Finding the Derivative

- We fix a constant $c>0$ and draw a straight line through the points $(x, f(x))$ and $(x+c, f(x+c))$. The slope of that line is

$$
\frac{f(x+c)-f(x)}{c}
$$

- Now make c smaller and smaller: Choose $c_{1}>c_{2}>\ldots$, for example $c_{n}=\frac{1}{n}$.
- We then ask what happens as c gets infinitely small, i.e. we try to find the limit

$$
\lim _{n \rightarrow \infty} \frac{f\left(x+c_{n}\right)-f(x)}{c_{n}}
$$

- If f is differentiable, this limit exists, and its slope is exactly that of the best possible linear approximation. That is, the limit is $f^{\prime}(x)$.
- If the limit does not exist, f is not differentiable at x.

SUMMARY

The derivative of a function f at a point x is the the slope of the locally best linear approximation to f around x.

If you are not familiar with calculus, keep in mind:

- The derivative $f^{\prime}(x)$ exists if f is "sufficiently smooth" at x.
- Sign: The derivative is positive if f increases at x, negative if it decreases, and 0 if f is a maximum or minimum.
- Magnitude: The absolute value $\left|f^{\prime}(x)\right|$ is the larger the more rapidly f changes around x.

BACK TO Optimization

Recall that we had asked: How can would we find a minimum if we had access to the entire function in a small neighborhood around points x_{1}, x_{2}, \ldots that we are allowed to choose?

- If we can compute the derivatives $f^{\prime}\left(x_{1}\right)$ and $f^{\prime}\left(x_{2}\right)$, we have (the slope of) linear approximations to f at both points that are locally exact.
- That is: We can substitute the derivatives for the two short blue lines in the figure.
- We can tell from the sign of the derivative in which direction the function decreases.
- We also know that $f^{\prime}(x)=0$ if x is a minimum.

Minimization Strategy

Basic idea

Start with some point x_{0}. Compute the derivative $f^{\prime}\left(x_{0}\right)$ at x. Then:

- "Move downhill": Choose some $c>0$, and set $x_{1}=x_{0}+c$ if $f^{\prime}\left(x_{0}\right)<0$ and $x_{1}=x_{0}-c$ if $f^{\prime}\left(x_{0}\right)>0$.
- Compute $f^{\prime}\left(x_{1}\right)$. If it is 0 (possibly a minimum), stop.
- Otherwise, move downhill from x_{1}, etc.

Observations

- Since the sign of f^{\prime} is determined by whether f increases or decreases, we can summarize the case distinction above by setting

$$
x_{1}=x_{0}-\operatorname{sign}\left(f^{\prime}\left(x_{0}\right)\right) \cdot c
$$

- If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since we presumably are still far from the minimum. If f changes slowly, c should be small.
- One way of doing so is to choose c as the magnitude of f^{\prime}, since $\left|f^{\prime}\right|$ has exactly this property. In that case:

$$
x_{1}=x_{0}-\operatorname{sign}\left(f^{\prime}\left(x_{0}\right)\right) \cdot\left|f^{\prime}\left(x_{0}\right)\right|=x_{0}-f^{\prime}\left(x_{0}\right)
$$

The algorithm obtained by replying this step repeatedly is called gradient descent.

Gradient Descent

Gradient descent searches for a minimum of a differentiable function f.

Algorithm

Start with some point $x_{0} \in \mathbb{R}$ and fix a precision $\varepsilon>0$.
Repeat for $n=1,2, \ldots$:

1. Check whether $\left|f^{\prime}\left(x_{n}\right)\right|<\varepsilon$. If so, report the solution $x^{*}:=x_{n}$ and terminate.
2. Otherwise, set

$$
x_{n+1}:=x_{n}-f^{\prime}\left(x_{n}\right)
$$

Derivatives in Multiple Dimensions

- We now ask how to define a derivative in multiple dimensions.
- Consider a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. What is the derivative of f at a point x ?
- For simplicity, we assume $d=2$ (so that we can plot the function).

Derivatives in Multiple Dimensions

x_{2}

- We fix a point $x=\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2}, marked red above.
- We will try to turn this into a 1 -dimensional problem, so that we can use the definition of a derivative we already know.

