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1. Constructing nonparametric Bayesian models
I Hierarchical and dependent models
I Representations
I Exchangeability

2. Asymptotics
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NEW MODELS FROM OLD ONES



HIERARCHICAL MODELS

Apply Bayesian representation recursively
Split parameter Θ:

Θ → Ψ and Θ|Ψ

P(X1,X2, . . . )

P(X1,X2, . . . |Θ) Q(Θ)

Q(Θ|Ψ) R(Ψ)

Example: Hierarchical Gaussian process

I Sample Ψ ∼ R
(large length-scale, mean 0)

I Sample Θ|Ψ ∼ Q( . |Ψ)
(smaller length scale, mean Ψ)

Decomposes underlying pattern:

I Low-frequency component Ψ

I High-frequency component Θ

4.3. DEPENDENT INDIAN BUFFET PROCESSES

The model (4.5) defines a hierarchical Gaussian process, similar to the hierar-

chical Dirichlet process described in Section 2.4.2. By means of the hierarchy,

information can be shared within columns (features). Different choices of the

GP covariance structure define different model properties:

General model: Hierarchical sharing. The hierarchy in (4.5) shares

information within features. The covariances Σk define a general profile for

each feature k, with the second layer (controlled by the Ξnk) modelling in-

dividual variations per item. If, for example, Σk is chosen as a large-scale

covariance function, and Ξnk to model small-scale fluctuations, hnk will vary

significantly for different values of k, but on a smaller scale between differ-

ent items n within a fixed feature k. The GP draws coupled features over

Γ. Consequently, for two index values γ1 and γ2 ∈ Γ, item n at γ1 must

correspond to item n at γ2.

Figure 4.1 shows how a hierarchy of GPs can be used to combine local

and global variation in feature occurrence.
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Figure 4.1: A hierarchy of GPs: For each column, a top level GP gk

controls large-scale variation in feature probability, and individual GPs h
control item-specific fluctuations. A threshold determines whether the

feature is present.
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HIERARCHICAL DIRICHLET PROCESS

Sampling scheme

I Sample G0 ∼ DP (γ,H)

I Sample G1,G2, . . . ∼ DP (α,G0)

I Sample xij ∼ Gj

G1,G2, . . . have common "vocabulary" of atoms

Application: Nonparametric LDA

G0 =
∞∑

k=1

CkδΘ∗
k

Gj =

∞∑
l=1

Dj
lδΦj

l

I Θk = finite probability (=“topic”)

I Ck = occurence probability of topic k

I Document j drawn from weighted
combination of topics, with proportions Dj

l
(“admixture model”)

G0
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Figure 1. Comparing the HDP (a) and the NDP (b). For the HDP, the distributions {G1, . . . ,GJ } share the same atoms but assign them
different weights. For the NDP, the different distributions have either the same atoms with the same weights or completely different atoms and
weights.

The NDP is also different from the linear combination mod-
els of Müller et al. (2004), which allow for a limited form
of clustering across distributions. Müller et al. (2004) repre-
sented an unknown distribution Gj as a linear combination
Gj = εjH0 + (1 − εj )Hj , where each Hj is an independent
draw from a regular DP. H0 is called the common component,
and the Hj ’s, for j ≥ 1, are called the idiosyncratic compo-
nents. Note that the two distributions Gj and Gj ′ are equal
under this model if only if they correspond to the common
component in the mixture, that is, εj = εj ′ = 0, implying that
Gj = Gj ′ = H0. Thus there is at most one cluster with more
than one member.

4. POSTERIOR COMPUTATION

Broadly speaking, there are three strategies for computa-
tion in standard DP models: (a) Use the Pólya urn scheme
to marginalize out the unknown infinite-dimensional distribu-
tion(s) (MacEachern 1994; Escobar and West 1995; MacEach-
ern and Müller 1998); (b) use a truncation approximation to
the stick-breaking representation of the process and then resort
to methods for computation in finite-mixture models (Ishwaran
and Zarepour 2002; Ishwaran and James 2001); and (c) use
reversible-jump Markov chain Monte Carlo (RJMCMC) algo-
rithms for finite mixtures with an unknown number of compo-
nents (Dahl 2003; Green and Richardson 2001; Jain and Neal
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The NDP is also different from the linear combination mod-
els of Müller et al. (2004), which allow for a limited form
of clustering across distributions. Müller et al. (2004) repre-
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rithms for finite mixtures with an unknown number of compo-
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COVARIATE DEPENDENT MODELS

Setting

I Solution (= pattern) depends on a covariate, e.g. time, space,. . .

