Probability Theory II (G6106)

Spring 2016
http://stat.columbia.edu/~porbanz/G6106S16.html

Peter Orbanz
porbanz@stat.columbia.edu
Florian Stebegg
florian@stat.columbia.edu

Homework 6

Due: 30 March 2016

Problem 1 (Conditional probabilities define measures)

Let Y be a random variable on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, with values in a measurable space $\left(\mathcal{Y}, \mathcal{A}_{Y}\right)$. Recall that we define the conditional probability of a given set $A \in \mathcal{A}$ as

$$
\begin{equation*}
\mathbb{P}(A \mid Y=y):=\mathbb{E}\left[\mathbb{I}_{A} \mid Y=y\right] \tag{1}
\end{equation*}
$$

Question (a): Show that, for any $A \in \mathcal{A}$ and $C \in \mathcal{A}_{Y}$,

$$
\begin{equation*}
\mathbb{P}(A \cap\{Y \in C\})=\int_{C} \mathbb{P}(A \mid Y=y) P_{Y}(d y) \tag{2}
\end{equation*}
$$

where P_{Y} denotes the law of Y.
Question (b): Show that, for any fixed value $y \in \mathcal{Y}$, the function $A \mapsto \mathbb{P}(A \mid Y=y)$ is P_{Y}-almost surely a probability measure on (Ω, \mathcal{A}).

Problem 2 (Compact classes)

Let \mathbf{X} be a Hausdorff space. Let \mathcal{K} be the set of all compact sets in \mathbf{X}.
Question: Show \mathcal{K} is a compact class.

Problem 3 (Independence)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and $\mathcal{B}, \mathcal{C} \subset \mathcal{A}$ two sub- σ-algebras. We again use the definition

$$
\begin{equation*}
\mathbb{P}(A \mid \mathcal{C})(\omega):=\mathbb{E}\left[\mathbb{I}_{A} \mid \mathcal{C}\right](\omega) \tag{3}
\end{equation*}
$$

for the conditional probability of A given \mathcal{C}. Show that the σ-algebras \mathcal{B} and \mathcal{C} are independent if and only if

$$
\begin{equation*}
\forall B \in \mathcal{B}: \quad \mathbb{P}(B \mid \mathcal{C})=\mathbb{P}(B) \quad \text { almost surely } . \tag{4}
\end{equation*}
$$

Note: Recall the definition of independent σ-algebras from Probability I [e.g. Jacod \& Protter, Chapter 10].

Problem 4 (Conditional densities)

Let X and Y be random variables with values \mathbb{R}, with joint law P, and let λ denote Lebesgue measure on \mathbb{R}. Let \mathbf{p} be a version of the conditional distribution of X given Y, that is, $\mathbf{p}(A, y)=\mathbb{P}(X \in A \mid Y=y)$ almost surely. Suppose $f(x, y)$ is a density of the joint distribution P with respect to $\lambda \otimes \lambda$, and $f(y):=\int_{\mathbb{R}} f(x, y) \lambda(d x)$.

Question: Show that, if $f(y)>0$ for all $y \in \mathbb{R}$,

$$
\begin{equation*}
f(x \mid y):=\frac{f(x, y)}{f(y)} \tag{5}
\end{equation*}
$$

is a density of $\mathbf{p}(\bullet, y)$ with respect to λ for all y.

