% . "-"
* 'l‘ "é Eq' L
L] "f ‘ :|' r
- LT 4
- a® . d
. '.“II:‘l‘ ..: -
a .,
l"\ . ‘. "'

f(x) = sgn({v,x) —c)

Peter Orbanz - Applied Data Mining 274

fx) = Hvixi+vixo+vixzs+(—1)c > 0} = {v,x)>c}

Equivalent to linear classifier

The linear classifier on the previous slide and f differ only in whether they encode the “blue”
class as -1 or as O:

sgn({(v,x) —c) = 2f(x) — 1

Peter Orbanz - Applied Data Mining 275

y = I{v'x > ¢}

This neural network represents a linear two-class classifier (on R?).

e We can more generally define a classifier on R? by adding input units, one per dimension.

It does not specify the training method.

To train the classifier, we need a cost function and an optimization method.

Peter Orbanz - Applied Data Mining 276

Linear units

Qb(X) =X 10 5 5 10

-5+

10+

This function simply “passes on” its incoming signal. These are used for example to represent
inputs (data values).

Constant functions

25

20

P(x) =c

0.5

These can be used e.g. in combination with an indicator function to define a threshold, as in the
linear classifier above.

Peter Orbanz - Applied Data Mining 277

Indicator function

¢(x) = I{x > 0}

0.8F

06}

04}

02+

-10

Example: Final unit is indicator

V1 1) —1

Peter Orbanz - Applied Data Mining

10

Sigmoids

0.2-

-10 -5 - 5 10

Example: Final unit is sigmoid

Peter Orbanz - Applied Data Mining 279

Rectified linear units

¢(x) = max{0, x} of

These are currently perhaps the most commonly used unit in the “inner” layers of a neural
network (those layers that are not the input or output layer).

Peter Orbanz - Applied Data Mining 280

HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units

e Any nodes (or “units”) in the network that are neither input nor output nodes are called
hidden.

e Every network has an input layer and an output layer.

o [f there any additional layers (which hence consist of hidden units), they are called hidden
layers.

inear and nonlinear networks

e If a network has no hidden units, then
fl(X) — ¢i(<wi7 X>)
That means: f is a linear functions, except perhaps for the final application of ¢.

e For example: In a classification problem, a two layer network can only represent linear
decision boundaries.

e Networks with at least one hidden layer can represent nonlinear decision surfaces.

Peter Orbanz - Applied Data Mining 281

Two-layer

Three-layer

Peter Orbanz - Applied Data Mining

\

\

Mlustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001

282

Solution regions we would like to represent Neural network representation

Two ridges at different locations are substracted from each other.

That generates a region bounded on both sides.

A linear classifier cannot represent this decision region.

Note this requires at least one hidden layer.

Peter Orbanz - Applied Data Mining Mlustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001 283

Xo
Zy

S
2
o
2
2%

%‘\'.:::::::::::”
LY v-..- FIE
2 -.~.---~ e~
X] '-.---~
- v----~ ~
R p-----
".... .’........
X Z \s----
$Z7 ..l Q.......
..... Z7 Q..... Yawy
'0.-~m §~....-
':','...,..0 Q.....h:
R o/

K25 27 X

2 2

Y1

ZLZ
........I.
.....~...,.
":.':..::.,.
s
L

22

4

STt
L5 N
....
...
L7
L2
27
..'..'.

-
R 2L
~"'"':':~5:~:-.;....... 2
=
Vaw, £
','."'.;:.' 7 e ".
rtony) A, gy,
i) Sy
&5 L7
:'"""':2".‘:;'.;.;.,.2'.? 7
e s 000.0'.." L7 Z5
0'00000 .""’##h..
<& 27
"000'0'........%
.:.'."'"'::::,...:;'
Ya -:::"’"22%
:v':...‘.'.'."l:......:
..'.'.'"'.',0...,"'
y4 00'0.0.0
22 \ .z.'."'.'...

2
2%
SLLL
..~ v,
...

a Minin
ata
Applied Da
anz -
Orban
Peter

1
iley 200
) Wlley
. ﬂon3

ifica

Classi

m

Stork, Patte

D.G.

