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MULTIPLE CLASSES

More than two classes
For some classifiers, multiple classes are natural. We have already seen one:
• Simple classifier fitting one Gaussian per class.

We will discuss more examples soon:
• Trees.
• Ensembles: Number of classes is determined by weak learners.

Exception: All classifiers based on hyperplanes.

Linear Classifiers
Approaches:
• One-versus-all (more precisely: one-versus-the-rest) classification.
• One-versus-one classification.
• Multiclass discriminants.
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ONE-VERSUS-ALL CLASSIFICATION
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• One linear classifier per class.
• Classifies "in class k" versus "not in class k".
• This is a two-class classifier that defines:

• Positive class = Ck .
• Negative class = ∪j6=kCj.

• Problem: Ambiguous regions (green in figure).
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ONE-VERSUS-ONE CLASSIFICATION
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• One linear classifier for each pair of classes (i.e. K(K−1)
2 in total).

• Classify by majority vote.
• Problem again: Ambiguous regions.
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MULTICLASS DISCRIMINANTS

Linear classifier
• Recall: Decision rule is f (x) = sgn(〈x, vH〉 − c)

• Idea: Combine classifiers before computing sign. Define

gk(x) := 〈x, vk〉 − ck

Multiclass linear discriminant
• Use one classifier gk (as above) for each class k.
• Trained e.g. as one-against-rest.
• Classify according to

f (x) := arg max
k
{gk(x)}

• If gk(x) is positive for several classes, a larger value of gk means that x lies “further” into
class k than into any other class j.

• If gk(x) is negative for all k, the maximum means we classify x according to the class
represented by the closest hyperplane.
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Problem
• Multiclass discriminant idea: Compare distances to hyperplanes.
• Works if the orthogonal vectors vH determining the hyperplanes are normalized.
• For some of the best training methods for linear classifiers, that does not work well.
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OPTIMIZATION



MOTIVATION

Recall from classification
• We “train” e.g. a linear classifier by finding the affine plane for which the empirical risk

defined by a given loss function becomes as small as possible.

This is an example of phrasing a problem as an “optimization problem”:
• There is a real-valued function (here: the empirical risk) that measures how good a given

solution is.
• We choose that solution for which this function is minimal.

More generally
A variety of problems in statistics, machine learning and data mining are phrased as
optimization problems:
• Fitting a parametric model: Maximum likelihood
• Training a classifier: Minimize an empirical risk under a given loss function
• Linear regression: Minimize a least squares error
• Sparse regression: Minimize a penalized least squares error
• Training neural networks: Minimize an empirical risk; loss can be chosen for

classification or for regression task.
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TERMINOLOGY

Min and Argmin

min
x

f (x) = smallest value of f (x) for any x

arg min
x

f (x) = value of x for which f (x) is minimal

Minimum with respect to subset of arguments

min
x

f (x, y) = smallest value of f (x, y) for any x if y is kept fixed

Optimization problem
For a given function f : Rd → R, a problem of the form

find x∗ := arg min
x

f (x)

is called an minimization problem. If arg min is replaced by arg max, it is a maximization
problem. Minimization and maximization problems are collectively referred to as
optimization problems.
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MINIMIZATION VS MAXIMIZATION

For any function f , we have

min f (x) = −max(−f (x)) and arg min f (x) = arg max(−f (x))

That means:
• If we know how to minimize, we also know how to maximize, and vice versa.
• We do not have to solve both problems separately; we can just generically discuss

minimization.
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TYPES OF MINIMA
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Local and global minima
A minimum of f at x is called:
• Global if f assumes no smaller value on its domain.
• Local if there is some open interval (a, b) containing x such that f (x) is a global minimum

of f restricted to that interval.
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SOLVING OPTIMIZATION PROBLEMS

Typical situation
• Given is a function f : Rd → R.
• The dimension d is usually very large.

(In neural network training problems: Often in the millions.)
• We cannot plot or “look at” the function.
• We can only evaluate its value f (x) point by point.

