
BACKPROPAGATION

Neural network training optimization problem

min
w

J(w)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).

Peter Orbanz · Applied Data Mining 292

The next few slides were written for a different class, and you are not expected to know their content. I show them only to
illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.

BACKPROPAGATION

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).

Not examinable.Peter Orbanz · Applied Data Mining 293

CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f ◦ g(x) = f (g(x)).

d(f ◦ g)

dx
=

df
dg

dg
dx

If the derivatives of f and g are f ′ and g′, that means: d(f◦g)
dx (x) = f ′(g(x))g′(x)

Application to feed-forward network
Let w(k) denote the weights in layer k. The function represented by the network is

fw(x) = f (K)
w ◦ · · · ◦ f (1)

w (x) = f (K)

w(K) ◦ · · · ◦ f (1)
w(1) (x)

To solve the optimization problem, we have to compute derivatives of the form

d
dw

D(fw(xn), yn) =
dD(• , yn)

dfw

dfw
dw

Not examinable.Peter Orbanz · Applied Data Mining 294

DECOMPOSING THE DERIVATIVES

• The chain rule means we compute the derivates layer by layer.
• Suppose we are only interested in the weights of layer k, and keep all other weights fixed.

The function f represented by the network is then

fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)
w(k) ◦ f (k−1) ◦ · · · ◦ f (1)(x)

• The first k − 1 layers enter only as the function value of x, so we define

z(k) := f (k−1) ◦ · · · ◦ f (1)(x)

and get
fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)

w(k) (z(k))

• If we differentiate with respect to w(k), the chain rule gives

d
dw(k)

fw(k) (x) =
df (K)

df (K−1)
· · · df (k+1)

df (k)
·

df (k)
w(k)

dw(k)

Not examinable.Peter Orbanz · Applied Data Mining 295

WITHIN A SINGLE LAYER

• Each f (k) is a vector-valued function f (k) : Rdk → Rdk+1 .
• It is parametrized by the weights w(k) of the kth layer and takes an input vector z ∈ Rdk .

• We write f (k)(z,w(k)).

Layer-wise derivative
Since f (k) and f (k−1) are vector-valued, we get a Jacobian matrix

df (k+1)

df (k)
=

∂f (k+1)
1

∂f (k)
1

. . .
∂f (k+1)

1

∂f (k)
dk

...
...

∂f (k+1)
dk+1

∂f (k)
1

. . .
∂f (k+1)

dk+1

∂f (k)
dk

=: ∆(k)(z,w(k+1))

• ∆(k) is a matrix of size dk+1 × dk .

• The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of
f (k) if the weights w(k+1) and w(k) of both functions are fixed.

Not examinable.Peter Orbanz · Applied Data Mining 296

BACKPROPAGATION ALGORITHM

Let w(1), . . . ,w(K) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass
We start with an input vector x and compute

z(k) := f (k) ◦ · · · ◦ f (1)(x)

for all layers k.

Step 2: Backward pass
• Start with the last layer. Update the weights w(K) by performing a gradient step on

D
(

f (K)(z(K),w(K)), y
)

regarded as a function of w(K) (so z(K) and y are fixed). Denote the updated weights w̃(K).
• Move backwards one layer at a time. At layer k, we have already computed updates

w̃(K), . . . , w̃(k+1). Update w(k) by a gradient step, where the derivative is computed as

∆(K−1)(z(K−1), w̃(K)) · . . . ·∆(k)(z(k), w̃(k+1))
df (k)

dw(k)
(z,w(k))

On reaching level 1, go back to step 1 and recompute the z(k) using the updated weights.

Not examinable.Peter Orbanz · Applied Data Mining 297

SUMMARY: BACKPROPAGATION

• Backpropagation is a gradient descent method for the optimization problem

min
w

J(w) =

N∑

i=1

D(fw(xi), yi)

D must be chosen such that it is additive over data points.

• It alternates between forward passes that update the layer-wise function values z(k) given
the current weights, and backward passes that update the weights using the current z(k).

• The layered architecture means we can (1) compute each z(k) from z(k−1) and (2) we can
use the weight updates computed in layers K, . . . , k + 1 to update weights in layer k.

Not examinable.Peter Orbanz · Applied Data Mining 298

FEATURE EXTRACTION

Features
• Raw measurement data is typically not used directly as input for a learning algorithm.

Some form of preprocessing is applied first.
• We can think of this preprocessing as a function, e.g.

F : raw data space −→ Rd

(Rd is only an example, but a very common one.)
• If the raw measurements are m1, . . . ,mN , the data points which are fed into the learning

algorithm are the images xn := F(mn).

Terminology
• F is called a feature map.
• Its dimensions (the dimensions of its range space) are called features.
• The preprocessing step (= application of F to the raw data) is called feature extraction.

Peter Orbanz · Applied Data Mining 299

EXAMPLE PROCESSING PIPELINE

This is what a typical processing
pipeline for a supervided learning
propblem might look like.

Raw data (measurements)

Feature extraction
(preprocessing)

Working data

Mark patterns

Split

Training data
(patterns marked)

Test data
(patterns marked)

Training
(calibration) Trained model

Apply on
test data

Error estimate

Peter Orbanz · Applied Data Mining 300

FEATURE EXTRACTION VS LEARNING

Where does learning start?
• It is often a matter of definition where feature extraction stops and learning starts.
• If we have a perfect feature extractor, learning is trivial.
• For example:

• Consider a classfication problem with two classes.
• Suppose the feature extractor maps the raw data measurements of class 1 to a single

point, and all data points in class to to a single distinct point.
• Then classification is trivial.
• That is of course what the classifier is supposed to do in the end (e.g. map to the

points 0 and 1).

