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Homework 1

Due: 22 February 2018

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, you can leave your solution in Phyllis Wan’s postbox in the Department of Statistics,
10th floor SSW, at any time before then.

We do not accept homework submitted late. There will be no exceptions.

Problem 1 (Naive Bayes)

Consider a classification problem with training data {(x̃1, ỹ1), . . . , (x̃n, ỹn)} and three classes C1, C2 and C3. The
sample space is R5, so each data point is of the form x = (x(1), . . . , x(5)). Suppose we have reason to believe
that the distribution of each class is reasonably well-approximated by a spherical (unit-variance) Gaussian, i.e. the
class-conditional distributions are g(x|µk, I) for class k ∈ {1, 2, 3}.
Note: If a d-dimensional random vector (X1, . . . , Xd) has a spherical Gaussian distribution, the scalar random
variables X1, . . . , Xd are stochastically independent from each other.

1. How is the Gaussian assumption translated into a naive Bayes classifier? Write out the full formula for the
estimated class label ŷnew = f(xnew) for a newly observed data point xnew.
Hint: This equation should not contain the training data, only parameters estimated from the training
data.

2. How do you estimate the parameters of the model? Give the estimation equations for (a) the parameters
of the class-conditional distributions and (b) the class prior P (y = k) for each class Ck.

3. If our assumptions on the data source as described above are accurate, do you expect the naive Bayes
classifier to perform well? Please explain your answer.

Problem 2 (Perceptron)

Consider the following training data, for a two class problem in which classes are labeled +1 (marked white in
the figure) and −1 (marked black). There are n = 22 points in total. Clearly, this data is not linearly separable.

x̃1

x̃2

1. What is the minimal empirical risk a linear classifier can achieve on this data set, under 0-1 loss?



2. Consider the linear classifier in R2 given by (vH, c), and two points x1 and x2. Suppose that

vH :=
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)
.

Compute the classification result for x1 and x2.

3. Suppose you run the perceptron learning algorithm (say with a constant learning rate α(n) = 1) on the
data. How is the algorithm going to behave: Does it return a solution? If so, what can you say about the
solution? If it does not find a solution, why not?

Problem 3 (Gradient descent)

In this problem, we use gradient descent to approximate the minima of the function,
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1. In R, plot the function f(x) for x ∈ (−2, 4). Hint: f can be described as:

f <- function(x){

- dnorm(x,0,1) + 0.5*dnorm(x,1,0.5) - 0.4*dnorm(x,2,0.4)

}

We will approximate the derivative f ′(x) as by replacing f by a linear function within a small window: We choose
some small value δ > 0, and compute

f̂δ(x) :=
f(x+ δ)− f(x− δ)
|[x− δ, x+ δ]|

=
f(x+ δ)− f(x− δ)

2δ
,

and use f̂δ(x) as our estimate of f ′(x). The function f.prime() we ask you to write below implements f̂δ.

2. Write a function in R, f.prime(x), to calculate the numerical derivative given the location x. Take the
approximation window to be δ = 0.001. What is the output of f.prime(-2)?

3. Write a function in R, grad.des(x1), to perform gradient descent from the starting point x1. Take the
step sizes αn = 1/n, and precision ε = 0.05, that is, compute

xn+1 := xn −
1

n
f̂δ(xn) .

Your function should output a list including the number of iterations N , the minima x∗ = xN , the minimum
value fmin = f(x∗) and the vector of your search trajectory (x1, x2, . . . , xN ).

4. Start from x1 = −2, what is the minimum your function finds? Plot x1, x2, . . . , x10 with the curve of f in
Part 1.

As we have discussed in class, a gradient descent algorithm generally finds local minima, and these minima may
not be global. One way to address this is to randomly start gradient descent at several different points, and then
compare the function values at the resulting local minima.

5. Generate 100 random starting points between (−2, 4), calculate the gradient descent result for each of
them. Plot the histogram of the 100 minima you found. What is the global minimum?
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