Bayesian Nonparametrics

Part II

Peter Orbanz

OvERVIEW

1. Constructing nonparametric Bayesian models

- Hierarchical and dependent models
- Representations
- Exchangeability

2. Asymptotics

NEW MODELS FROM OLD ONES

Hierarchical Models

Apply Bayesian representation recursively

$$
\Theta \quad \rightarrow \quad \Psi \text { and } \Theta \mid \Psi
$$

Example: Hierarchical Gaussian process

- Sample $\Psi \sim R$
(large length-scale, mean 0)
- Sample $\Theta \mid \Psi \sim Q(. \mid \Psi)$ (smaller length scale, mean Ψ)

Decomposes underlying pattern:

- Low-frequency component Ψ

- High-frequency component Θ

HiERARCHICAL DIRICHLET PROCESS

Sampling scheme

- Sample $G_{0} \sim \operatorname{DP}(\gamma, H)$
- Sample $G_{1}, G_{2}, \ldots \sim \operatorname{DP}\left(\alpha, G_{0}\right)$
- Sample $x_{i j} \sim G_{j}$

- $\Theta_{k}=$ finite probability (="topic")
- $C_{k}=$ occurence probability of topic k
- Document j drawn from weighted combination of topics, with proportions D_{l}^{j} ("admixture model")

COVARIATE DEPENDENT MODELS

Setting

- Solution (= pattern) depends on a covariate, e.g. time, space,...
- Example: Video segmentation

For each frame: Solution is a segmentation, i.e. a clustering
Covariate-dependent clustering

$$
M(., t)=\sum_{k=1}^{\infty} C_{k}(t) \delta_{\Theta_{k}(t)}(.)
$$

for each covariate value t.

DEPENDENT DIRICHLET PROCESS

Dependent Dirichlet process

Model functions $C: T \rightarrow[0,1]$ and $\Theta: T \rightarrow \Omega_{\theta}$ with Gaussian processes.

1. Transform GP to have $\operatorname{Beta}(1, \alpha(t))$ marginal distribution for each t.
2. Sample functions $V_{1}(t), V_{2}(t), \ldots$ from this process.
3. $C_{k}(t):=V_{k}(t) \prod_{i=1}^{k-1}\left(1-V_{i}(t)\right)$

Properties

- Marginal at t is $\operatorname{DP}\left(\alpha(t), G_{t}\right)$ with Gaussian base measure G_{t}.
- Clustering solutions vary smoothly in t.

Covariate-dependent models: General theme

- Random object $\Psi \in \Omega_{\psi}$ with distribution P, covariate space T.
- Covariate-dependent P : Distribution of random mapping $\hat{\Psi}: T \rightarrow \Omega_{\psi}$.

EXAMPLES

Applications	Pattern	Bayesian nonparametric model
Classification \& regression	Function	Gaussian process
Clustering	Partition	Chinese restaurant process
Density estimation	Density	Dirichlet process mixture
Hierarchical clustering	Hierarchical partition	Dirichlet/Pitman-Yor diffusion tree, Kingman's coalescent, Nested CRP Latent variable modelling Survival analysis
Features	Beta process/Indian buffet process	
Power-law behaviour	Hazard	Beta process, Neutral-to-the-right process
Dictionary learning	Dictionary	Pitman-Yor process, Stable-beta process
Dimensionality reduction	Manifold	Beta process/Indian buffet process
Deep learning	Features	Gaussian process latent variable model
Topic models	Atomic distribution	Cascading/nested Indian buffet process
Time series		Infinite HMM Dical Dirichlet process
Sequence prediction	Conditional probs	Sequence memoizer
Reinforcement learning	Conditional probs	infinite POMDP
Spatial modelling	Functions	Gaussian process,
		dependent Dirichlet process
Relational modelling		Infinite relational model, infinite hidden
		relational model, Mondrian process

REPRESENTATIONS

DENSITY REPRESENTATIONS

Densities

$$
P(d x)=p(x) \lambda(d x) \quad P(A)=\int_{A} p(x) \lambda(d x)
$$

We call λ the carrier measure and p the density of P w.r.t. λ.

Useful carrier measures

- λ should be translation-invariant.
- Such measures exist only on certain spaces, roughly speaking: On finite-dimensional spaces.