One-dimensional illustration
Here, d = 1 (but keep in mind we are interested in very large d.)

x
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The minimizer we are interested in is x∗.
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ONE-DIMENSIONAL ILLUSTRATION

x∗x1 x2

• Our goal is to find x∗.
• We can evaluate the function at points

of our choice, say x1 and x2.

x1 x2

• However, we cannot “see” the function.
• All we know are values at a few points.

Task
Based on the values we know, we have to:
• Either make a decision what x∗ is.
• Or gather more information, by evaluating f at additional points. In that case, we have to

decide which point to evaluate next.
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NEXT STEPS

• We will first consider how we would proceed if we had access to the entire function in a
small neighborhood around each of the points x1, x2, . . ., i.e. if we could see something
like this:

x1 x2

To this end, we discuss the concept of a derivative.
• We then consider what we can actually implement on a computer, given that we only have

access to point-wise information:

x1 x2
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ZOOMING IN ON A SMOOTH FUNCTION
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Observation
• Each time we zoom in, the curve looks more like a straight line.
• If we zoom in far enough, we can replace the curve in a small area around the marked

point by a straight line.
• In mathematical jargon, that is called an approximation: We replace the curve around the

marked point by a surrogate curve. If that surrogate is a straight line (i.e. a linear
function), it is a linear approximation.
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ZOOMING IN ON A SMOOTH FUNCTION

A counter example
• Not every function has this property.
• Here, we consider the absolute value function

f (x) = |x|, and zoom in on the point x = 0.
• In this case, the shape of f never seems to change.
• Note this would be different if we had picked any

other point than x = 0.

We observe
• Whether a function is “locally straight” is a

property that may be true at some points, but not at
others.

• Clearly it matters whether the function is “smooth”
around the point we focus on.
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APPROXIMATING BY A STRAIGHT LINE

x xx− c x + c

• We consider a function (blue) and approximate it at a point x by a straight line (red).
• To measure how good the approximation is, we fix a constant c > 0 and enclose x in the

interval [x− c, x + c].
• On this interval, we compute the area between the two functions (shaded in gray).

Suppose this area is A(x, c).
• Of course, A(x, c) will grow if we make c larger. To make the area comparable for

different values of c, we use the relative approximation error

r(c) =
A(x, c)

|[x− c, x + c]| =
A(x, c)

2c
.
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APPROXIMATING BY A STRAIGHT LINE
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• Now consider what happens if we zoom in, by making c smaller and smaller.
• If the function is smooth, we observe the relative error becomes smaller each time.
• The function can be approximated by the line to arbitrary precision, that is: If we are

permitted any error ε > 0, we can always find a small enough c such that r(c) < ε.
• In this sense, the linear approximation (= approximation by a straight line) is locally exact.
• If a straight line can be chosen for f and x such that the relative approximation error can

be made arbitrarily small by making the intervall sufficiently small, then f is called
differentiable at x.
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ZOOMING IN ON NON-SMOOTH FUNCTION
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Now try the same for the absolute value function:
• Approximate it at x = 0 by a horizontal line.
• Here, the relative error around x = 0 remains the same regardless of how we choose c.
• We could also use an approximating line with a different slope, and would encounter the

same problem.
• Thus, |x| is not differentiable at x = 0 (although it is differentiable at every other point x).
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THE DERIVATIVE

1

=: f ′(x)

• If f is differentiable at x, there is a unique approximating line at x for which the relative
error is minimal as c gets smaller.

• We can measure the slope of this line by substracting its values at x + 1 and x.
• We denote this slope by f ′(x) and call it the derivative of f at x.
• If f is differentiable at every point x, we can compute the value f ′(x) at every point, so f ′

is again a function. In general, it takes different values at different points x.
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SOME PROPERTIES OF THE DERIVATIVE

1

=: f ′(x)

• If f increases around x, then f ′(x) > 0. If f decreases, then f ′(x) < 0.
• Recall that we are interested in finding minima and maxima. If f is differentiable at x and

x is a local minimum or maximum, the approximating line is horizontal:

x

f (x)

x∗

That means: At a (differentiable) maximum or minimum x∗, we have f ′(x∗) = 0.
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