
RECALL: LINEAR CLASSIFICATION

v

x

〈x,v〉
‖v‖

f (x) = sgn(〈v, x〉 − c)
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LINEAR CLASSIFIER IN R2 AS TWO-LAYER NN

v1 v2 −1

x1 x2 c

f (x)

I{• > 0}

f (x) = I{ v1x1 + v2x2 + v3x3 + (−1)c > 0 } = I{〈v, x〉 > c}

Equivalent to linear classifier
The linear classifier on the previous slide and f differ only in whether they encode the “blue”
class as -1 or as 0:

sgn(〈v, x〉 − c) = 2f (x)− 1
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REMARKS

v1 v2 −1

y = I{vtx > c}

x1 x2 c

• This neural network represents a linear two-class classifier (on R2).
• We can more generally define a classifier on Rd by adding input units, one per dimension.
• It does not specify the training method.
• To train the classifier, we need a cost function and an optimization method.
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TYPICAL COMPONENT FUNCTIONS

Linear units

φ(x) = x

This function simply “passes on” its incoming signal. These are used for example to represent
inputs (data values).

Constant functions

φ(x) = c

These can be used e.g. in combination with an indicator function to define a threshold, as in the
linear classifier above.
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TYPICAL COMPONENT FUNCTIONS

Indicator function

φ(x) = I{x > 0}

Example: Final unit is indicator

v1 v2 −1

x1 x2 c

f (x)

I{• > 0}
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TYPICAL COMPONENT FUNCTIONS

Sigmoids

φ(x) =
1

1 + e−x
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Example: Final unit is sigmoid

v1 v2 −1

x1 x2 c

f (x)

σ(•)
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TYPICAL COMPONENT FUNCTIONS

Rectified linear units

φ(x) = max{0, x}

These are currently perhaps the most commonly used unit in the “inner” layers of a neural
network (those layers that are not the input or output layer).
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HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units
• Any nodes (or “units”) in the network that are neither input nor output nodes are called

hidden.
• Every network has an input layer and an output layer.
• If there any additional layers (which hence consist of hidden units), they are called hidden

layers.

Linear and nonlinear networks
• If a network has no hidden units, then

fi(x) = φi(
〈

wi, x
〉
)

That means: f is a linear functions, except perhaps for the final application of φ.
• For example: In a classification problem, a two layer network can only represent linear

decision boundaries.
• Networks with at least one hidden layer can represent nonlinear decision surfaces.
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TWO VS THREE LAYERS

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).

Two"layer

Three"layer

x1 x2

x1

x2

...

x1 x2

fl

R1

R
2

R
1

R
2

R
2

R1

x2

x1

Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.
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6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.
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THE XOR PROBLEM

6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 7

bias
hidden j

output k

input i

11
1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=1

z= -1

z= -1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

R2

R2

R1

y1 y2

z

zk

wkj

wji

Figure 6.1: The two-bit parity or exclusive-OR problem can be solved by a three-layer
network. At the bottom is the two-dimensional feature space x1 − x2, and the four
patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their (feature) values through multiplicative
weights to the hidden units. The hidden and output units here are linear threshold
units, each of which forms the linear sum of its inputs times their associated weight,
and emits a +1 if this sum is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive (“excitatory”) weights are denoted by solid lines, negative
(“inhibitory”) weights by dashed lines; the weight magnitude is indicated by the
relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.
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Solution regions we would like to represent Neural network representation

• Two ridges at different locations are substracted from each other.
• That generates a region bounded on both sides.
• A linear classifier cannot represent this decision region.
• Note this requires at least one hidden layer.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Peter Orbanz · Applied Data Mining 283



6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 9

input feature xi. Each hidden unit emits a nonlinear function Ξ of its total input; the
output unit merely emits the sum of the contributions of the hidden units.

Unfortunately, the relationship of Kolmogorov’s theorem to practical neural net-
works is a bit tenuous, for several reasons. In particular, the functions Ξj and ψij

are not the simple weighted sums passed through nonlinearities favored in neural net-
works. In fact those functions can be extremely complex; they are not smooth, and
indeed for subtle mathematical reasons they cannot be smooth. As we shall soon
see, smoothness is important for gradient descent learning. Most importantly, Kol-
mogorov’s Theorem tells us very little about how to find the nonlinear functions based
on data — the central problem in network based pattern recognition.

