Bayesian Nonparametrics

Part I

Peter Orbanz

Overview

Today

1. Basic terminology
2. Clustering
3. Latent feature models

Tomorrow

5. Constructing nonparametric Bayesian models
6. Exchangeability
7. Asymptotics

Parameters and Patterns

Parameters

$$
P(X \mid \theta) \quad=\quad \text { Probability }[\text { data } \mid \text { pattern }]
$$

Inference idea

$$
\text { data }=\text { underlying pattern }+ \text { independent noise }
$$

TERMINOLOGY

Parametric model

- Number of parameters fixed (or constantly bounded) w.r.t. sample size

Nonparametric model

- Number of parameters grows with sample size
- ∞-dimensional parameter space

Example: Density estimation

Parametric

Nonparametric

NONPARAMETRIC BAYESIAN MODEL

Definition

A nonparametric Bayesian model is a Bayesian model on an ∞-dimensional parameter space.

Interpretation

Parameter space $\mathcal{T}=$ set of possible patterns, for example:

Problem	\mathcal{T}
Density estimation	Probability distributions
Regression	Smooth functions
Clustering	Partitions

Solution to Bayesian problem $=$ posterior distribution on patterns

EXCHANGEABILITY

Can we justify our assumptions?

Recall:

$$
\text { data }=\text { pattern }+ \text { noise }
$$

In Bayes' theorem:

$$
Q\left(d \theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\prod_{j=1}^{n} p\left(x_{j} \mid \theta\right)}{p\left(x_{1}, \ldots, x_{n}\right)} Q(d \theta)
$$

Definition

X_{1}, X_{2}, \ldots are exchangeable if $P\left(X_{1}, X_{2}, \ldots\right)$ is invariant under any permutation σ :

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots\right)=P\left(X_{1}=x_{\sigma(1)}, X_{2}=x_{\sigma(2)}, \ldots\right)
$$

In words:
Order of observations does not matter.

Exchangeability and Conditional Independence

De Finetti's Theorem

$$
\begin{gathered}
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots\right)=\int_{\mathbf{M}(\mathcal{X})}\left(\prod_{j=1}^{\infty} \theta\left(X_{j}=x_{j}\right)\right) Q(d \theta) \\
\Uparrow \\
X_{1}, X_{2}, \ldots \text { exchangeable }
\end{gathered}
$$

where:

- $\mathbf{M}(\mathcal{X})$ is the set of probability measures on \mathcal{X}
- θ are values of a random probability measure Θ with distribution Q

Implications

- Exchangeable data decomposes into pattern and noise
- More general than i.i.d.-assumption
- Caution: θ is in general an ∞-dimensional quantity

Clustering

Clustering

- Observations X_{1}, X_{2}, \ldots
- Each observation belongs to exactly one cluster
- Unknown pattern $=$ partition of $\{1, \ldots, n\}$ or \mathbb{N}

Mixture models

Mixture models

$$
p(x \mid m)=\int_{\Omega_{\theta}} p(x \mid \theta) m(d \theta)
$$

m is called the mixing measure
Two-stage sampling
Sample $X \sim p(. \mid m)$ as:

1. $\Theta \sim m$
2. $X \sim p(. \mid \theta)$

Finite mixture model

$$
p(x \mid \boldsymbol{\theta}, \mathbf{c})=\int_{\Omega_{\theta}} p(x \mid \theta) m(d \theta) \quad \text { with } \quad m(.)=\sum_{k=1}^{K} c_{k} \delta_{\theta_{k}}(.)
$$

BAYESIAN MM

Random mixing measure

$$
M(.)=\sum_{k=1}^{K} C_{k} \delta_{\Theta_{k}}(.)
$$

Conjugate priors
A Bayesian model is conjugate if the posterior is an element of the same class of distributions as the prior ("closure under sampling").