Hart,

PE.

da’

Du

ion: R.O.

ation:

Mlustr

284

We have observed

e We have seen that two-layer classification networks always represent linear class
boundaries.

e With three layers, the boundaries can be non-linear.

Obvious question

e What happens if we use more than three layers? Do four layers again increase expressive
power?

Peter Orbanz - Applied Data Mining 285

WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions qbl.(k).

What functions can be represented?

A well-known result in approximation theory says: Every continuous function f : [0, l]d — R
can be represented in the form

2d+1

Z & (Z anesn)

where &; and 7;; are functions R — R. A similar result shows one can approximate f to
arbitrary precision using specifically sigmoids, as

Zw()U(ZW()x, + cl)

for some finite M and constants c;.

Note the representations above can both be written as neural networks with three layers (i.e.
with one hidden layer).

Peter Orbanz - Applied Data Mining Not examinable. 286

WIDTH VS DEPTH

Depth rather than width

e The representations above can achieve arbitrary precision with a single hidden layer
(roughly: a three-layer neural network can represent any continuous function).

e In the first representation, £ and 7; are “simpler” than f because they map R — R.

e In the second representation, the functions are more specific (sigmoids), and we typically
need more of them (M is large).

e That means: The price of precision are many hidden units, i.e. the network grows wide.

e The last years have shown: We can obtain very good results by limiting layer width, and
instead increasing depth (= number of layers).

e There is no coherent theory yet to properly explain this behavior.

Limiting width
e Limiting layer width means we limit the degrees of freedom of each function f (k).

e That is a notion of parsimony.

» Again: There seem to be a lot of interesting questions to study here, but so far, we have no
real answers.

Peter Orbanz - Applied Data Mining Not examinable. 287

TRAINING NEURAL NETWORKS

Task

e We decide on a neural network “architecture”: We fix the network diagram, including all
functions ¢ at the units. Only the weights w on the edges can be changed during by
training algorithm. Suppose the architecture we choose has d; input units and d; output
units.

e We collect all weights into a vector w. The entire network then represents a function fi (x)
that maps R4 — R%.

e To “train” the network now means that, given training data, we have to determine a
suitable parameter vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification
Suppose the network is meant to represent a two-class classifier.

e That means the output dimension is dy = 1, so fw is a function R4 — R,
e We are given data X1, Xp, . . . with labels y, y,, . ..

e We split this data into training, validation and test data, according to the requirements of
the problem we are trying to solve.

e We then fit the network to the training data.

Peter Orbanz - Applied Data Mining 288

TRAINING NEURAL NETWORKS

Q\Q /Q |

|

Jw(X)

Peter Orbanz - Applied Data Mining

We run each training data point Xx; through the network fy
and compare fw (X;) to y; to measure the error.

Recall how gradient descent works: We make “small”
changes to w, and choose the one which decreases the error
most. That is one step of the gradient scheme.

For each such changed value w’, we again run each training
data point x; through the network f,,/, and measure the error

by comparing fi,/ (X;) to y;.

289

TRAINING NEURAL NETWORKS

Error measure

e We have to specify how we compare the network’s output fy (X) to the correct answer y.
e To do so, we specify a function D with two arguments that serves as an error measure.

e The choice of D depends on the problem.

Typical error measures

e C(lassification problem:
D(y,y) :=ylogy (with convention 0log 0 = 0)
e Regression problem:

~ ~112
D(y,y) == |ly =3

Training as an optimization problem

e Given: Training data (x1,y1), - - -, (Xn, y») With labels y;.

e We specify an error measure D, and define the total error on the training set as

J(w) = ZD(fw(fii),f’i)
i=1

Peter Orbanz - Applied Data Mining 290

BACKPROPAGATION

Training problem

In summary, neural network training attempts to solve the optimization problem

w* = arg min J(w)
w

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a
specific form that is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

In practice: Stochastic gradient descent

e The vector w can be very high-dimensional. In high dimensions, computing a gradient is
computationally expensive, because we have to make “small changes” to w in many
different directions and compare them to each other.

e Each time the gradient algorithm computes J(w’) for a changed value w’, we have to
apply the network to every data point, since J(W') = > 7| D(fyr (Xi), i)

 To save computation, the gradient algorithm typically computes D(fiy/ (X;), ;) only for
some small subset of a the training data. This subset is called a mini batch, and the
resulting algorithm is called stochastic gradient descent.

