Bayesian Nonparametrics Part I

Peter Orbanz

OVERVIEW

Today

- 1. Basic terminology
- 2. Clustering
- 3. Latent feature models

Tomorrow

- 5. Constructing nonparametric Bayesian models
- 6. Exchangeability
- 7. Asymptotics

Parameters

 $P(X|\theta)$ = Probability[data|pattern]

Inference idea

data = underlying pattern + independent noise

TERMINOLOGY

Parametric model

► Number of parameters fixed (or constantly bounded) w.r.t. sample size

Nonparametric model

- Number of parameters grows with sample size
- ▶ ∞ -dimensional parameter space

Example: Density estimation

Parametric

Nonparametric

Definition

A nonparametric Bayesian model is a Bayesian model on an ∞ -dimensional parameter space.

Interpretation

Parameter space T = set of possible patterns, for example:

Problem	\mathcal{T}
Density estimation	Probability distributions
Regression	Smooth functions
Clustering	Partitions

Solution to Bayesian problem = posterior distribution on patterns

Can we justify our assumptions? Recall:

data = pattern + noise

In Bayes' theorem:

$$Q(d\theta|x_1,\ldots,x_n) = \frac{\prod_{j=1}^n p(x_j|\theta)}{p(x_1,\ldots,x_n)}Q(d\theta)$$

Definition

 X_1, X_2, \ldots are *exchangeable* if $P(X_1, X_2, \ldots)$ is invariant under any permutation σ :

$$P(X_1 = x_1, X_2 = x_2, \dots) = P(X_1 = x_{\sigma(1)}, X_2 = x_{\sigma(2)}, \dots)$$

In words:

Order of observations does not matter.

EXCHANGEABILITY AND CONDITIONAL INDEPENDENCE

De Finetti's Theorem

 X_1, X_2, \ldots exchangeable

where:

- $\mathbf{M}(\mathcal{X})$ is the set of probability measures on \mathcal{X}
- θ are values of a random probability measure Θ with distribution Q

Implications

- Exchangeable data decomposes into pattern and noise
- More general than i.i.d.-assumption
- Caution: θ is in general an ∞ -dimensional quantity

CLUSTERING

CLUSTERING

- Observations X_1, X_2, \ldots
- Each observation belongs to exactly one cluster
- Unknown pattern = partition of $\{1, \ldots, n\}$ or \mathbb{N}

Mixture models

$$p(x|m) = \int_{\Omega_{\theta}} p(x|\theta) m(d\theta)$$

m is called the *mixing measure*

Two-stage sampling Sample $X \sim p(.|m)$ as:

- 1. $\Theta \sim m$
- 2. $X \sim p(. |\theta)$

Finite mixture model

$$p(x|\boldsymbol{\theta}, \mathbf{c}) = \int_{\Omega_{\boldsymbol{\theta}}} p(x|\boldsymbol{\theta}) m(d\boldsymbol{\theta}) \quad \text{with} \quad m(.) = \sum_{k=1}^{K} c_k \delta_{\theta_k}(.)$$

BAYESIAN MM

Random mixing measure

$$M(\,.\,)=\sum_{k=1}^{K}C_k\delta_{\Theta_k}(\,.\,)$$

Conjugate priors

A Bayesian model is *conjugate* if the posterior is an element of the same class of distributions as the prior ("closure under sampling").

p(x heta)	conjugate prior
$\frac{1}{Z(\theta)}h(x)\exp(\langle S(x),\theta\rangle)$	$\frac{1}{K(\lambda,y)} \exp(\langle \theta, y \rangle - \lambda \log Z(\theta))$
Gaussian multinomial	Gaussian/inverse Wishart Dirichlet

Choice of priors in BMM

- Choose conjugate prior for each parameter
- In particular: Dirichlet prior on (C_1, \ldots, C_k)

Dirichlet process

A Dirichlet process is a distribution on random probability measures of the form

$$M(.) = \sum_{k=1}^{\infty} C_k \delta_{\Theta_k}(.)$$
 where $\sum_{k=1}^{\infty} C_k = 1$

Constructive definition of $DP(\alpha, G_0)$

 $egin{aligned} \Theta_k \sim_{ ext{iid}} G_0 \ V_k \sim_{ ext{iid}} ext{Beta}(1,lpha) \end{aligned}$

Compute C_k as

$$C_k := V_k \prod_{i=1}^{k-1} (1-V_i)$$

"Stick-breaking construction"

DP Posterior

$$heta_{n+1}| heta_1,\ldots, heta_n\sim rac{1}{n+lpha}\sum_{j=1}^n \delta_{ heta_j}(heta_{n+1})+rac{lpha}{n+lpha}G_0(heta_{n+1})$$

Mixture Posterior

$$p(x_{n+1}|x_1,\ldots,x_n) = \sum_{k=1}^{K_n} \frac{n_k}{n+\alpha} p(x_{n+1}|\theta_k^*) + \frac{\alpha}{n+\alpha} \int p(x_{n+1}|\theta) G_0(\theta) d\theta$$

Conjugacy

- The posterior of DP (α, G_0) is DP $\left(\alpha + n, \frac{1}{n+\alpha} (\sum_k n_k \delta_{\theta_k^*} + \alpha G_0)\right)$
- Hence: The Dirichlet process is conjugate.