$p(x \mid \theta)$	conjugate prior
$\frac{1}{\frac{1}{Z(\theta)} h(x) \exp (\langle S(x), \theta\rangle)}$	$\frac{1}{K(\lambda, y)} \exp (\langle\theta, y\rangle-\lambda \log Z(\theta))$
Gaussian	Gaussian/inverse Wishart
multinomial	Dirichlet
\ldots	\ldots

- Choose conjugate prior for each parameter
- In particular: Dirichlet prior on $\left(C_{1}, \ldots, C_{k}\right)$

DIRICHLET PROCESS MIXTURES

Dirichlet process

A Dirichlet process is a distribution on random probability measures of the form

$$
M(.)=\sum_{k=1}^{\infty} C_{k} \delta_{\Theta_{k}}(.) \quad \text { where } \quad \sum_{k=1}^{\infty} C_{k}=1
$$

Constructive definition of $\operatorname{DP}\left(\alpha, G_{0}\right)$

$$
\begin{aligned}
\Theta_{k} & \sim_{\mathrm{idd}} G_{0} \\
V_{k} & \sim_{\mathrm{idd}} \operatorname{Beta}(1, \alpha)
\end{aligned}
$$

Compute C_{k} as

$$
C_{k}:=V_{k} \prod_{i=1}^{k-1}\left(1-V_{i}\right)
$$

"Stick-breaking construction"

Posterior distribution

DP Posterior

$$
\theta_{n+1} \mid \theta_{1}, \ldots, \theta_{n} \sim \frac{1}{n+\alpha} \sum_{j=1}^{n} \delta_{\theta_{j}}\left(\theta_{n+1}\right)+\frac{\alpha}{n+\alpha} G_{0}\left(\theta_{n+1}\right)
$$

Mixture Posterior

$$
p\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{K_{n}} \frac{n_{k}}{n+\alpha} p\left(x_{n+1} \mid \theta_{k}^{*}\right)+\frac{\alpha}{n+\alpha} \int p\left(x_{n+1} \mid \theta\right) G_{0}(\theta) d \theta
$$

Conjugacy

- The posterior of DP $\left(\alpha, G_{0}\right)$ is $\operatorname{DP}\left(\alpha+n, \frac{1}{n+\alpha}\left(\sum_{k} n_{k} \delta_{\theta_{k}^{*}}+\alpha G_{0}\right)\right)$
- Hence: The Dirichlet process is conjugate.

Inference

Latent variables

$$
p\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{K_{n}} \frac{n_{k}}{n+\alpha} p\left(x_{n+1} \mid \theta_{k}^{*}\right)+\frac{\alpha}{n+\alpha} \int p\left(x_{n+1} \mid \theta\right) G_{0}(\theta) d \theta
$$

We do not actually observe the Θ_{j} (they are latent). We observe X_{j}.

Assignment probabilities

$$
\left(\begin{array}{cccc}
q_{10} & q_{11} & \ldots & q_{1 K_{n}} \\
\vdots & \vdots & & \vdots \\
q_{n 0} & q_{n 1} & \ldots & q_{n K_{n}}
\end{array}\right)
$$

Where:

- $q_{j k} \propto n_{k} p\left(x_{j} \mid \theta_{k}^{*}\right)$
- $q_{j 0} \propto \alpha \int p\left(x_{j} \mid \theta\right) G_{0}(\theta) d \theta$

Gibbs Sampling

Uses an assignment variable ϕ_{j} for each observation X_{j}.

- Assignment step: Sample $\phi_{j} \sim \operatorname{Multinomial}\left(q_{j 0}, \ldots, q_{j K_{n}}\right)$
- Parameter sampling: $\theta_{k}^{*} \sim G_{0}\left(\theta_{k}^{*}\right) \prod_{x_{j} \in \operatorname{Cluster} k} p\left(x_{j} \mid \theta_{k}^{*}\right)$

Number of Clusters

Dirichlet process

$K_{n}=\#$ clusters in sample of size n

$$
\mathbb{E}\left[K_{n}\right]=O(\log (n))
$$

Modeling assumption

- Parametric clustering: K_{∞} is finite (possibly unknown, but fixed).
- Nonparametric clustering: K_{∞} is infinite

Rephrasing the question

- Estimate of K_{n} is controlled by distribution of the cluster sizes C_{k} in $\sum_{k} C_{k} \delta_{\Theta_{k}}$.
- Ask instead: What should we assume about the distribution of C_{k} ?

