIMPLE EXAMPLE



- Dark regions = large weight values.
- Note the weights emphasize regions that distinguish characters.
- We can think of weight (= each pixel) as a feature.
- The features with large weights for h_1 distinguish {E,F} from L.
- The features for h_2 distinguish {E,L} from F.

EXAMPLE: AUTOENCODERS

An example for the effect of layer are autoencoders.

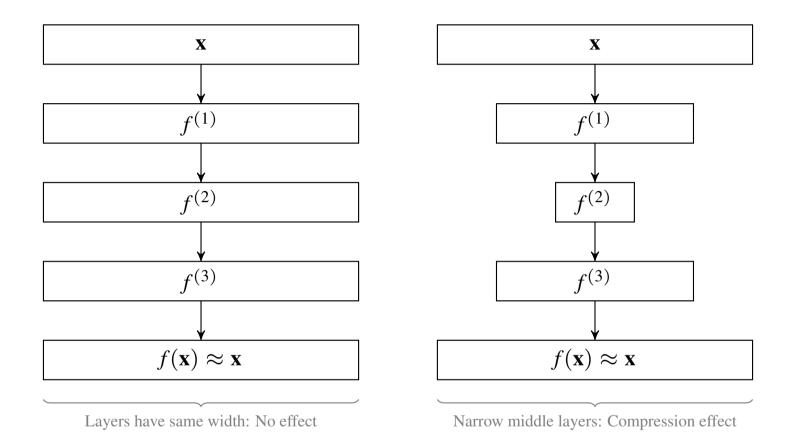
• An **autoencoder** is a neural network that is trained on its own input: If the network has weights W and represents a function f_W , training solves the optimization problem

$$\min_{\mathbf{W}} \|\mathbf{x} - f_{\mathbf{W}}(\mathbf{x})\|^2$$

or something similar for a different norm.

- That seems pointless at first glance: The network tries to approximate the identity function using its (possibly nonlinear) component functions.
- However: If the layers in the middle have much fewer nodes that those at the top and bottom, the network learns to *compress the input*.

AUTOENCODERS



- Train network on many images.
- Once trained: Input an image x.
- Store $\mathbf{x}' := f^{(2)}(\mathbf{x})$. Note \mathbf{x}' has fewer dimensions than $\mathbf{x} \to \text{compression}$.
- To decompress \mathbf{x}' : Input it into $f^{(3)}$ and apply the remaining layers of the network \rightarrow reconstruction $f(\mathbf{x}) \approx \mathbf{x}$ of \mathbf{x} .

AUTOENCODERS