INFERENCE

Latent variables

$$p(x_{n+1}|x_1,\ldots,x_n) = \sum_{k=1}^{K_n} \frac{n_k}{n+\alpha} p(x_{n+1}|\theta_k^*) + \frac{\alpha}{n+\alpha} \int p(x_{n+1}|\theta) G_0(\theta) d\theta$$

We do not actually observe the Θ_j (they are latent). We observe X_j .

Assignment probabilities

 $\begin{pmatrix} q_{10} & q_{11} & \dots & q_{1K_n} \\ \vdots & \vdots & & \vdots \\ q_{n0} & q_{n1} & \dots & q_{nK_n} \end{pmatrix}$ Where: $\begin{array}{c} & \bullet \\ q_{jk} \propto n_k p(x_j | \theta_k^*) \\ \bullet \\ q_{j0} \propto \alpha \int p(x_j | \theta) G_0(\theta) d\theta \end{pmatrix}$

Gibbs Sampling

Uses an assignment variable ϕ_j for each observation X_j .

- Assignment step: Sample $\phi_j \sim \text{Multinomial}(q_{j0}, \ldots, q_{jK_n})$
- Parameter sampling: $\theta_k^* \sim G_0(\theta_k^*) \prod_{x_j \in \text{Cluster } k} p(x_j | \theta_k^*)$

NUMBER OF CLUSTERS

- Parametric clustering: K_{∞} is *finite* (possibly unknown, but fixed).
- Nonparametric clustering: K_{∞} is *infinite*

Rephrasing the question

- Estimate of K_n is controlled by distribution of the cluster sizes C_k in $\sum_k C_k \delta_{\Theta_k}$.
- Ask instead: What should we assume about the distribution of C_k ?

GENERALIZING THE DP

Pitman-Yor process

$$p(x_{n+1}|x_1,\ldots,x_n) = \sum_{k=1}^{K_n} \frac{n_k - d}{n + \alpha} p(x_{n+1}|\theta_k^*) + \frac{\alpha + K_n \cdot d}{n + \alpha} \int p(x_{n+1}|\theta) G_0(\theta) d\theta$$

Discount parameter $d \in [0, 1]$.

Cluster sizes

POWER LAWS

The distribution of cluster sizes is called a *power law* if

 $C_j \sim \gamma(\beta) \cdot j^{-\beta}$ for some $\beta \in [0, 1]$.

Examples of power laws

- Word frequencies
- Popularity (number of friends) in social networks

Pitman-Yor language model

RANDOM PARTITIONS

Discrete measures and partitions

Sampling from a discrete measure determines a *partition* of \mathbb{N} into blocks b_k :

$$\Theta_n \sim_{\text{iid}} \sum_{k=1}^{\infty} c_k \delta_{\theta_k^*}$$
 and set $n \in b_k \Leftrightarrow \Theta_n = \theta_k^*$

As $n \longrightarrow \infty$, the block proportions converge: $\frac{|b_k|}{n} \longrightarrow c_k$

Induced random partition

The distribution of a random discrete measure $M = \sum_{k=1}^{\infty} C_k \delta_{\Theta_k}$ induces the distribution of a *random partition* $\Pi = (B_1, B_2, ...)$.

Exchangeable random partitions

- ► Π is called *exchangeable* if its distribution depends only on the sizes of its blocks.
- All exchangeable random parititions, and only those, can be represented by a random discrete distribution as above (Kingman's theorem).

CHINESE RESTAURANT PROCESS

Chinese Restaurant Process

The distribution of the random partition induced by the Dirichlet process is called the *Chinese Restaurant Process*.

"Customers and tables" analogy

Customers = observations (indices in \mathbb{N}) Tables = clusters (blocks)

Historical remark

- Originally introduced by Dubins & Pitman as a distribution on infinite permutations
- ► A permutation of *n* items defines a partition of {1,...,n} (regard cycles of permutation as blocks of partition)
- ▶ The induced distribution on partitions is the CRP we use in clustering

FAMILIES OF EXCHANGEABLE RANDOM PARTITIONS

RANDOM DISCRETE MEASURES

Classification (due to Prünster)

General partition priors

- Gibbs-type measures are completely classified [GP06b]
- Properties of some cases well-studied, e.g.:
 - Dirichlet process
 - Pitman-Yor process
 - Normalized inverse Gaussian process [LMP05b]
- In the future: We will have a range of models which express different prior assumptions on the distribution of cluster sizes.