I Example: Video segmentation

For each frame: Solution is a segmentation, i.e. a clustering

Covariate-dependent clustering

M( . , t) =
∞∑

k=1

Ck(t)δΘk(t)( . )

for each covariate value t.
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DEPENDENT DIRICHLET PROCESS

Dependent Dirichlet process
Model functions C : T → [0, 1] and Θ : T → Ωθ with Gaussian processes.

1. Transform GP to have Beta(1, α(t)) marginal distribution for each t.

2. Sample functions V1(t),V2(t), . . . from this process.

3. Ck(t) := Vk(t)
∏k−1

i=1 (1− Vi(t))

Properties

I Marginal at t is DP (α(t),Gt) with Gaussian base measure Gt.

I Clustering solutions vary smoothly in t.

Covariate-dependent models: General theme

I Random object Ψ ∈ Ωψ with distribution P, covariate space T .

I Covariate-dependent P: Distribution of random mapping Ψ̂ : T → Ωψ .
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EXAMPLES

Applications Pattern Bayesian nonparametric model
Classification & regression Function Gaussian process
Clustering Partition Chinese restaurant process
Density estimation Density Dirichlet process mixture
Hierarchical clustering Hierarchical partition Dirichlet/Pitman-Yor diffusion tree,

Kingman’s coalescent, Nested CRP
Latent variable modelling Features Beta process/Indian buffet process
Survival analysis Hazard Beta process, Neutral-to-the-right process
Power-law behaviour Pitman-Yor process, Stable-beta process
Dictionary learning Dictionary Beta process/Indian buffet process
Dimensionality reduction Manifold Gaussian process latent variable model
Deep learning Features Cascading/nested Indian buffet process
Topic models Atomic distribution Hierarchical Dirichlet process
Time series Infinite HMM
Sequence prediction Conditional probs Sequence memoizer
Reinforcement learning Conditional probs infinite POMDP
Spatial modelling Functions Gaussian process,

dependent Dirichlet process
Relational modelling Infinite relational model, infinite hidden

relational model, Mondrian process
. . . . . . . . .
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REPRESENTATIONS



DENSITY REPRESENTATIONS

Densities

P(dx) = p(x)λ(dx) P(A) =

∫
A

p(x)λ(dx)

We call λ the carrier measure and p the density of P w.r.t. λ.

Useful carrier measures
I λ should be translation-invariant.

I Such measures exist only on certain spaces, roughly speaking:
On finite-dimensional spaces.

Consequence: Representation problem 1

I Nonparametric models: No useful carrier measure on parameter space.

I We have to find alternatives to density representation.

[Sch95]Peter Orbanz 10 / 29



THE BAYES EQUATION

Bayesian model: General case
Prior distribution Q, likelihood P[X ∈ . |Θ], posterior Q[Θ ∈ . |X = x]

Bayes’ Theorem
If the posterior has a density w.r.t. the prior for each x, then

Q[dθ|X = x] =
dQ[ . |X = x]

dQ( . )
Q(dθ) =

dP[X ∈ . |θ]
dP(X ∈ . )

(x)Q(dθ)

The “Bayes equation” is a density of the posterior with respect to the prior.

Representation Problem 2

I For many nonparametric models, this density cannot exist for all x.

I Such models are called undominated.

I Random discrete measure models are generally undominated.

In other words:

NPB models do not generally satisfy Bayes’ theorem.

