## Multiple Classes

## Multiple Classes

## More than two classes

For some classifiers, multiple classes are natural. We have already seen one:

- Simple classifier fitting one Gaussian per class.

We will discuss more examples soon:

- Trees.
- Ensembles: Number of classes is determined by weak learners.

Exception: All classifiers based on hyperplanes.

## Linear Classifiers

Approaches:

- One-versus-all (more precisely: one-versus-the-rest) classification.
- One-versus-one classification.
- Multiclass discriminants.


## One-Versus-All Classification



- One linear classifier per class.
- Classifies "in class $k$ " versus "not in class $k$ ".
- This is a two-class classifier that defines:
- Positive class $=\mathcal{C}_{k}$.
- Negative class $=\cup_{j \neq k} \mathcal{C}_{j}$.
- Problem: Ambiguous regions (green in figure).


## One-Versus-One Classification



- One linear classifier for each pair of classes (i.e. $\frac{K(K-1)}{2}$ in total).
- Classify by majority vote.
- Problem again: Ambiguous regions.


## MULTICLASS DISCRIMINANTS

## Linear classifier

- Recall: Decision rule is $f(\mathbf{x})=\operatorname{sgn}\left(\left\langle\mathbf{x}, \mathbf{v}_{\mathrm{H}}\right\rangle-c\right)$
- Idea: Combine classifiers before computing sign. Define

$$
g_{k}(\mathbf{x}):=\left\langle\mathbf{x}, \mathbf{v}_{k}\right\rangle-c_{k}
$$

## Multiclass linear discriminant

- Use one classifier $g_{k}$ (as above) for each class $k$.
- Trained e.g. as one-against-rest.
- Classify according to

$$
f(\mathbf{x}):=\arg \max _{k}\left\{g_{k}(\mathbf{x})\right\}
$$

- If $g_{k}(\mathbf{x})$ is positive for several classes, a larger value of $g_{k}$ means that $\mathbf{x}$ lies "further" into class $k$ than into any other class $j$.
- If $g_{k}(\mathbf{x})$ is negative for all $k$, the maximum means we classify $\mathbf{x}$ according to the class represented by the closest hyperplane.


## Problem

- Multiclass discriminant idea: Compare distances to hyperplanes.
- Works if the orthogonal vectors $\mathbf{v}_{\mathrm{H}}$ determining the hyperplanes are normalized.
- For some of the best training methods for linear classifiers, that does not work well.


## OptimiZATION

## Motivation

## Recall from classification

- We "train" e.g. a linear classifier by finding the affine plane for which the empirical risk defined by a given loss function becomes as small as possible.
This is an example of phrasing a problem as an "optimization problem":
- There is a real-valued function (here: the empirical risk) that measures how good a given solution is.
- We choose that solution for which this function is minimal.


## More generally

A variety of problems in statistics, machine learning and data mining are phrased as optimization problems:

- Fitting a parametric model: Maximum likelihood
- Training a classifier: Minimize an empirical risk under a given loss function
- Linear regression: Minimize a least squares error
- Sparse regression: Minimize a penalized least squares error
- Training neural networks: Minimize an empirical risk; loss can be chosen for classification or for regression task.


## TERMINOLOGY

## Min and Argmin

$$
\begin{aligned}
\min _{x} f(x) & =\text { smallest value of } f(x) \text { for any } x \\
\arg \min _{x} f(x) & =\text { value of } x \text { for which } f(x) \text { is minimal }
\end{aligned}
$$

## Minimum with respect to subset of arguments

$$
\min _{x} f(x, y)=\text { smallest value of } f(x, y) \text { for any } x \text { if } y \text { is kept fixed }
$$

## Optimization problem

For a given function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, a problem of the form

$$
\text { find } \quad \mathbf{x}^{*}:=\arg \min _{\mathbf{x}} f(\mathbf{x})
$$

is called an minimization problem. If arg min is replaced by $\arg \max$, it is a maximization problem. Minimization and maximization problems are collectively referred to as optimization problems.

## Minimization vs Maximization

For any function $f$, we have

$$
\min f(x)=-\max (-f(x)) \quad \text { and } \quad \arg \min f(x)=\arg \max (-f(x))
$$

That means:

- If we know how to minimize, we also know how to maximize, and vice versa.
- We do not have to solve both problems separately; we can just generically discuss minimization.


## Types of Minima



## Local and global minima

A minimum of $f$ at $x$ is called:

- Global if $f$ assumes no smaller value on its domain.
- Local if there is some open interval $(a, b)$ containing $x$ such that $f(x)$ is a global minimum of $f$ restricted to that interval.


