Probability Theory II (G6106)

Spring 2016
http://stat.columbia.edu/~porbanz/G6106S16.html

Peter Orbanz
porbanz@stat.columbia.edu
Florian Stebegg
florian@stat.columbia.edu

Homework 5

Due: 2 March 2016

Problem 1 (Products of Polish spaces)

Let \mathbf{X}_{n}, for $n \in \mathbb{N}$, be Polish spaces.
Question: Show that $\prod_{n} \mathbf{X}_{n}$ is Polish in the product topology.

Problem 2 (Measurable sets of continuous functions)

Let $\mathbf{C}([0,1])$ be the set of continuous functions $[0,1] \rightarrow \mathbb{R}$, equipped with the supremum norm metric

$$
d_{\mathbf{C}}(f, g):=\sup _{x \in[0,1]}|f(x)-g(x)| .
$$

The metric space $\left(\mathbf{C}([0,1]), d_{\mathbf{C}}\right)$ is Polish. Let D be the (dense) subset $D:=\mathbb{Q} \cap[0,1]$. Define the projection map at x as

$$
\operatorname{pr}_{x}: f \mapsto f(x) \quad x \in[0,1], f \in \mathbf{C}[0,1] .
$$

Question: Show that the Borel σ-algebra on $\left(\mathbf{C}([0,1]), d_{\mathbf{C}}\right)$ is the smallest σ-algebra which makes the family $\left\{\operatorname{pr}_{x} \mid x \in D\right\}$ of mappings measurable.

Problem 3 (The ball σ-algebra)

Let \mathbf{X} be a metric space (not necessarily separable).
Question: Show that every closed set which has a dense countable subset is ball-measurable.

Hint: Define F^{δ} as we have in class and note $F=\bigcap_{n} F^{1 / n}$ for any closed set F.

Problem 4 (The Lévy-Prokhorov metric deserves its name)

Let \mathbf{X} be a metrizable space. For any two probability measures P and Q on \mathbf{X}, define the Lévy-Prokhorov metric as

$$
d_{\mathrm{LP}}(P, Q):=\inf \left\{\delta>0 \mid P(A) \leq Q\left(A^{\delta}\right)+\delta \text { for all } A \in \mathcal{B}(\mathbf{X})\right\}
$$

Question: Show that d_{LP} is indeed a metric on the set of probability measures on \mathbf{X}.

Note: We are only asking you to verify the properties of a metric, not that d_{LP} metrizes the weak topology.

Problem 5 (Evaluation maps are measurable)

Let \mathbf{X} be a metrizable space and $\mathbf{P M}(\mathbf{X})$ the set of probability measures on \mathbf{X}, endowed with the weak topology. For every Borel set A in \mathbf{X}, we define the evaluation map

$$
\phi_{\mathrm{A}}: \mathbf{P M}(\mathbf{X}) \rightarrow[0,1] \quad \text { as } \quad \phi_{\mathrm{A}}(\mu):=\mu(A) .
$$

Question: Show that ϕ_{A} is Borel measurable for every $A \in \mathcal{B}(\mathbf{X})$.
You can use the following fact: If \mathbf{X} is metrizable, then for every closed set F in \mathbf{X} and any $r>0$, the subset of $\mathbf{P M}(\mathbf{X})$ defined by

$$
\{\mu \mid \mu(F) \geq r\}
$$

is closed in $\mathbf{P M}(\mathbf{X})$. Similarly, the sets of the form

$$
\{\mu \mid \mu(G)>r\}
$$

are open.