GENERALIZING THE DP

Pitman-Yor process

$$
p\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{K_{n}} \frac{n_{k}-d}{n+\alpha} p\left(x_{n+1} \mid \theta_{k}^{*}\right)+\frac{\alpha+K_{n} \cdot d}{n+\alpha} \int p\left(x_{n+1} \mid \theta\right) G_{0}(\theta) d \theta
$$

Discount parameter $d \in[0,1]$.
Cluster sizes

Power Laws

The distribution of cluster sizes is called a power law if

$$
C_{j} \sim \gamma(\beta) \cdot j^{-\beta} \quad \text { for some } \beta \in[0,1]
$$

Examples of power laws

- Word frequencies
- Popularity (number of friends) in social networks

Pitman-Yor language model

RANDOM PARTITIONS

Discrete measures and partitions

Sampling from a discrete measure determines a partition of \mathbb{N} into blocks b_{k} :

$$
\Theta_{n} \sim_{\mathrm{iid}} \sum_{k=1}^{\infty} c_{k} \delta_{\theta_{k}^{*}} \quad \text { and set } \quad n \in b_{k} \quad \Leftrightarrow \quad \Theta_{n}=\theta_{k}^{*}
$$

As $n \longrightarrow \infty$, the block proportions converge: $\frac{\left|b_{k}\right|}{n} \longrightarrow c_{k}$

Induced random partition

The distribution of a random discrete measure $M=\sum_{k=1}^{\infty} C_{k} \delta_{\Theta_{k}}$ induces the distribution of a random partition $\Pi=\left(B_{1}, B_{2}, \ldots\right)$.

Exchangeable random partitions

- Π is called exchangeable if its distribution depends only on the sizes of its blocks.
- All exchangeable random parititions, and only those, can be represented by a random discrete distribution as above (Kingman's theorem).

Chinese Restaurant Process

Chinese Restaurant Process

The distribution of the random partition induced by the Dirichlet process is called the Chinese Restaurant Process.
"Customers and tables" analogy

Customers $=$ observations $($ indices in $\mathbb{N})$
Tables $=$ clusters (blocks)

Historical remark

- Originally introduced by Dubins \& Pitman as a distribution on infinite permutations
- A permutation of n items defines a partition of $\{1, \ldots, n\}$ (regard cycles of permutation as blocks of partition)
- The induced distribution on partitions is the CRP we use in clustering

Families of Exchangeable Random Partitions

Random Discrete Measures

Classification (due to Prünster)

class	probability of new cluster	prior class
I	$\mathbb{P}\left\{\Theta_{n+1} \in\right.$ new cluster $\left.\mid \Theta^{(n)}\right\}=f(n)$	Dirichlet processes
II	$\mathbb{P}\left\{\Theta_{n+1} \in\right.$ new cluster $\left.\mid \Theta^{(n)}\right\}=f\left(n, K_{n}\right)$	Gibbs-type measures
III	$\mathbb{P}\left\{\Theta_{n+1} \in\right.$ new cluster $\left.\mid \Theta^{(n)}\right\}=f\left(n, K_{n}, \mathbf{n}\right)$	

General partition priors

- Gibbs-type measures are completely classified [GP06b]
- Properties of some cases well-studied, e.g.:
- Dirichlet process
- Pitman-Yor process
- Normalized inverse Gaussian process [LMP05b]
- In the future: We will have a range of models which express different prior assumptions on the distribution of cluster sizes.

Summary: Clustering

Nonparametric Bayesian clustering

- Infinite number of clusters, $K_{n} \leq n$ of which are observed.
- If partition exchangeable, it can be represented by a random discrete distribution.

Inference

Latent variable algorithms, since assignments (\equiv partition) not observed.

- Gibbs sampling
- Variational algorithms

Prior assumption

- Distribution of cluster sizes.
- Implies prior assumption on number K_{n} of clusters.

Latent Feature Models

Indian Buffet process

Latent feature models

- Grouping problem with overlapping clusters.
- Encode as binary matrix: Observation n in cluster $k \quad \Leftrightarrow \quad X_{n k}=1$
- Alternatively: Item n possesses feature $k \quad \Leftrightarrow \quad X_{n k}=1$

Indian buffet process (IBP)

1. Customer 1 tries Poisson (α) dishes.
2. Subsequent customer $n+1$:

- tries a previously tried dish k with probability $\frac{n_{k}}{n+1}$,
- tries Poisson $\left(\frac{\alpha}{n+1}\right)$ new dishes.