[Sch95]Peter Orbanz 11 / 29



GAUSSIAN PROCESSES

Nonparametric regression
Patterns = continuous functions, say on [a, b]:

θ : [a, b]→ R T = C[a, b]

Prior and Posterior
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Predictive distribution:

p(y∗|x∗ x y) ∼ N
�
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noise − k(x∗ x)�[K + σ2
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a bs

Θ(s)

Recall definition

Θ ∼ GP ⇔ (Θ(s1), . . . ,Θ(sd)) is d-dimensional Gaussian

for any finite set S ⊂ [a, b].

Construction: Intuition
I The marginal of the GP for any finite S ⊂ [a, b] is a Gaussian.

I All these Gaussians are marginals of each other.

I Conversely: If we start with such Gaussians for all S, do they define a GP?

They do. The theorems which guarantee this are called extension theorems or
projective limit theorems.
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CONSTRUCTING RANDOM MEASURES

Idea
I GP: We have constructed a random function Θ.

I If Θ is a random measure, can we construct it in a similar way?

Extension theorem
I For a finite partition I = (A1, . . . ,Ad) of V , suppose

we know the distribution PI of (Θ(A1), . . . ,Θ(Ad)).

I If the PI for all partitions I are projective (= are
marginals of each other), they define a unique random
measure Θ on V .
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A
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A A

A
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Example: DP
Choose PI as Dirichlet distribution with parameters α and (G0(A1), . . . ,G0(Ad)).
Then Θ ∼ DP (α,G0).
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REPRESENTATIONS

Stick-breaking

I Simple; most widely used where applicable.

I Constructive.

I Available only for few models (DP, Pitman-Yor process, normalized inverse
Gaussian process, beta process).

Projective limits

I Generally applicable.

I Mathematically more challenging, many open problems.

Representations by known stochastic processes

I E.g. Lévy process and Poisson process representations.

I Often come with a useful set of theoretical tools.
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COMPUTING POSTERIORS

Conjugate models

I How can we compute a posterior without a Bayes equation?

I Virtually all NPB models (DP, GP, etc) are conjugate.

Functional vs structural conjugacy
Functional conjugacy: There is a mapping

prior hyperparameter × data 7→ posterior hyperparameter

Structural conjugacy: Closure under sampling, but no functional conjugacy.

Example
Neutral-to-the-right processes are structurally but not functionally conjugate.

Constructing conjugate models

I In hierarchical models: Use conjugate components.

I Roughly: Projective limits of fct. conjugate marginals are fct. conjugate.
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EXCHANGEABILITY



MOTIVATION

Can we justify our assumptions?
Recall:

data = pattern + noise

In Bayes’ theorem:

Q(dθ|x1, . . . , xn) =

∏n
j=1 p(xj|θ)

p(x1, . . . , xn)
Q(dθ)

Exchangeability
X1,X2, . . . are exchangeable if P(X1,X2, . . . ) is invariant under any permutation σ:

P(X1 = x1,X2 = x2, . . . ) = P(X1 = xσ(1),X2 = xσ(2), . . . )

In words:
Order of observations does not matter.
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EXCHANGEABILITY AND CONDITIONAL INDEPENDENCE

De Finetti’s Theorem

P(X1 = x1,X2 = x2, . . .) =

∫
M(X )

( ∞∏
j=1

θ(Xj = xj)
)

Q(dθ)

m

X1,X2, . . . exchangeable

where:

I M(X ) is the set of probability measures on X
I θ are values of a random probability measure Θ with distribution Q

Implications

I Exchangeable data decomposes into pattern and noise

I More general than i.i.d.-assumption

I Caution: θ is in general an∞-dimensional quantity
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EXCHANGEABILITY: RANDOM PARTITIONS

Paint-box distribution
I Weights s1, s2, · · · ≥ 0 with

∑
sj ≤ 1

I U1,U2, · · · ∼ Uniform[0, 1] s1 s2

U3 U2U1

1−
∑

j sjRandom partition of N:

i, j ∈ N in same block ⇔ Ui,Uj in same interval

{i} separate block ⇔ Ui in interval 1−
∑

sj

Kingman’s Theorem

Random partition π of N exchangeable

m

Mixture of paint-boxes β( . |s) : P(π) =

∫
β(π|s)Q(ds)
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EXCHANGEABILITY: RANDOM GRAPHS

Random graph with independent
edges

Given: θ : [0, 1]2 → [0, 1] symmetric
function

I U1,U2, . . . ∼ Uniform[0, 1]

I Edge (i, j) present:

(i, j) ∼ Bernoulli(θ(Ui,Uj))

Call this distribution P(G|θ).