A more intuitive proof of the universal expressive power of three-layer nets is in-
spired by Fourier’s Theorem that any continuous function g(x) can be approximated
arbitrarily closely by a (possibly infinite) sum of harmonic functions (Problem 2). One
can imagine networks whose hidden units implement such harmonic functions. Proper
hidden-to-output weights related to the coefficients in a Fourier synthesis would then
enable the full network to implement the desired function. Informally speaking, we
need not build up harmonic functions for Fourier-like synthesis of a desired function.
Instead a sufficiently large number of “bumps” at different input locations, of different
amplitude and sign, can be put together to give our desired function. Such localized
bumps might be implemented in a number of ways, for instance by sigmoidal transfer
functions grouped appropriately (Fig. 6.2). The Fourier analogy and bump construc-
tions are conceptual tools, they do not explain the way networks in fact function. In
short, this is not how neural networks “work” — we never find that through train-
ing (Sect. 6.3) simple networks build a Fourier-like representation, or learn to group
sigmoids to get component bumps.

y1
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y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

Figure 6.2: A 2-4-1 network (with bias) along with the response functions at different
units; each hidden and output unit has sigmoidal transfer function f(·). In the case
shown, the hidden unit outputs are paired in opposition thereby producing a “bump”
at the output unit. Given a sufficiently large number of hidden units, any continuous
function from input to output can be approximated arbitrarily well by such a network.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Peter Orbanz · Applied Data Mining 284



NUMBER OF LAYERS

We have observed
• We have seen that two-layer classification networks always represent linear class

boundaries.
• With three layers, the boundaries can be non-linear.

Obvious question
• What happens if we use more than three layers? Do four layers again increase expressive

power?
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WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions φ(k)
i .

What functions can be represented?
A well-known result in approximation theory says: Every continuous function f : [0, 1]d → R
can be represented in the form

f (x) =

2d+1∑

j=1

ξj

( d∑

i=1

τij(xi)
)

where ξi and τij are functions R→ R. A similar result shows one can approximate f to
arbitrary precision using specifically sigmoids, as

f (x) ≈
M∑

j=1

w(2)
j σ

( d∑

i=1

w(1)
ij xi + ci

)

for some finite M and constants ci.
Note the representations above can both be written as neural networks with three layers (i.e.
with one hidden layer).
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WIDTH VS DEPTH

Depth rather than width
• The representations above can achieve arbitrary precision with a single hidden layer

(roughly: a three-layer neural network can represent any continuous function).
• In the first representation, ξj and τij are “simpler” than f because they map R→ R.
• In the second representation, the functions are more specific (sigmoids), and we typically

need more of them (M is large).
• That means: The price of precision are many hidden units, i.e. the network grows wide.
• The last years have shown: We can obtain very good results by limiting layer width, and

instead increasing depth (= number of layers).
• There is no coherent theory yet to properly explain this behavior.

Limiting width
• Limiting layer width means we limit the degrees of freedom of each function f (k).
• That is a notion of parsimony.
• Again: There seem to be a lot of interesting questions to study here, but so far, we have no

real answers.

Not examinable.Peter Orbanz · Applied Data Mining 287



TRAINING NEURAL NETWORKS

Task
• We decide on a neural network “architecture”: We fix the network diagram, including all

functions φ at the units. Only the weights w on the edges can be changed during by
training algorithm. Suppose the architecture we choose has d1 input units and d2 output
units.

• We collect all weights into a vector w. The entire network then represents a function fw(x)
that maps Rd1 → Rd2 .

• To “train” the network now means that, given training data, we have to determine a
suitable parameter vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification
Suppose the network is meant to represent a two-class classifier.
• That means the output dimension is d2 = 1, so fw is a function Rd1 → R.
• We are given data x1, x2, . . . with labels y1, y2, . . ..
• We split this data into training, validation and test data, according to the requirements of

the problem we are trying to solve.
• We then fit the network to the training data.
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TRAINING NEURAL NETWORKS

x̃

fw(x̃)

• We run each training data point x̃i through the network fw
and compare fw(x̃i) to ỹi to measure the error.

• Recall how gradient descent works: We make “small”
changes to w, and choose the one which decreases the error
most. That is one step of the gradient scheme.

• For each such changed value w′, we again run each training
data point x̃i through the network fw′ , and measure the error
by comparing fw′ (x̃i) to ỹi.
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TRAINING NEURAL NETWORKS

Error measure
• We have to specify how we compare the network’s output fw(x) to the correct answer y.
• To do so, we specify a function D with two arguments that serves as an error measure.
• The choice of D depends on the problem.

Typical error measures
• Classification problem:

D(ŷ, y) := y log ŷ (with convention 0 log 0 = 0)

• Regression problem:
D(ŷ, y) := ‖y− ŷ‖2

Training as an optimization problem
• Given: Training data (x1, y1), . . . , (xn, yn) with labels yi.
• We specify an error measure D, and define the total error on the training set as

J(w) :=

n∑

i=1

D( fw(x̃i), ỹi)
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BACKPROPAGATION

Training problem
In summary, neural network training attempts to solve the optimization problem

w∗ = arg min
w

J(w)

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a
specific form that is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

In practice: Stochastic gradient descent
• The vector w can be very high-dimensional. In high dimensions, computing a gradient is

computationally expensive, because we have to make “small changes” to w in many
different directions and compare them to each other.

