
LOGISTIC REGRESSION



MOTIVATION

A classifier is a piece-wise constant function, which means it “jumps” at the decision boundary:

• We had already noted that that is inconvenient for optimization: The function is either
constant (optimization algorithms cannot extract local information) or not differentiable.

• The function does not distinguish between points close to and far from the boundary. That
allows e.g. the perceptron to place the decision boundary very close to data points.

Idea
We replace the piece-wise constant function by a smooth function that otherwise looks similar.
There is a canonical way of doing so, called logistic regression.

Keep in mind: Logistic regression is a classification method.
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SIGMOIDS

Sigmoid function

σ(x) =
1

1 + e−x
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Note

1−σ(x) =
1 + e−x − 1

1 + e−x
=

1
ex + 1

= σ(−x)

Derivative

dσ
dx

(x) =
e−x

(1 + e−x)2
= σ(x)

(
1− σ(x)
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Sigmoid (blue) and its derivative (red)
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APPROXIMATING DECISION BOUNDARIES

• In linear classification: Decision
boundary is a discontinuity

• Boundary is represented either by
indicator function I{• > c} or sign
function sign(• − c)

• These representations are equivalent:
Note sign(• − c) = 2 · I{• > c} − 1
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The most important use of the sigmoid function in machine learning is as a smooth
approximation to the indicator function.

Given a sigmoid σ and a data point x, we decide which side of the approximated boundary we
are own by thresholding

σ(x) ≥ 1
2
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SCALING

We can add a scale parameter by definining

σθ(x) := σ(θx) =
1

1− e−θx
for θ ∈ R
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Influence of θ
• As θ increases, σθ approximates I more closely.
• For θ →∞, the sigmoid converges to I pointwise, that is: For every x 6= 0, we have

σθ(x)→ I{x > 0} as θ → +∞ .

• Note σθ(0) = 1
2 always, regardless of θ.
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APPROXIMATING A LINEAR CLASSIFIER

So far, we have considered R, but linear classifiers usually live in Rd .

The decision boundary of a linear classifier in
R2 is a discontinuous ridge:

• This is a linear classifier of the form

I{〈v, x〉 − c}.
• Here: v = (1, 1) and c = 0.

We can “stretch” σ into a ridge function on R2:

• This is the function
x = (x1, x2) 7→ σ(x1).

• The ridge runs parallel to the x2-axes.
• If we use σ(x2) instead, we rotate by 90

degrees (still axis-parallel).
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STEERING A SIGMOID

Just as for a linear classifier, we use a normal vector v ∈ Rd .

• The function σ(〈v, x〉 − c) is a sigmoid ridge, where the ridge is orthogonal to the normal
vector v, and c is an offset that shifts the ridge “out of the origin”.

• The plot on the right shows the normal vector (here: v = (1, 1)) in black.
• The parameters v and c have the same meaning for I and σ, that is, σ(〈v, x〉 − c)

approximates I{〈v, x〉 ≥ c}.
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LOGISTIC REGRESSION

Logistic regression is a classification method that approximates decision boundaries by
sigmoids.

Setup
• Two-class classification problem
• Observations x1, . . . , xn ∈ Rd , class labels yi ∈ {0, 1}.

The logistic regression model
We model the conditional distribution of the class label given the data as

P(y|x) := Bernoulli
(
σ(〈v, x〉 − c)

)
.

• Recall σ(〈v, x〉 − c) takes values in [0, 1] for all θ, and value 1
2 on the class boundary.

• The logistic regression model interprets this value as the probability of being in class y.
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LEARNING LOGISTIC REGRESSION

Since the model is defined by a parametric distribution, we can apply maximum likelihood.

Likelihood function of the logistic regression model
n∏

i=1

σ(〈v, x̃i〉 − c)yi
(
1− (σ(〈v, x̃i〉 − c))

)1−yi

Negative log-likelihood

L(w) := −
n∑

i=1

(
yi log σ(〈v, x̃i〉 − c) + (1− yi) log

(
1− σ((〈v, x̃i〉 − c))

))
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MAXIMUM LIKELIHOOD

∇L(v, c) =

n∑

i=1

(
σ(〈v, x̃i〉 − c)− yi

)(x̃i
1

)

Note
• Each training data point xi contributes to the sum proportionally to the approximation

error σ(〈v, x̃i〉 − c)− yi incurred at xi by approximating the linear classifier by a
sigmoid.

Learning logistic regression

To learn a logistic regression classifier from training data, we minimize L(v, c) using
gradient descent or another optimization algorithm.

• The function L is convex (= ∪-shaped). That means there is only a single local minimum,
which is also the global minimum.

• FYI: You may encounter an algorithm called iteratively reweighted least squares for
training logistic regression in the literature. The algorithm is obtained by applying a more
sophisticated version of gradient descent (called Newton’s method) to minimize L.
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