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Homework 1

Due: 3 February 2016

Homework submission: Please leave your homework in Florian’s mailbox no later than start of class (10:10am)
on the due date.

Problem 1 (Directed sets)

Question (a): Let X be a set and x ∈ X . Recall that a neighborhood of x is any set A ⊂ X which contains x.
Let T be the set of all neighborhoods of a fixed point x, ordered by reverse inclusion, i.e. A � B
iff A ⊃ B. Show that (T,�) is a directed set.

Question (b): Let (T1,�1) and (T1,�1) be directed sets. Show that the Cartesian product T1 × T2 is directed
in the partial order defined by (s1, s2) � (t1, t2) iff s1 �1 t1 and s2 �2 t2.

Problem 2 (A martingale indexed by partitions)

Let (Ω,A) be a measurable space. A finite measurable partitionfinite measurable partition s = (A1, . . . , An)
of Ω is a subdivision of Ω into a finite number of disjoint measurable sets Ai whose union is Ω. We say that a
partition t = (B1, . . . , Bm) is a refinementrefinement of another partition s = (A1, . . . , An) if every set Bj in t
is a subset of some set Ai in s; in words, t can be obtaine from s by splitting sets in s further, without changing
any of the existing set boundaries in s.

Let T be the set of all finite measurable partitions of Ω, and defined as binary relation � as

s � t ⇔ t is a refinement of s .

Question (a): Show that � is a partial order on T.

Question (b): Show that the partially ordered set (T,�) is directed.

Later on in the lecture, we will use this construction to prove the Radon-Nikodym theorem on the existence of
densities. We anticipate a part of the proof in this problem (you can find the proof in Chapter 1.9 of the class
notes, but you are not required to read ahead to solve this problem). The proof idea is to “discretize” the density
f of a measure µ with respect to a probability measure P on finite partitions s as above. To this end, let s ∈ T,
so s is of the form s = (A1, . . . , An) for some n ≥ 2. Define a finite σ-algebra

Fs := σ(s) = σ(A1, . . . , An) .

Now let µ be a finite measure and P a probability measure, both defined (Ω,A). For each s, we define the
function

Ys(x) :=

n∑
j=1

fs(Aj)IAj
(x) where fs(Aj) :=

{
µ(Aj)
P (Aj)

P (Aj) > 0

0 P (Aj) = 0
.

Note that Ys is a real-valued, measurable function defined on a probability space (Ω,A, P ), and hence a real-valued
random variable (even though it may not seem particularly random).

Question (c): Show that (Ys,Fs)s∈T is a martingale.



Problem 3 Stopping times and filtrations

Prove Lemma 1.7. That is, let F = (Fn)n∈N be a filtration, and S, T stopping times.

Question (a): Show FT is a σ-algebra.

Question (b): Suppose S ≤ T almost surely. Show that FS ⊂ FT .

Question (c): Let (Xn)n∈N be a random sequence adapted to F , where each Xn takes values in a measurable
space (X, C), and assume T <∞ almost surely. Show that XT is FT -measurable.

Problem 4 Convex images of (sub)martingales

Let X = (Xt,Ft)t∈N be an adapted process, and f : R→ R a convex function, with f(Xt) integrable for all t.

Question (a): Item (f(Xt),Ft) is a submartingale if X is a martingale.

Question (b): Item (f(Xt),Ft) is a submartingale if X is a submartingale and f non-decreasing.

Hint: Use Jensen’s inequality for conditional expectations (recall: f(E[X|C]) ≤a.s. E[f(X)|C] for any convex f).
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