Properties

- An exchangeable distribution over finite sets (of dishes).
- Intepretation:

Observation (= customer) n in cluster (= dish) k if customer "tries dish k "

De Finetti Representation

Alternative description

1. Sample $w_{1}, \ldots, w_{K} \sim_{\mathrm{idd}} \operatorname{Beta}(1, \alpha / K)$
2. Sample $X_{1 k}, \ldots, X_{n k} \sim_{\text {iid }} \operatorname{Bernoulli}\left(w_{k}\right)$

$$
\left(\begin{array}{ccc}
w_{1} & \ldots & w_{K} \\
X_{11} & \ldots & X_{1 K} \\
\vdots & & \vdots \\
X_{N 1} & \ldots & X_{N K}
\end{array}\right)
$$

We need some form of limit object for $\operatorname{Beta}(1, \alpha / K)$ for $K \rightarrow \infty$.

Beta Process (BP)

Distribution on objects of the form

$$
\theta=\sum_{k=1}^{\infty} w_{k} \delta_{\phi_{k}} \quad \text { with } w_{k} \in[0,1] .
$$

- IBP matrix entries are sampled as $X_{n k} \sim_{\mathrm{iid}} \operatorname{Bernoulli}\left(w_{k}\right)$.
- Beta process is the de Finetti measure of the IBP, that is, $Q=\mathrm{BP}$.
- θ is a random measure (but not normalized)

REFERENCES I

[FLP12] S. Favaro, A. Lijoi, and I. Prünster. Conditional formulae for Gibbs-type exchangeable random partitions. Ann. Appl. Probab. To appear., 2012.
[GG06] T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, volume 18, 2006.
[GG11] T. L. Griffiths and Z. Ghahramani. The Indian buffet process: An introduction and review. J. Mach. Learn. Res., 12:1185-1224, 2011.
[GHP07] A. V. Gnedin, B. Hansen, and J. Pitman. Notes on the occupancy problem with infinitely many boxes: General asymptotics and power laws. Probability Surveys, 4:146-171, 2007.
[GP06a] A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences, 138(3):5674-5684, 2006.
[GP06b] A. Gnedin and J. Pitman. Exchangeable Gibbs partititions and Stirling triangles. J. Math. Sci., 138(3):5674-5685, 2006.
[Hjo90] N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist., 18:1259-1294, 1990.
[IJ01] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453): 161-173, 2001.
[JLP09] L. F. James, A. Lijoi, and I. Prüenster. Posterior analysis for normalized random measures with independent increments. Scandinavian Journal of Statistics, 36:76-97, 2009.
[Kal05] Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.
[Kin75] J. F. C. Kingman. Random discrete distributions. Journal of the Royal Statistical Society, 37:1-22, 1975.
[LMP05a] A. Lijoi, R. H. Mena, and I. Prüenster. Hierarchical mixture modelling with normalized inverse-Gaussian priors. Journal of the American Statistical Association, 100:1278-1291, 2005.
[LMP05b] A. Lijoi, R. H. Mena, and I. Prünster. Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer: Statist. Assoc., 100:1278-1291, 2005.
[LP10] A. Lijoi and I. Prünster. Models beyond the Dirichlet process. In N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, editors, Bayesian Nonparametrics. Cambrdige University Press, 2010.
[Nea00] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249-265, 2000.

REFERENCES II

[Pem07] R. Pemantle. A survey of random processes with reinforcement. Probab. Surv., 4:1-79, 2007.
[Pit03] J. Pitman. Poisson-Kingman partitions. In D. R. Goldstein, editor, Statistics and Science: a Festschrift for Terry Speed, pages 1-34. Institute of Mathematical Statistics, 2003.
[Rob95] C. P. Robert. Mixtures of distributions: inference and estimation. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice. Chapman \& Hall, 1995.
[Sch95] M. J. Schervish. Theory of Statistics. Springer, 1995.
[Teh06] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 985-992, 2006.
[TJ07] R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In J. Mach. Learn. Res. Proceedings (AISTATS), volume 2, pages 564-571, 2007.

