Probability Theory II (G6106)

Spring 2016
http://stat.columbia.edu/~porbanz/G6106S16.html

Peter Orbanz
porbanz@stat.columbia.edu
Florian Stebegg
florian@stat.columbia.edu

Homework 2

Due: 10 February 2016

Problem 1

Let (\mathbb{T}, \preceq) be a directed set and $\mathcal{F}=\left(\mathcal{F}_{s}\right)_{s \in \mathbb{T}}$ a filtration. For each $i=1, \ldots, n$, let $\left(X_{s}^{i}, \mathcal{F}_{s}\right)_{s \in \mathbb{T}}$ be a martingale.
Question: Show that $\left(\max _{i \leq n} X_{s}^{i}, \mathcal{F}_{s}\right)$ is a submartingale.

Problem 2 (Azuma's inequality)

Let $\left(X_{t}, \sigma\left(X_{t}\right)\right)_{t \in \mathbb{N}}$ be a martingale, $\left(c_{t}\right)_{t \in \mathbb{N}}$ be a sequence of non-negative constants, and define $\mu:=\mathbb{E}\left[X_{t}\right]$. (Note μ does not depend on t.) The purpose of this problem is to prove Azuma's inequality, recall: If

$$
\begin{equation*}
\left|X_{t+1}-X_{t}\right| \leq c_{t+1} \quad \text { for all } t \text { and } \quad\left|X_{1}-\mu\right| \leq c_{1} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbb{P}\left\{\left|X_{t}-\mu\right| \geq \lambda\right\} \leq 2 \exp \left(-\frac{\lambda^{2}}{2 \sum_{s=1}^{t} c_{s}^{2}}\right) \quad \text { for all } \lambda>0 \tag{2}
\end{equation*}
$$

We will use the following general version of Markov's inequality: For any real-valued random variable X and any monotonically increasing function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$,

$$
\begin{equation*}
\mathbb{P}[|X| \geq \lambda] \leq \frac{\mathbb{E}[f(|X|)]}{f(\lambda)} \quad \text { for all } \lambda>0 \text { with } f(\lambda)>0 \tag{3}
\end{equation*}
$$

To show the inequality holds, first consider a random variable Y with values in $[-1,1]$, and show the following:
Question (a): There is a random variable Z with values in $\{-1,1\}$ such that $\mathbb{E}[Y \mid Z]=Z$.
Question (b): If additionally $\mathbb{E}[Y]=0$, then $\mathbb{E}[\exp (\lambda Y)] \leq \cosh (\lambda) \leq \exp \left(\lambda^{2} / 2\right)$.
Next, consider the martingale $\left(X_{t}\right)$ and assume the hypothesis (1) holds.
Question (c): Show that

$$
\begin{equation*}
\mathbb{E}\left[e^{\lambda X_{t}}\right] \leq \exp \left(\frac{1}{2} \lambda^{2} \sum_{s=1}^{t} c_{s}^{2}\right) \tag{4}
\end{equation*}
$$

Question (d): Deduce (2).
Hint: Use Jensen's inequality in (b). To apply the Markov inequality, use $f(a)=\exp (a b)$ for a suitable b.

Problem 3 (Potentials)

Let $\left(X_{t}, \mathcal{F}_{t}\right)$ be a positive, discrete-time supermartingale. (Such a process is sometimes called a potential.)
Question: Show that $\lim _{t} \mathbb{E}\left[X_{t}\right]=0$ implies $X_{t} \rightarrow 0$ almost surely and in \mathbf{L}_{1}.

