Neural Networks

The Most Important Bit

A neural network represents a function $f: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$.

Building Blocks

Units

The basic building block is a node or unit:

- The unit has incoming and outgoing arrows. We think of each arrow as "transmitting" a signal.
- The signal is always a scalar.
- A unit represents a function ϕ.

We read the diagram as: A scalar value (say x) is transmitted to the unit, the function ϕ is applied, and the result $\phi(x)$ is transmitted from the unit along the outgoing arrow.

Weights

- If we want to "input" a scalar x, we represent it as a unit, too.
- We can think of this as the unit representing the constant function $g(x)=x$.
- Additionally, each arrow is usually inscribed with a (scalar) weight w.
- As the signal x passes along the edge, it is multiplied by the edge weight w.

The diagram above represents the function $f(x):=\phi(w x)$.

Reading Neural Networks

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad \text { with input } \quad \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right)
$$

$$
f(\mathbf{x})=\left(\begin{array}{l}
f_{1}(\mathbf{x}) \\
f_{2}(\mathbf{x}) \\
f_{3}(\mathbf{x})
\end{array}\right) \quad \text { with } \quad f_{i}(\mathbf{x})=\phi_{i}\left(\sum_{j=1}^{3} w_{i j} x_{j}\right)
$$

Feed-Forward Networks

A feed-forward network is a neural network whose units can be arranged into groups $\mathcal{L}_{1}, \ldots, \mathcal{L}_{K}$ so that connections (arrows) only pass from units in group \mathcal{L}_{k} to units in group \mathcal{L}_{k+1}. The groups are called layers. In a feed-forward network:

- There are no connections within a layer.
- There are no backwards connections.
- There are no connections that skip layers, e.g. from \mathcal{L}_{k} to units in group \mathcal{L}_{k+2}.

feed-forward

not feed-forward

not feed-forward

LAYERS

- This network computes the function

$$
f\left(x_{1}, x_{2}\right)=\phi_{1}^{2}\left(w_{11}^{2} \phi_{1}^{1}\left(w_{11}^{1} x_{1}+w_{21}^{1} x_{2}\right)+w_{12}^{2} \phi_{2}^{1}\left(w_{21}^{1} x_{1}+w_{22}^{1} x_{2}\right)\right)
$$

- Clearly, writing out f gets complicated fairly quickly as the network grows.

First shorthand: Scalar products

- Collect all weights coming into a unit into a vector, e.g.

$$
\mathbf{w}_{1}^{2}:=\left(w_{11}^{2}, w_{21}^{2}\right)
$$

- Same for inputs: $\mathbf{x}=\left(x_{1}, x_{2}\right)$
- The function then becomes

$$
f(\mathbf{x})=\phi_{1}^{2}\left(\left\langle\mathbf{w}_{1}^{2},\binom{\phi_{1}^{1}\left(\left\langle\mathbf{w}_{1}^{1}, \mathbf{x}\right\rangle\right)}{\phi_{2}^{1}\left(\left\langle\mathbf{w}_{2}^{1}, \mathbf{x}\right\rangle\right)}\right\rangle\right)
$$

LAYERS

- Each layer represents a function, which takes the output values of the previous layers as its arguments.
- Suppose the output values of the two nodes at the top are y_{1}, y_{2}.
- Then the second layer defines the (two-dimensional) function

$$
f^{(2)}(\mathbf{y})=\binom{\phi_{1}^{1}\left(\left\langle\mathbf{w}_{1}^{1}, \mathbf{y}\right\rangle\right)}{\phi_{2}^{1}\left(\left\langle\mathbf{w}_{2}^{1}, \mathbf{y}\right\rangle\right)}
$$