Multi-layer networks and feature extraction
• An interesting aspect of multi-layer neural networks is that their early layers can be

intepreted as feature extraction.
• For certain types of problems (e.g. computer vision), features were long “hand-tuned” by

humans.
• Features extracted by neural networks give much better results.
• Several important problems, such as object recognition and face recognition, have

basically been solved in this way.

Peter Orbanz · Applied Data Mining 301

DEEP NETWORKS AS FEATURE EXTRACTORS

• The network on the right is a classifier
f : Rd → {0, 1}.

• Suppose we subdivide the network into
the first K − 1 layer and the final layer, by
defining

F(x) := f (K−1) ◦ . . . ◦ f (1)(x)

• The entire network is then

f (x) = f (K) ◦ F(x)

• The function f (K) is a two-class logistic
regression classifier.

• We can hence think of f as a feature
extraction F followed by linear
classification f (K).

x1 x2

. . .

xd

. . .

. . .

...
...

...

. . .

= f (1)

= f (2)

= f (K)

f (K)(•) = σ(
〈

w(K), •
〉
)

Peter Orbanz · Applied Data Mining 302

A SIMPLE EXAMPLE

6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

. . .x1 x64

f1 f2 f3

h1 h2

w11
w12 w64,1

w64,2

• Problem: Classify characters into three
classes (E, F and L).

• Each digit given as a 8× 8 = 64 pixel
image

• Neural network: 64 input units (=pixels)
• 2 hidden units
• 3 binary output units, where fi(x) = 1

means image is in class i.
• Each hidden unit has 64 input weights,

one per pixel. The weight values can be
plottes as 8× 8 images.

Peter Orbanz · Applied Data Mining 303

A SIMPLE EXAMPLE
6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

6.6. BACKPROPAGATION, BAYES THEORY AND PROBABILITY 25

sample training patterns

learned input-to-hidden weights

Figure 6.14: The top images represent patterns from a large training set used to train
a 64-2-3 sigmoidal network for classifying three characters. The bottom figures show
the input-to-hidden weights (represented as patterns) at the two hidden units after
training. Note that these learned weights indeed describe feature groupings useful for
the classification task. In large networks, such patterns of learned weights may be
difficult to interpret in this way.

6.6.1 Bayes discriminants and neural networks

As we saw in Chap. ?? Sect. ??, the LMS algorithm computed the approximation to
the Bayes discriminant function for two-layer nets. We now generalize this result in
two ways: to multiple categories and to nonlinear functions implemented by three-
layer neural networks. We use the network of Fig. 6.4 and let gk(x; w) be the output
of the kth output unit — the discriminant function corresponding to category ωk.
Recall first Bayes’ formula,

P (ωk|x) =
P (x|ωk)P (ωk)
c∑

i=1

P (x|ωi)P (ωi)
=

P (x,ωk)

P (x)
, (22)

and the Bayes decision for any pattern x: choose the category ωk having the largest
discriminant function gk(x) = P (ωk|x).

Suppose we train a network having c output units with a target signal according
to:

tk(x) =

{
1 if x ∈ ωk

0 otherwise.
(23)

(In practice, teaching values of ±1 are to be preferred, as we shall see in Sect. 6.8; we
use the values 0–1 in this derivation for computational simplicity.) The contribution
to the criterion function based on a single output unit k for finite number of training
samples x is:

J(w) =
∑

x

[gk(x; w)− tk]
2

(24)

training data (with random noise) weight values of h1 and h2 plotted as images

h1 h2

• Dark regions = large weight values.
• Note the weights emphasize regions that distinguish characters.
• We can think of weight (= each pixel) as a feature.
• The features with large weights for h1 distinguish {E,F} from L.
• The features for h2 distinguish {E,L} from F.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Peter Orbanz · Applied Data Mining 304

EXAMPLE: AUTOENCODERS

An example for the effect of layer are autoencoders.
• An autoencoder is a neural network that is trained on its own input: If the network has

weights W and represents a function fW, training solves the optimization problem

min
W
‖x− fW(x)‖2

or something similar for a different norm.
• That seems pointless at first glance: The network tries to approximate the identity

function using its (possibly nonlinear) component functions.
• However: If the layers in the middle have much fewer nodes that those at the top and

bottom, the network learns to compress the input.

Peter Orbanz · Applied Data Mining 305

AUTOENCODERS

x

f (1)

f (2)

f (3)

f (x) ≈ x

Layers have same width: No effect

x

f (1)

f (2)

f (3)

f (x) ≈ x

Narrow middle layers: Compression effect

• Train network on many images.
• Once trained: Input an image x.

• Store x′ := f (2)(x). Note x′ has fewer dimensions than x→ compression.

• To decompress x′: Input it into f (3) and apply the remaining layers of the network
→ reconstruction f (x) ≈ x of x.

Peter Orbanz · Applied Data Mining 306

AUTOENCODERS

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Illustration: K. Murphy, Machine Learning: A Bayesian perspective, MIT Press 2012Peter Orbanz · Applied Data Mining 307