SUMMARY: CLUSTERING

Nonparametric Bayesian clustering

- ▶ Infinite number of clusters, $K_n \leq n$ of which are observed.
- If partition exchangeable, it can be represented by a random discrete distribution.

Inference

Latent variable algorithms, since assignments (\equiv partition) not observed.

- Gibbs sampling
- Variational algorithms

Prior assumption

- Distribution of cluster sizes.
- ▶ Implies prior assumption on number *K_n* of clusters.

LATENT FEATURE MODELS

INDIAN BUFFET PROCESS

Latent feature models

- Grouping problem with overlapping clusters.
- Encode as binary matrix: Observation *n* in cluster $k \Leftrightarrow X_{nk} = 1$
- Alternatively: Item *n* possesses feature $k \Leftrightarrow X_{nk} = 1$

Indian buffet process (IBP)

- 1. Customer 1 tries $Poisson(\alpha)$ dishes.
- 2. Subsequent customer n + 1:

tries a previously tried dish k with probability nk/(n+1),
tries Poisson (α/(n+1)) new dishes.

Properties

- An exchangeable distribution over finite sets (of dishes).
- Intepretation:

Observation (= customer) n in cluster (= dish) k if customer "tries dish k"

DE FINETTI REPRESENTATION

Alternative description

- 1. Sample $w_1, \ldots, w_K \sim_{iid} \text{Beta}(1, \alpha/K)$
- 2. Sample $X_{1k}, \ldots, X_{nk} \sim_{iid} \text{Bernoulli}(w_k)$

We need some form of limit object for $\text{Beta}(1, \alpha/K)$ for $K \to \infty$.

Beta Process (BP)

Distribution on objects of the form

$$heta = \sum_{k=1}^\infty w_k \delta_{\phi_k} \qquad ext{ with } w_k \in [0,1] \; .$$

- ▶ IBP matrix entries are sampled as $X_{nk} \sim_{iid} \text{Bernoulli}(w_k)$.
- Beta process is the de Finetti measure of the IBP, that is, Q = BP.
- θ is a random measure (but not normalized)

REFERENCES I

- [FLP12] S. Favaro, A. Lijoi, and I. Prünster. Conditional formulae for Gibbs-type exchangeable random partitions. Ann. Appl. Probab. To appear., 2012.
- [GG06] T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Advances in Neural Information Processing Systems, volume 18, 2006.
- [GG11] T. L. Griffiths and Z. Ghahramani. The Indian buffet process: An introduction and review. J. Mach. Learn. Res., 12:1185-1224, 2011.
- [GHP07] A. V. Gnedin, B. Hansen, and J. Pitman. Notes on the occupancy problem with infinitely many boxes: General asymptotics and power laws. Probability Surveys, 4:146–171, 2007.
- [GP06a] A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles. Journal of Mathematical Sciences, 138(3):5674-5684, 2006.
- [GP06b] A. Gnedin and J. Pitman. Exchangeable Gibbs partititions and Stirling triangles. J. Math. Sci., 138(3):5674–5685, 2006.
- [Hj090] N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Statist., 18:1259–1294, 1990.
- [IJ01] H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453):161–173, 2001.
- [JLP09] L. F. James, A. Lijoi, and I. Prüenster. Posterior analysis for normalized random measures with independent increments. Scandinavian Journal of Statistics, 36:76–97, 2009.
- [Kal05] Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.
- [Kin75] J. F. C. Kingman. Random discrete distributions. Journal of the Royal Statistical Society, 37:1–22, 1975.
- [LMP05a] A. Lijoi, R. H. Mena, and I. Prüenster. Hierarchical mixture modelling with normalized inverse-Gaussian priors. Journal of the American Statistical Association, 100:1278–1291, 2005.
- [LMP05b] A. Lijoi, R. H. Mena, and I. Prünster. Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc., 100:1278–1291, 2005.
- [LP10] A. Lijoi and I. Prünster. Models beyond the Dirichlet process. In N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, editors, Bayesian Nonparametrics. Cambridge University Press, 2010.
- [Nea00] R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265, 2000.

- [Pem07] R. Pemantle. A survey of random processes with reinforcement. Probab. Surv., 4:1–79, 2007.
- [Pit03] J. Pitman. Poisson-Kingman partitions. In D. R. Goldstein, editor, Statistics and Science: a Festschrift for Terry Speed, pages 1–34. Institute of Mathematical Statistics, 2003.
- [Rob95] C. P. Robert. Mixtures of distributions: inference and estimation. In W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice, Chapman & Hall, 1995.
- [Sch95] M. J. Schervish. Theory of Statistics. Springer, 1995.
- [Teh06] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 985–992, 2006.
- [TJ07] R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In J. Mach. Learn. Res. Proceedings (AISTATS), volume 2, pages 564–571, 2007.