## Solving Optimization Problems

## Typical situation

- Given is a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
- The dimension $d$ is usually very large.
(In neural network training problems: Often in the millions.)
- We cannot plot or "look at" the function.
- We can only evaluate its value $f(x)$ point by point.


## One-dimensional illustration

Here, $d=1$ (but keep in mind we are interested in very large $d$.)


The minimizer we are interested in is $x^{*}$.

## One-dimensional Illustration



- Our goal is to find $x^{*}$.
- We can evaluate the function at points of our choice, say $x_{1}$ and $x_{2}$.

- However, we cannot "see" the function.
- All we know are values at a few points.


## Task

Based on the values we know, we have to:

- Either make a decision what $x^{*}$ is.
- Or gather more information, by evaluating $f$ at additional points. In that case, we have to decide which point to evaluate next.


## NEXt STEPS

- We will first consider how we would proceed if we had access to the entire function in a small neighborhood around each of the points $x_{1}, x_{2}, \ldots$, i.e. if we could see something like this:


To this end, we discuss the concept of a derivative.

- We then consider what we can actually implement on a computer, given that we only have access to point-wise information:



## Zooming in on a smooth function



## Observation

- Each time we zoom in, the curve looks more like a straight line.
- If we zoom in far enough, we can replace the curve in a small area around the marked point by a straight line.
- In mathematical jargon, that is called an approximation: We replace the curve around the marked point by a surrogate curve. If that surrogate is a straight line (i.e. a linear function), it is a linear approximation.


## ZOOMING IN ON A SMOOTH FUNCTION

## A counter example

- Not every function has this property.
- Here, we consider the absolute value function $f(x)=|x|$, and zoom in on the point $x=0$.
- In this case, the shape of $f$ never seems to change.
- Note this would be different if we had picked any other point than $x=0$.


## We observe

- Whether a function is "locally straight" is a property that may be true at some points, but not at others.
- Clearly it matters whether the function is "smooth" around the point we focus on.



## Approximating by a Straight Line




- We consider a function (blue) and approximate it at a point $x$ by a straight line (red).
- To measure how good the approximation is, we fix a constant $c>0$ and enclose $x$ in the interval $[x-c, x+c]$.
- On this interval, we compute the area between the two functions (shaded in gray). Suppose this area is $A(x, c)$.
- Of course, $A(x, c)$ will grow if we make $c$ larger. To make the area comparable for different values of $c$, we use the relative approximation error

$$
r(c)=\frac{A(x, c)}{|[x-c, x+c]|}=\frac{A(x, c)}{2 c}
$$

## Approximating by a Straight Line



- Now consider what happens if we zoom in, by making $c$ smaller and smaller.
- If the function is smooth, we observe the relative error becomes smaller each time.
- The function can be approximated by the line to arbitrary precision, that is: If we are permitted any error $\varepsilon>0$, we can always find a small enough $c$ such that $r(c)<\varepsilon$.
- In this sense, the linear approximation (= approximation by a straight line) is locally exact.
- If a straight line can be chosen for $f$ and $x$ such that the relative approximation error can be made arbitrarily small by making the intervall sufficiently small, then $f$ is called differentiable at $x$.


## ZOOMING IN ON NON-SMOOTH FUNCTION




Now try the same for the absolute value function:

- Approximate it at $x=0$ by a horizontal line.
- Here, the relative error around $x=0$ remains the same regardless of how we choose $c$.
- We could also use an approximating line with a different slope, and would encounter the same problem.
- Thus, $|x|$ is not differentiable at $x=0$ (although it is differentiable at every other point $x$ ).


## The Derivative



- If $f$ is differentiable at $x$, there is a unique approximating line at $x$ for which the relative error is minimal as $c$ gets smaller.
- We can measure the slope of this line by substracting its values at $x+1$ and $x$.
- We denote this slope by $f^{\prime}(x)$ and call it the derivative of $f$ at $x$.
- If $f$ is differentiable at every point $x$, we can compute the value $f^{\prime}(x)$ at every point, so $f^{\prime}$ is again a function. In general, it takes different values at different points $x$.


## Some Properties of the Derivative



- If $f$ increases around $x$, then $f^{\prime}(x)>0$. If $f$ decreases, then $f^{\prime}(x)<0$.
- Recall that we are interested in finding minima and maxima. If $f$ is differentiable at $x$ and $x$ is a local minimum or maximum, the approximating line is horizontal:


That means: At a (differentiable) maximum or minimum $x^{*}$, we have $f^{\prime}\left(x^{*}\right)=0$.