• Each time the gradient algorithm computes J(w′) for a changed value w′, we have to
apply the network to every data point, since J(w′) =

∑n
i=1 D( fw′ (x̃i), ỹi).

• To save computation, the gradient algorithm typically computes D( fw′ (x̃i), ỹi) only for
some small subset of a the training data. This subset is called a mini batch, and the
resulting algorithm is called stochastic gradient descent.
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BACKPROPAGATION

Neural network training optimization problem

min
w

J(w)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to J(w) in a feed-forward network.

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).
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The next few slides were written for a different class, and you are not expected to know their content. I show them only to
illustrate the interesting way in which gradient descent interleaves with the feed-forward architecture.



BACKPROPAGATION

Deriving backpropagation
• We have to evaluate the derivative∇wJ(w).
• Since J is additive over training points, J(w) =

∑
n Jn(w), it suffices to derive∇wJn(w).
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CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f ◦ g(x) = f (g(x)).

d(f ◦ g)

dx
=

df
dg

dg
dx

If the derivatives of f and g are f ′ and g′, that means: d(f◦g)
dx (x) = f ′(g(x))g′(x)

Application to feed-forward network
Let w(k) denote the weights in layer k. The function represented by the network is

fw(x) = f (K)
w ◦ · · · ◦ f (1)

w (x) = f (K)

w(K) ◦ · · · ◦ f (1)
w(1) (x)

To solve the optimization problem, we have to compute derivatives of the form

d
dw

D(fw(xn), yn) =
dD( • , yn)

dfw

dfw
dw
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DECOMPOSING THE DERIVATIVES

• The chain rule means we compute the derivates layer by layer.
• Suppose we are only interested in the weights of layer k, and keep all other weights fixed.

The function f represented by the network is then

fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)
w(k) ◦ f (k−1) ◦ · · · ◦ f (1)(x)

• The first k − 1 layers enter only as the function value of x, so we define

z(k) := f (k−1) ◦ · · · ◦ f (1)(x)

and get
fw(k) (x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)

w(k) (z(k))

• If we differentiate with respect to w(k), the chain rule gives

d
dw(k)

fw(k) (x) =
df (K)

df (K−1)
· · · df (k+1)

df (k)
·

df (k)
w(k)

dw(k)
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WITHIN A SINGLE LAYER

• Each f (k) is a vector-valued function f (k) : Rdk → Rdk+1 .
• It is parametrized by the weights w(k) of the kth layer and takes an input vector z ∈ Rdk .

• We write f (k)(z,w(k)).

Layer-wise derivative
Since f (k) and f (k−1) are vector-valued, we get a Jacobian matrix

df (k+1)

df (k)
=




∂f (k+1)
1

∂f (k)
1

. . .
∂f (k+1)

1

∂f (k)
dk

...
...

∂f (k+1)
dk+1

∂f (k)
1

. . .
∂f (k+1)

dk+1

∂f (k)
dk




=: ∆(k)(z,w(k+1))

• ∆(k) is a matrix of size dk+1 × dk .

• The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of
f (k) if the weights w(k+1) and w(k) of both functions are fixed.

Not examinable.Peter Orbanz · Applied Data Mining 296



BACKPROPAGATION ALGORITHM

Let w(1), . . . ,w(K) be the current settings of the layer weights. These have either been
computed in the previous iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass
We start with an input vector x and compute

z(k) := f (k) ◦ · · · ◦ f (1)(x)

for all layers k.

Step 2: Backward pass
• Start with the last layer. Update the weights w(K) by performing a gradient step on

D
(

f (K)(z(K),w(K)), y
)

regarded as a function of w(K) (so z(K) and y are fixed). Denote the updated weights w̃(K).
• Move backwards one layer at a time. At layer k, we have already computed updates

w̃(K), . . . , w̃(k+1). Update w(k) by a gradient step, where the derivative is computed as

∆(K−1)(z(K−1), w̃(K)) · . . . ·∆(k)(z(k), w̃(k+1))
df (k)

dw(k)
(z,w(k))

On reaching level 1, go back to step 1 and recompute the z(k) using the updated weights.
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SUMMARY: BACKPROPAGATION

• Backpropagation is a gradient descent method for the optimization problem

min
w

J(w) =

N∑

i=1

D(fw(xi), yi)

D must be chosen such that it is additive over data points.

• It alternates between forward passes that update the layer-wise function values z(k) given
the current weights, and backward passes that update the weights using the current z(k).

• The layered architecture means we can (1) compute each z(k) from z(k−1) and (2) we can
use the weight updates computed in layers K, . . . , k + 1 to update weights in layer k.
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