Reducing to one Dimension

- To make the problem 1-dimensional, fix some vector $v \in \mathbb{R}_{2}$, and draw a line through x in direction of v.
- Then intersect f with a plane given by this line: In the coordinate system of f, choose the plane that contains the line and is orthogonal to \mathbb{R}^{2}.
- The plane contains the point x.
- Note we can do that even if $d>2$. We still obtain a plane.

Reducing to one Dimension

- To make the problem 1-dimensional, fix some vector $v \in \mathbb{R}_{2}$, and draw a line through x in direction of v.
- Then intersect f with a plane given by this line: In the coordinate system of f, choose the plane that contains the line and is orthogonal to \mathbb{R}^{2}.
- The plane contains the point x.
- Note we can do that even if $d>2$. We still obtain a plane.

Reducing to one Dimension

- The intersection of f with the plane is a 1 -dimensional function f_{H}, and x corresponds to a point x_{H} in its domain.
- We can now compute the derivative f_{H}^{\prime} of f_{H} at x_{H}. The idea is to use this as the derivative of f at x.

Back to Multiple Dimensions

- In the domain of f, we draw a vector from x in direction of H such that:

1. The vector is oriented to point in the direction in which f_{H} increases.
2. Its length is the value of the derivative $f_{H}^{\prime}(x)$.

- That completely determines the vector (shown in red above).
- There is one problem still to be solved: f_{H} depends on H, that is, on the direction of the vector v. Which direction should we use?

The Gradient

- We now rotate the plane H around x. For each position of the plane, we get a new derivative $f_{H}^{\prime}(x)$, and a new red vector.
- We choose the plane for which f_{H}^{\prime} is largest:

$$
H^{*}:=\arg \max _{\text {all rotations of } H} f_{H}^{\prime}(x)
$$

Provided that f_{H} is differentiable for all H, one can show that this is always unique (or $f_{H}^{\prime}(x)$ is zero for all H).

- We then define the vector

$$
\nabla f(x):=\text { vector given by } H^{*} \text { as above }
$$

The vector $\nabla f(x)$ is called the gradient of f at x.

Properties of the Gradient

The gradient $\nabla f(x)$ of $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ at a point $x \in \mathbb{R}^{d}$ is a vector in the domain \mathbb{R}^{d} in the direction in which f most rapidly increases at x.

- The length of the gradient measures steepness: The more rapidly f increases at x, the larger $\|\nabla f(x)\|$.
- The gradient has length 0 if x is a maximum or minimum of f. A constant function has gradient of length 0 at every point x.
- The gradient operation is linear:

$$
\nabla(\alpha f(x)+\beta g(x))=\alpha \nabla f(x)+\beta \nabla g(x)
$$

Gradients and Contour Lines

- Recall that a contour line (or contour set) of f is a set of points along which f remains constant,

$$
C[f, c]:=\left\{x \in \mathbb{R}^{d} \mid f(x)=c\right\} \quad \text { for some } c \in \mathbb{R}
$$

- One can show that if $C[f, c]$ contains x, the gradient at x is orthogonal to the contour:

$$
\nabla f(x) \perp C[f, c] \quad \text { if } x \in C[f, c]
$$

- Intuition: The gradient points in the direction of maximal local change, whereas $C[f, c]$ is a direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.

Gradients and Contour Lines

- For this parabolic function, all contour lines are concentric circles around the minimum.
- The picture above shows the gradients plotted at various points in the plane.

Basic Gradient Descent

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

Algorithm

Start with some point $x_{0} \in \mathbb{R}$ and fix a precision $\varepsilon>0$.
Repeat for $n=1,2, \ldots$:

1. Check whether $\left\|\nabla f\left(x_{n}\right)\right\|<\varepsilon$. If so, report the solution $x^{*}:=x_{n}$ and terminate.
2. Otherwise, set

$$
x_{n+1}:=x_{n}-\nabla f\left(x_{n}\right)
$$

Gradient Descent

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

Algorithm

Start with some point $x_{0} \in \mathbb{R}$ and fix a precision $\varepsilon>0$.
Repeat for $n=1,2, \ldots$:

1. Check whether $\left\|\nabla f\left(x_{n}\right)\right\|<\varepsilon$. If so, report the solution $x^{*}:=x_{n}$ and terminate.
2. Otherwise, set

$$
x_{n+1}:=x_{n}-\alpha(n) \nabla f\left(x_{n}\right)
$$

Here, $\alpha(n)>0$ is a coefficient that may depend on n. It is called the step size in optimization, or the learning rate in machine learning.