Consequence: Representation problem 1

- Nonparametric models: No useful carrier measure on parameter space.
- We have to find alternatives to density representation.

The Bayes Equation

Bayesian model: General case

Prior distribution Q, likelihood $P[X \in . \mid \Theta]$, posterior $Q[\Theta \in . \mid X=x]$
Bayes' Theorem
If the posterior has a density w.r.t. the prior for each x, then

$$
Q[d \theta \mid X=x]=\frac{d Q[\cdot \mid X=x]}{d Q(.)} Q(d \theta)=\frac{d P[X \in \cdot \mid \theta]}{d P(X \in .)}(x) Q(d \theta)
$$

The "Bayes equation" is a density of the posterior with respect to the prior.
Representation Problem 2

- For many nonparametric models, this density cannot exist for all x.
- Such models are called undominated.
- Random discrete measure models are generally undominated.

In other words:
NPB models do not generally satisfy Bayes' theorem.

Gaussian Processes

Nonparametric regression

Patterns $=$ continuous functions, say on $[a, b]$:

$$
\theta:[a, b] \rightarrow \mathbb{R} \quad \mathcal{T}=C[a, b]
$$

Recall definition

$$
\Theta \sim \mathrm{GP} \quad \Leftrightarrow \quad\left(\Theta\left(s_{1}\right), \ldots, \Theta\left(s_{d}\right)\right) \quad \text { is } d \text {-dimensional Gaussian }
$$

for any finite set $S \subset[a, b]$.
Construction: Intuition

- The marginal of the GP for any finite $S \subset[a, b]$ is a Gaussian.
- All these Gaussians are marginals of each other.
- Conversely: If we start with such Gaussians for all S, do they define a GP?

They do. The theorems which guarantee this are called extension theorems or projective limit theorems.

Constructing Random Measures

Idea

- GP: We have constructed a random function Θ.
- If Θ is a random measure, can we construct it in a similar way?

Extension theorem

- For a finite partition $I=\left(A_{1}, \ldots, A_{d}\right)$ of V, suppose we know the distribution P_{I} of $\left(\Theta\left(A_{1}\right), \ldots, \Theta\left(A_{d}\right)\right)$.
- If the P_{I} for all partitions I are projective (= are marginals of each other), they define a unique random
 measure Θ on V.

Example: DP

Choose P_{I} as Dirichlet distribution with parameters α and $\left(G_{0}\left(A_{1}\right), \ldots, G_{0}\left(A_{d}\right)\right)$. Then $\Theta \sim \operatorname{DP}\left(\alpha, G_{0}\right)$.

REPRESENTATIONS

Stick-breaking

- Simple; most widely used where applicable.
- Constructive.
- Available only for few models (DP, Pitman-Yor process, normalized inverse Gaussian process, beta process).

Projective limits

- Generally applicable.
- Mathematically more challenging, many open problems.

Representations by known stochastic processes

- E.g. Lévy process and Poisson process representations.
- Often come with a useful set of theoretical tools.

Computing Posteriors

Conjugate models

- How can we compute a posterior without a Bayes equation?
- Virtually all NPB models (DP, GP, etc) are conjugate.

Functional vs structural conjugacy
Functional conjugacy: There is a mapping
prior hyperparameter \times data \mapsto posterior hyperparameter
Structural conjugacy: Closure under sampling, but no functional conjugacy.
Example
Neutral-to-the-right processes are structurally but not functionally conjugate.
Constructing conjugate models

- In hierarchical models: Use conjugate components.
- Roughly: Projective limits of fct. conjugate marginals are fct. conjugate.

EXCHANGEABILITY

Motivation

Can we justify our assumptions?

Recall:

$$
\text { data }=\text { pattern }+ \text { noise }
$$

In Bayes' theorem:

$$
Q\left(d \theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\prod_{j=1}^{n} p\left(x_{j} \mid \theta\right)}{p\left(x_{1}, \ldots, x_{n}\right)} Q(d \theta)
$$

Exchangeability

X_{1}, X_{2}, \ldots are exchangeable if $P\left(X_{1}, X_{2}, \ldots\right)$ is invariant under any permutation σ :

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots\right)=P\left(X_{1}=x_{\sigma(1)}, X_{2}=x_{\sigma(2)}, \ldots\right)
$$

In words:
Order of observations does not matter.