Aldous-Hoover Theorem

Random graph G exchangeable

m

P(G) =

∫
T

P(G|θ)Q(dθ)

0
0

1
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GENERAL THEME: SYMMETRY

Other types of exchangeable data

Data Theorem Mixture of... Applications

Points de Finetti I.i.d. point sequences “Standard” models
Sequences Diaconis-Freedman Markov chains Time series
Partition Kingman "Paint-box" partitions Clustering
Graphs Aldous-Hoover Graphs with independent edges Networks
Arrays Aldous-Hoover Arrays with independent entries Collaborative filtering

Ergodic decomposition theorems

µ(X) =

∫
Ω

µ[X|Φ = φ]ν(φ)

I Symmetry (group invariance) on lhs −→ Integral decomposition on rhs

I Permutation invariance on lhs −→ Independence on rhs

[Kal05, Orb12]Peter Orbanz 21 / 29



ASYMPTOTICS



SUPPORT OF PRIORS

M(X )

Model

P0 = Pθ0

P0 outside model:
misspecified

[Gho10, KvdV06]Peter Orbanz 23 / 29



SUPPORT OF NONPARAMETRIC PRIORS

Large support

I Support of nonparametric priors is larger (∞-dimensional) than of parametric
priors (finite-dimensional).

I However: No uniform prior (or even “neutral” improper prior) exists on M(X ).

Interpretation of nonparametric prior assumptions
Concentration of nonparametric prior on subset of M(X ) typically represents
structural prior assumption.

I GP regression with unknown bandwidth:
I Any continuous function possible
I Prior can express e.g. “very smooth functions are more probable”

I Clustering: Expected number of clusters is...
I ...small −→ CRP prior
I ...power law −→ two-parameter CRP

Peter Orbanz 24 / 29



POSTERIOR CONSISTENCY

Definition 1 (weak consistency of Bayesian models)
Suppose we sample P0 = Pθ0 from the prior and generate data from P0. If the
posterior converges to δθ0 for n→∞ with probability one under the prior, the model
is called consistent.

Doob’s Theorem
Under very mild conditions, Bayesian models are
consistent in the weak sense.

Problem
I Definition holds up to a set of probability

zero under the prior.

I This set can be huge and is a prior
assumption.

Definition 2 (frequentist consistency of Bayesian models)
A Bayesian model is consistent at P0 if the posterior converges to δP0 with growing
sample size.

[Gho10]Peter Orbanz 25 / 29



CONVERGENCE RATES

Objective
How quickly does posterior concentrate at θ0 as n→∞?

Measure: Convergence rate
I Find smallest balls Bεn (θ0) for which

Q(Bεn (θ0)|X1, . . . ,Xn)
n→∞−−−→ 1

I Rate = sequence ε1, ε2, . . .

θ0

εn+1

εn

The best we can hope for

I Optimal rate is εn ∝ n−1/2

I Given by optimal convergence of estimators

I Achieved in smooth parametric models

Technical tools

Sieves, covering number, metric entropies. . . −→ familiar from learning theory!
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ASYMPTOTICS: SAMPLE RESULTS

Consistency

I DP mixtures: Consistent in many cases. No blanket statements.

I Range of consistency results for GP regression

Convergence rates: Example
Bandwidth adaptation with GPs:

I True parameter θ0 ∈ Cα[0, 1]d, smoothness α unknown

I With gamma prior on GP bandwidth:

Convergence rate is n−α/(2α+d)

Bernstein-von Mises Theorems
I Class of theorems establishing that posterior is asymptotically normal.

I Available for Gaussian processes and various regression settings.

[Sch65, GvdV07, vdVvZ08a, vdVvZ08b]Peter Orbanz 27 / 29
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