Probability Theory II (G6106) Spring 2016 http://stat.columbia.edu/~porbanz/G6106S16.html Peter Orbanz porbanz@stat.columbia.edu

Florian Stebegg florian@stat.columbia.edu

Homework 5

Due: 2 March 2016

Problem 1 (Products of Polish spaces)

Let \mathbf{X}_n , for $n \in \mathbb{N}$, be Polish spaces.

Question: Show that $\prod_n \mathbf{X}_n$ is Polish in the product topology.

Problem 2 (Measurable sets of continuous functions)

Let $\mathbf{C}([0,1])$ be the set of continuous functions $[0,1] \to \mathbb{R}$, equipped with the supremum norm metric

$$d_{\mathbf{C}}(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)| .$$

The metric space $(\mathbf{C}([0,1]), d_{\mathbf{C}})$ is Polish. Let D be the (dense) subset $D := \mathbb{Q} \cap [0,1]$. Define the projection map at x as

 $\mathrm{pr}_x: f\mapsto f(x) \qquad x\in [0,1], f\in \mathbf{C}[0,1] \; .$

Question: Show that the Borel σ -algebra on $(\mathbf{C}([0,1]), d_{\mathbf{C}})$ is the smallest σ -algebra which makes the family $\{ \operatorname{pr}_x | x \in D \}$ of mappings measurable.

Problem 3 (The ball σ -algebra)

Let \mathbf{X} be a metric space (not necessarily separable).

Question: Show that every closed set which has a dense countable subset is ball-measurable.

Hint: Define F^{δ} as we have in class and note $F = \bigcap_n F^{1/n}$ for any closed set F.

Problem 4 (The Lévy-Prokhorov metric deserves its name)

Let X be a metrizable space. For any two probability measures P and Q on X, define the Lévy-Prokhorov metric as

$$d_{L^{\mathsf{P}}}(P,Q) := \inf\{\delta > 0 \,|\, P(A) \le Q(A^{\delta}) + \delta \text{ for all } A \in \mathcal{B}(\mathbf{X})\} \ .$$

Question: Show that d_{LP} is indeed a metric on the set of probability measures on **X**.

Note: We are only asking you to verify the properties of a metric, not that d_{LP} metrizes the weak topology.

Problem 5 (Evaluation maps are measurable)

Let X be a metrizable space and $\mathbf{PM}(\mathbf{X})$ the set of probability measures on X, endowed with the weak topology. For every Borel set A in X, we define the **evaluation map**

$$\phi_{\mathsf{A}}: \mathbf{PM}(\mathbf{X}) \to [0, 1]$$
 as $\phi_{\mathsf{A}}(\mu) := \mu(A)$.

Question: Show that ϕ_A is Borel measurable for every $A \in \mathcal{B}(\mathbf{X})$.

You can use the following fact: If X is metrizable, then for every closed set F in X and any r > 0, the subset of $\mathbf{PM}(\mathbf{X})$ defined by

 $\{\mu|\mu(F) \ge r\}$

is closed in $\mathbf{PM}(\mathbf{X}).$ Similarly, the sets of the form

 $\{\mu|\mu(G) > r\}$

are open.