Exchangeability and Conditional Independence

De Finetti's Theorem

$$
\begin{gathered}
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots\right)=\int_{M(\mathcal{X})}\left(\prod_{j=1}^{\infty} \theta\left(X_{j}=x_{j}\right)\right) Q(d \theta) \\
\Uparrow \\
X_{1}, X_{2}, \ldots \text { exchangeable }
\end{gathered}
$$

where:

- $M(\mathcal{X})$ is the set of probability measures on \mathcal{X}
- θ are values of a random probability measure Θ with distribution Q

Implications

- Exchangeable data decomposes into pattern and noise
- More general than i.i.d.-assumption
- Caution: θ is in general an ∞-dimensional quantity

Exchangeability: Random Partitions

Paint-box distribution

- Weights $s_{1}, s_{2}, \cdots \geq 0$ with $\sum s_{j} \leq 1$
- $U_{1}, U_{2}, \cdots \sim \operatorname{Uniform}[0,1]$

Random partition of \mathbb{N} :

$$
\begin{aligned}
i, j \in \mathbb{N} \text { in same block } & \Leftrightarrow U_{i}, U_{j} \text { in same interval } \\
\{i\} \text { separate block } & \Leftrightarrow U_{i} \text { in interval } 1-\sum s_{j}
\end{aligned}
$$

Kingman's Theorem

Random partition π of \mathbb{N} exchangeable

$$
\text { Mixture of paint-boxes } \beta(. \mid \mathbf{s}): \quad P(\pi)=\int \beta(\pi \mid \mathbf{s}) Q(d \mathbf{s})
$$

Exchangeability: Random Graphs

Random graph with independent edges
Given: $\quad \theta:[0,1]^{2} \rightarrow[0,1] \quad$ symmetric function

- $U_{1}, U_{2}, \ldots \sim$ Uniform $[0,1]$
- Edge (i, j) present:

$$
(i, j) \sim \operatorname{Bernoulli}\left(\theta\left(U_{i}, U_{j}\right)\right)
$$

Call this distribution $P(\mathcal{G} \mid \theta)$.

Aldous-Hoover Theorem

Random graph \mathcal{G} exchangeable

$$
P(\mathcal{G})=\int_{\mathcal{T}}^{\hat{\mathbb{}}} P(\mathcal{G} \mid \theta) Q(d \theta)
$$

General Theme: Symmetry

Other types of exchangeable data

Data	Theorem	Mixture of...	Applications
Points	de Finetti	I.i.d. point sequences	"Standard" models
Sequences	Diaconis-Freedman	Markov chains	Time series
Partition	Kingman	"Paint-box" partitions	Clustering
Graphs	Aldous-Hoover	Graphs with independent edges	Networks
Arrays	Aldous-Hoover	Arrays with independent entries	Collaborative filtering

Ergodic decomposition theorems

$$
\mu(X)=\int_{\Omega} \mu[X \mid \Phi=\phi] \nu(\phi)
$$

- Symmetry (group invariance) on lhs \longrightarrow Integral decomposition on rhs
- Permutation invariance on lhs \longrightarrow Independence on rhs

ASYMPTOTICS

Support of Priors

P_{0} outside model: misspecified

Support of Nonparametric Priors

Large support

- Support of nonparametric priors is larger (∞-dimensional) than of parametric priors (finite-dimensional).
- However: No uniform prior (or even "neutral" improper prior) exists on $M(\mathcal{X})$.

Interpretation of nonparametric prior assumptions

Concentration of nonparametric prior on subset of $M(\mathcal{X})$ typically represents structural prior assumption.

- GP regression with unknown bandwidth:
- Any continuous function possible
- Prior can express e.g. "very smooth functions are more probable"
- Clustering: Expected number of clusters is...
- ...small \longrightarrow CRP prior
- ...power law \longrightarrow two-parameter CRP

Posterior Consistency

Definition 1 (weak consistency of Bayesian models)

Suppose we sample $P_{0}=P_{\theta_{0}}$ from the prior and generate data from P_{0}. If the posterior converges to $\delta_{\theta_{0}}$ for $n \rightarrow \infty$ with probability one under the prior, the model is called consistent.

Doob's Theorem

Under very mild conditions, Bayesian models are consistent in the weak sense.

Problem

- Definition holds up to a set of probability zero under the prior.
- This set can be huge and is a prior assumption.

