Probability Theory II (G6106)

Spring 2016 http://stat.columbia.edu/~porbanz/G6106S16.html Peter Orbanz porbanz@stat.columbia.edu

Florian Stebegg florian@stat.columbia.edu

Homework 6

Due: 30 March 2016

Problem 1 (Conditional probabilities define measures)

Let Y be a random variable on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, with values in a measurable space $(\mathcal{Y}, \mathcal{A}_Y)$. Recall that we define the conditional probability of a given set $A \in \mathcal{A}$ as

$$\mathbb{P}(A|Y=y) := \mathbb{E}[\mathbb{I}_A|Y=y] .$$
⁽¹⁾

Question (a): Show that, for any $A \in \mathcal{A}$ and $C \in \mathcal{A}_Y$,

$$\mathbb{P}(A \cap \{Y \in C\}) = \int_C \mathbb{P}(A|Y=y) P_Y(dy) , \qquad (2)$$

where P_Y denotes the law of Y.

Question (b): Show that, for any fixed value $y \in \mathcal{Y}$, the function $A \mapsto \mathbb{P}(A|Y = y)$ is P_Y -almost surely a probability measure on (Ω, \mathcal{A}) .

Problem 2 (Compact classes)

Let \mathbf{X} be a Hausdorff space. Let \mathcal{K} be the set of all compact sets in \mathbf{X} .

Question: Show \mathcal{K} is a compact class.

Problem 3 (Independence)

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and $\mathcal{B}, \mathcal{C} \subset \mathcal{A}$ two sub- σ -algebras. We again use the definition

$$\mathbb{P}(A|\mathcal{C})(\omega) := \mathbb{E}[\mathbb{I}_A|\mathcal{C}](\omega) \tag{3}$$

for the conditional probability of A given C. Show that the σ -algebras B and C are independent if and only if

$$\forall B \in \mathcal{B}: \quad \mathbb{P}(B|\mathcal{C}) = \mathbb{P}(B) \quad \text{almost surely} .$$
 (4)

Note: Recall the definition of independent σ -algebras from Probability I [e.g. Jacod & Protter, Chapter 10].

Problem 4 (Conditional densities)

Let X and Y be random variables with values \mathbb{R} , with joint law P, and let λ denote Lebesgue measure on \mathbb{R} . Let **p** be a version of the conditional distribution of X given Y, that is, $\mathbf{p}(A, y) = \mathbb{P}(X \in A | Y = y)$ almost surely. Suppose f(x, y) is a density of the joint distribution P with respect to $\lambda \otimes \lambda$, and $f(y) := \int_{\mathbb{R}} f(x, y)\lambda(dx)$.

Question: Show that, if f(y) > 0 for all $y \in \mathbb{R}$,

$$f(x|y) := \frac{f(x,y)}{f(y)} \tag{5}$$

is a density of $\mathbf{p}(\bullet, y)$ with respect to λ for all y.