Peter Orbanz - Applied Data Mining 291

BACKPROPAGATION

Neural network training optimization problem

min J(w)
w

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation

e We have to evaluate the derivative VyJ(W).

e Since J is additive over training points, J(w) = > J,(w), it suffices to derive VyJ,(W).

Peter Orbanz - Applied Data Mining 292

The next few slides were written for a different class, and you are not expected to know their content. I show them only to
illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.

Deriving backpropagation

e We have to evaluate the derivative VywJ(W).

e Since J is additive over training points, J(w) = > J,(w), it suffices to derive VyJ,(W).

Peter Orbanz - Applied Data Mining Not examinable. 293

CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f o g(x) = f(g(x)).

d(fog) dfdg
dx dg dx

If the derivatives of f and g are f” and g’, that means: % (x) = f'(g(x))g’ (x)

Application to feed-forward network

Let wk) denote the weights in layer k. The function represented by the network is

K (1 K 1
fax) = S 0o i) = £ oo ()
To solve the optimization problem, we have to compute derivatives of the form
d dD(e, d
—D(fw(Xn),Yn) — (yn) fW
dw dfw dw

Peter Orbanz - Applied Data Mining Not examinable. 294

DECOMPOSING THE DERIVATIVES

e The chain rule means we compute the derivates layer by layer.

e Suppose we are only interested in the weights of layer k, and keep all other weights fixed.

The function f represented by the network is then
k _
foty (X) = FK) oo plktD) Ofv(v(lz) ofk=Do. .. of(l)(x)
e The first k — 1 layers enter only as the function value of x, so we define

and get
Fyo () = f8) oo pltD) o f0) (00

o If we differentiate with respect to W(k), the chain rule gives

@O = G T m T qw®

Peter Orbanz - Applied Data Mining Not examinable.

295

WITHIN A SINGLE LLAYER

e Eachf (k) is a vector-valued function f () . Rk — R+,
e [t is parametrized by the weights w(k) of the kth layer and takes an input vector z € R%.
o We write (%) (z, wik)),

Layer-wise derivative

Since f (k) and f (k=1) are vector-valued, we get a Jacobian matrix

(8f(k+1) oy th
k o o o —k
(k+1) " 8f0§k)
‘ ® : f = A (z,wltD)
4 f<k+1) (kD
dr 41 dr41
f1(k) af;k)

e A ig a matrix of size dr41 X dy.

e The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of
£ if the weights w1 and wk) of both functions are fixed.

Peter Orbanz - Applied Data Mining Not examinable. 296

BACKPROPAGATION ALGORITHM

Let wi) | ... w&) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass

We start with an input vector x and compute

Z(k) :f(k) O+« - Of(l)(X)
for all layers k.
Step 2: Backward pass

o Start with the last layer. Update the weights w(K) by performing a gradient step on
D(f(K) (Z(K) , W(K)),y)

regarded as a function of w(&) (so z(X) and y are fixed). Denote the updated weights w(K),

e Move backwards one layer at a time. At layer k, we have already computed updates

w&) . wktD Update w*) by a gradient step, where the derivative is computed as
AEK=D gE=D FEy AR (K W(k+1))ﬂ(z w(h)
) s) dW(k))

On reaching level 1, go back to step 1 and recompute the z(K) using the updated weights.

Peter Orbanz - Applied Data Mining Not examinable.

297

SUMMARY: BACKPROPAGATION

e Backpropagation is a gradient descent method for the optimization problem

man ZD(fW Xi), i)

D must be chosen such that it is additive over data points.

e [t alternates between forward passes that update the layer-wise function values z(K) given
the current weights, and backward passes that update the weights using the current z(K)

e The layered architecture means we can (1) compute each z%) from z*—1) and (2) we can
use the weight updates computed in layers K, . . . , k 4+ 1 to update weights in layer k.

Peter Orbanz - Applied Data Mining Not examinable.

298