Definition 2 (frequentist consistency of Bayesian models)
A Bayesian model is consistent at P_{0} if the posterior converges to $\delta_{P_{0}}$ with growing sample size.

Convergence Rates

Objective

How quickly does posterior concentrate at θ_{0} as $n \rightarrow \infty$?
Measure: Convergence rate

- Find smallest balls $B_{\varepsilon_{n}}\left(\theta_{0}\right)$ for which

$$
Q\left(B_{\varepsilon_{n}}\left(\theta_{0}\right) \mid X_{1}, \ldots, X_{n}\right) \xrightarrow{n \rightarrow \infty} 1
$$

- Rate $=$ sequence $\varepsilon_{1}, \varepsilon_{2}, \ldots$

The best we can hope for

- Optimal rate is $\varepsilon_{n} \propto n^{-1 / 2}$
- Given by optimal convergence of estimators
- Achieved in smooth parametric models

Technical tools

Sieves, covering number, metric entropies... \longrightarrow familiar from learning theory!

Asymptotics: Sample Results

Consistency

- DP mixtures: Consistent in many cases. No blanket statements.
- Range of consistency results for GP regression

Convergence rates: Example

Bandwidth adaptation with GPs:

- True parameter $\theta_{0} \in C^{\alpha}[0,1]^{d}$, smoothness α unknown
- With gamma prior on GP bandwidth:

Convergence rate is $n^{-\alpha /(2 \alpha+d)}$

Bernstein-von Mises Theorems

- Class of theorems establishing that posterior is asymptotically normal.
- Available for Gaussian processes and various regression settings.

REFERENCES I

[Ald81] David J. Aldous. Representations for Partially Exchangeable Arrays of Random Variables. Journal of Multivariate Analysis, 11:581-598, 1981.
[Fer73] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Statist., 1(2), 1973.
[Gho10] S. Ghosal. Dirichlet process, related priors and posterior asymptotics. In N. L. Hjort et al., editors, Bayesian Nonparametrics, pages 36-83. Cambridge University Press, 2010.
[GvdV07] Subhashis Ghosal and Aad van der Vaart. Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Statist, 35(2):697-723, 2007.
[Kal05] Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.
[Kin78] J. F. C. Kingman. The representation of partition structures. Journal of the London Mathematical Society, 18:374-380, 1978.
[KvdV06] B. J. K. Kleijn and A. W. van der Vaart. Misspecification in infinite-dimensional Bayesian statistics. Annals of Statistics, 34(2):837-877, 2006.
[LP10] A. Lijoi and I. Prünster. Models beyond the Dirichlet process. In N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, editors, Bayesian Nonparametrics. Cambrdige University Press, 2010.
[Mac00] S. N. MacEachern. Dependent Dirichlet processes. Technical report, Ohio State University, 2000.
[Orb09] P. Orbanz. Construction of nonparametric Bayesian models from parametric bayes equations. In Advances in Neural Information Processing Systems (NIPS), 2009.
[Orb11] P. Orbanz. Projective limit random probabilities on Polish spaces. Electronic Journal of Statistics, 5:1354-1373, 2011.
[Orb12] P. Orbanz. Nonparametric priors on complete separable metric spaces. 2012.
[RT09] D.M. Roy and Y.-W. Teh. The Mondrian process, 2009.
[Sch65] L. Schwartz. On Bayes procedures. Z. Wahr. Verw. Gebiete, 4:10-26, 1965.
[Sch95] M. J. Schervish. Theory of Statistics. Springer, 1995.
[TJ10] Y. W. Teh and M. I. Jordan. Hierarchical Bayesian nonparametric models with applications. In N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, editors, Bayesian Nonparametrics. Cambridge University Press, 2010.

REFERENCES II

[TJBB06] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. J. Amer. Statist. Assoc., (476):1566-1581, 2006.
[vdV98] A. van der Vaart. Asymptotic Statistics. Cambrdige University Press, 1998.
[vdVvZ08a] A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist., 36(3):1435-1463, 2008.
[vdVvZ08b] A. W. van der Vaart and J. H. van Zanten. Reproducing kernel Hilbert spaces of Gaussian priors. In Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh, volume 3 of Inst. Math. Stat. Collect., pages 200-222. Inst. Math. Statist., Beachwood, OH, 2008.

