Probability Theory II (G6106)

Spring 2016
http://stat.columbia.edu/~porbanz/G6106S16.html

Peter Orbanz

porbanz@stat.columbia.edu
Florian Stebegg
florian@stat.columbia.edu

Homework 1

Due: 3 February 2016
Homework submission: Please leave your homework in Florian's mailbox no later than start of class (10:10am) on the due date.

Problem 1 (Directed sets)

Question (a): Let \mathcal{X} be a set and $x \in \mathcal{X}$. Recall that a neighborhood of x is any set $A \subset \mathcal{X}$ which contains x. Let \mathbb{T} be the set of all neighborhoods of a fixed point x, ordered by reverse inclusion, i.e. $A \preceq B$ iff $A \supset B$. Show that (\mathbb{T}, \preceq) is a directed set.

Question (b): Let $\left(\mathbb{T}_{1}, \preceq_{1}\right)$ and ($\left.\mathbb{T}_{1}, \preceq_{1}\right)$ be directed sets. Show that the Cartesian product $\mathbb{T}_{1} \times \mathbb{T}_{2}$ is directed in the partial order defined by $\left(s_{1}, s_{2}\right) \preceq\left(t_{1}, t_{2}\right)$ iff $s_{1} \preceq_{1} t_{1}$ and $s_{2} \preceq_{2} t_{2}$.

Problem 2 (A martingale indexed by partitions)

Let (Ω, \mathcal{A}) be a measurable space. A finite measurable partitionfinite measurable partition $s=\left(A_{1}, \ldots, A_{n}\right)$ of Ω is a subdivision of Ω into a finite number of disjoint measurable sets A_{i} whose union is Ω. We say that a partition $t=\left(B_{1}, \ldots, B_{m}\right)$ is a refinementrefinement of another partition $s=\left(A_{1}, \ldots, A_{n}\right)$ if every set B_{j} in t is a subset of some set A_{i} in s; in words, t can be obtaine from s by splitting sets in s further, without changing any of the existing set boundaries in s.
Let \mathbb{T} be the set of all finite measurable partitions of Ω, and defined as binary relation \preceq as

$$
s \preceq t \quad \Leftrightarrow \quad t \text { is a refinement of } s .
$$

Question (a): Show that \preceq is a partial order on \mathbb{T}.
Question (b): Show that the partially ordered set (\mathbb{T}, \preceq) is directed.
Later on in the lecture, we will use this construction to prove the Radon-Nikodym theorem on the existence of densities. We anticipate a part of the proof in this problem (you can find the proof in Chapter 1.9 of the class notes, but you are not required to read ahead to solve this problem). The proof idea is to "discretize" the density f of a measure μ with respect to a probability measure P on finite partitions s as above. To this end, let $s \in \mathbb{T}$, so s is of the form $s=\left(A_{1}, \ldots, A_{n}\right)$ for some $n \geq 2$. Define a finite σ-algebra

$$
\mathcal{F}_{s}:=\sigma(s)=\sigma\left(A_{1}, \ldots, A_{n}\right) .
$$

Now let μ be a finite measure and P a probability measure, both defined (Ω, \mathcal{A}). For each s, we define the function

$$
Y_{s}(x):=\sum_{j=1}^{n} f_{s}\left(A_{j}\right) \mathbb{I}_{A_{j}}(x) \quad \text { where } f_{s}\left(A_{j}\right):= \begin{cases}\frac{\mu\left(A_{j}\right)}{P\left(A_{j}\right)} & P\left(A_{j}\right)>0 \\ 0 & P\left(A_{j}\right)=0\end{cases}
$$

Note that Y_{s} is a real-valued, measurable function defined on a probability space (Ω, \mathcal{A}, P), and hence a real-valued random variable (even though it may not seem particularly random).

Question (c): Show that $\left(Y_{s}, \mathcal{F}_{s}\right)_{s \in \mathbb{T}}$ is a martingale.

Problem 3 Stopping times and filtrations

Prove Lemma 1.7. That is, let $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ be a filtration, and S, T stopping times.
Question (a): Show \mathcal{F}_{T} is a σ-algebra.
Question (b): Suppose $S \leq T$ almost surely. Show that $\mathcal{F}_{S} \subset \mathcal{F}_{T}$.
Question (c): Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a random sequence adapted to \mathcal{F}, where each X_{n} takes values in a measurable space $(\mathbf{X}, \mathcal{C})$, and assume $T<\infty$ almost surely. Show that X_{T} is $\mathcal{F}_{T^{-}}$-measurable.

Problem 4 Convex images of (sub)martingales

Let $X=\left(X_{t}, \mathcal{F}_{t}\right)_{t \in \mathbb{N}}$ be an adapted process, and $f: \mathbb{R} \rightarrow \mathbb{R}$ a convex function, with $f\left(X_{t}\right)$ integrable for all t.
Question (a): Item $\left(f\left(X_{t}\right), \mathcal{F}_{t}\right)$ is a submartingale if X is a martingale.
Question (b): Item $\left(f\left(X_{t}\right), \mathcal{F}_{t}\right)$ is a submartingale if X is a submartingale and f non-decreasing.
Hint: Use Jensen's inequality for conditional expectations (recall: $f(\mathbb{E}[X \mid \mathcal{C}]) \leq_{\text {a.s. }} \mathbb{E}[f(X) \mid \mathcal{C}]$ for any convex f).