Composition of Functions

Basic composition

Suppose f and g are two function $\mathbb{R} \rightarrow \mathbb{R}$. Their composition $g \circ f$ is the function

$$
g \circ f(x):=g(f(x)) .
$$

For example:

$$
f(x)=x+1 \quad g(y)=y^{2} \quad g \circ f(x)=(x+1)^{2}
$$

We could combine the same functions the other way around:

$$
f \circ g(x)=x^{2}+1
$$

In multiple dimensions

Suppose $f: \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{2}}$ and $g: \mathbb{R}^{d_{2}} \rightarrow \mathbb{R}^{d_{3}}$. Then

$$
g \circ f(\mathbf{x})=g(f(\mathbf{x})) \quad \text { is a function } \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{3}}
$$

For example:

$$
f(\mathbf{x})=\langle\mathbf{x}, \mathbf{v}\rangle-c \quad g(y)=\operatorname{sgn}(y) \quad g \circ f(\mathbf{x})=\operatorname{sgn}(\langle\mathbf{x}, \mathbf{v}\rangle-c)
$$

Layers and Composition

- As above, we write

$$
f^{(2)}(\bullet)=\binom{\phi_{1}^{1}\left(\left\langle\mathbf{w}_{1}^{1}, \bullet\right\rangle\right)}{\phi_{2}^{1}\left(\left\langle\mathbf{w}_{2}^{1}, \bullet\right\rangle\right)}
$$

- The function for the third layer is similarly

$$
f^{(3)}(\bullet)=\phi_{1}^{2}\left(\left\langle\mathbf{w}_{1}^{2}, \bullet\right\rangle\right)
$$

- The entire network represents the function

$$
f(\mathbf{x})=f^{(3)}\left(f^{(2)}(\mathbf{x})\right)=f^{(3)} \circ f^{(2)}(\mathbf{x})
$$

A feed-forward network represents a function as a composition of several functions, each given by one layer.

LAYERS AND COMPOSITIONS

General feed-forward networks

A feed-forward network with K layers represents a function

$$
f(\mathbf{x})=f^{(K)} \circ \ldots \circ f^{(1)}(\mathbf{x})
$$

Each layer represents a function $f^{(k)}$. These functions are of the form:
$f^{(k)}(\bullet)=\left(\begin{array}{c}\phi_{1}^{(k)}\left(\left\langle\mathbf{w}_{1}^{(k)}, \bullet\right\rangle\right) \\ \vdots \\ \phi_{d}^{(k)}\left(\left\langle\mathbf{w}_{d}^{(k)}, \bullet\right\rangle\right)\end{array}\right)$

$$
\text { typically: } \quad \phi^{(k)}(x)= \begin{cases}\sigma(x) & \text { (sigmoid) } \\ \mathbb{I}\{ \pm x>\tau\} & \text { (threshold) } \\ c & \text { (constant) } \\ x & \text { (linear) } \\ \max \{0, x\} & \text { (rectified linear) }\end{cases}
$$

Dimensions

- Each function $f^{(k)}$ is of the form

$$
f^{(k)}: \mathbb{R}^{d_{k}} \rightarrow \mathbb{R}^{d_{k+1}}
$$

- d_{k} is the number of nodes in the k th layer. It is also called the width of the layer.
- We mostly assume for simplicity: $d_{1}=\ldots=d_{K}=: d$.

Origin of the Name

If you look up the term "neuron" online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than typical references to "neuron" and "neural" in machine learning.

Roughly, a neuron is a brain cell that:

- Collects electrical signals (typically from other neurons)
- Processes them
- Generates an output signal

What happens inside a neuron is an intensely studied problem in neuroscience.

Historical perspective: McCulloch-Pitts Neuron

A neuron is modeled as a "thresholding device" that combines input signals:

McCulloch-Pitts neuron model (1943)

- Collect the input signals x_{1}, x_{2}, x_{3} into a vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$
- Choose fixed vector $\mathbf{v} \in \mathbb{R}^{3}$ and constant $c \in \mathbb{R}$.
- Compute:

$$
y=\mathbb{I}\{\langle\mathbf{v}, \mathbf{x}\rangle>0\} \quad \text { for some } c \in \mathbb{R} .
$$

- In hindsight, this is a neural network with two layers, and function $\phi(\bullet)=\mathbb{I}\{\langle\mathbf{v}, \mathbf{x}\rangle>0\}$ at the bottom unit.

