Proofs

Construction of Nonparametric Bayesian Models from Parametric Bayes Equations Peter Orbanz

1 0101

1 Proof of Theorem 2

Construction of the projective limit: In the following, we have to explicitly treat the conditional $P_{\mathbf{X}}^{\mathbf{I}}(X^{\mathbf{I}}|\Theta^{\mathbf{I}})$ as the function $P_{\mathbf{X}}^{\mathbf{I}}(A|\Theta^{\mathbf{I}})(\omega)$ for $A \in \mathcal{B}_{x}^{\mathbf{I}}$ and $\omega \in \Omega$. As a function of ω , the conditional is measurable w.r.t. the σ -algebra $\sigma(\Theta^{I})$. As a regular conditional probability, the function $A \mapsto P_{\mathbf{x}}^{\mathrm{I}}(A|\Theta^{\mathrm{I}})(\omega)$ is a probability measure for \mathbb{P} -almost all $\omega \in \Omega$. The null set of exceptions will be denoted $N^{i} \subset \Omega$. Since the conditional probabilities are conditionally projective, we have $P_{X}^{I}(.|\Theta^{I})(\omega) = P_{X}^{J}(\pi_{II}^{-1}.|\Theta^{J})(\omega)$ for almost all ω . Again there is a null set of exceptions, which we will denote N^{II} . Denote the union of all exceptions a $N := (\cup_{I} N^{I}) \cup (\cup_{I \subset J} N^{II})$. As a countable union of null sets, N is itself a null set. Now for any fixed $\omega \notin N$, the probability measures $P_{\mathbf{x}}^{\mathsf{I}}(.|\Theta^{\mathsf{I}})(\omega)$ form a projective family of measures in the sense of the Kolmogorov theorem. Application of the theorem yields a unique probability measure ν_{ω} on $(\Omega_x^{\rm E}, \mathcal{B}_x^{\rm E})$ for each $\omega \notin N$. Treat this collection of measures as a function $\nu(A, \omega) := \nu_{\omega}(A)$ for $\omega \notin N$, and set $\nu(A, \omega) := \delta_{X^{\mathsf{E}}(\omega)}$ for $\omega \in N$, where δ_x denotes the Dirac measure concentrated at x. (The only purpose of the latter is to ensure that v is a probability measure for every ω ; the choice of the Dirac measure is arbitrary.) \mathcal{C}^{E} -measurability: The function $\nu(.,.)$ so obtained describes a conditional distribution of X^{E} w.r.t. a σ -algebra \mathcal{C}^{E} if we can show that $\omega \mapsto \nu(A, \omega)$ is \mathcal{C}^{E} -measurable for every $A \in \mathcal{B}_x^{\mathsf{E}}$. This can be shown by means of the π - λ theorem (also called the Dynkin lemma, [2]): First show that $\nu(A,\omega)$ is measurable for all A in a generator of $\mathcal{B}_x^{\mathsf{E}}$, and then deduce that this implies measurability for all A by means of the π - λ theorem. As a generator, we choose the "cylinder sets" $\mathcal{Z}^{E} = \{A \in \mathcal{B}_{x}^{E} | A = \pi_{EI}^{-1} A^{I}\}$, i.e. the set of all sets which are preimages under projection of some finite-dimensional event. Then $\mathcal{B}_{x}^{E} = \sigma(\mathcal{Z}^{E})$, a fact used for example in the proof of the Kolmogorov theorem (cf [1]). For any $A \in \mathcal{Z}^{E}$, the function $\nu(A, .)$ is measurable: Since $\nu(\pi_{EI}^{-1}A^{I}, \omega) = P_{X}^{I}(A^{I}|\Theta^{I})(\omega)$, the function $\omega \mapsto \nu(\pi_{EI}^{-1}A^{I}, \omega)$ is $\sigma(\Theta^{I})$ -measurable, and therefore \mathcal{C}^{E} -measurable as $\sigma(\Theta^{I}) \subset \mathcal{C}^{E}$. Let $\mathcal{L} \subset \mathcal{B}_{x}^{E}$ denote the system of all A for which $\nu(A, .)$ is \mathcal{C}^{E} -measurable. measurable. In the sense of the π - λ theorem, \mathcal{L} is a λ -system: For $A = \Omega_x^{\text{E}}$, ν is constant hence measurable. Let $A \in \mathcal{L}$. Then $\nu(\mathcal{L}A, .) = 1 - \nu(A, .)$, which is measurable. If $A_n \in \mathcal{L}$ is a pairwise disjoint sequence and $A' = \bigcup_n^\infty A_n$, then $\nu(A, .) = \lim_{n \to \infty} \sum_{i=1}^n \nu(A_n, .)$, which as a limit of measurable functions is measurable. It is well known that the cylinder sets \mathcal{Z}^{E} form an algebra [1], so \mathcal{Z}^{E} is in particular a π -system. Then by the π - λ theorem,

$$\mathcal{B}_x^{\mathsf{E}} = \sigma(\mathcal{Z}^{\mathsf{E}}) = \mathcal{L} \subset \mathcal{B}_x^{\mathsf{E}} . \tag{1}$$

In other words, the set of all sets A for which $\omega \mapsto \nu(A, \omega)$ is \mathcal{C}^{E} -measurable is just $\mathcal{B}_{x}^{\mathrm{E}}$. Therefore, $\nu(A, \omega)$ is a regular version of the conditional probability $P_{X}^{\mathrm{E}}(A|\mathcal{C}^{\mathrm{E}})(\omega)$. By construction, its marginals are $\pi_{\mathrm{EI}}P_{X}^{\mathrm{E}}(.|\mathcal{C}^{\mathrm{E}})(\omega) = P_{X}^{\mathrm{I}}(.|\sigma(\Theta^{\mathrm{I}}))(\omega)$ almost everywhere.

Interpreting $P_X^E(X^E|\mathcal{C}^E)$ as $P_X^E(X^E|\Theta^E)$: Under the additional assumption $\pi_{JI}\Theta^J = \Theta^I$, define the variable Θ^E as $\Theta^E := \bigotimes_{i \in E} \Theta^{\{i\}}$. Then any conditional distribution given \mathcal{C}^E can serve as a conditional given Θ^E , since the σ -algebra $\sigma(\Theta^E)$ generated by Θ^E is just \mathcal{C}^E :

$$\sigma(\Theta^{\mathrm{E}}) = \Theta^{\mathrm{E},-1}(\mathcal{B}^{\mathrm{E}}_{\theta}) = \Theta^{\mathrm{E},-1}(\bigcup_{I \in \mathcal{F}(E)} \sigma(\pi^{-1}_{\mathrm{EI}} \mathcal{B}^{\mathrm{I}}_{\theta})) = \sigma(\bigcup_{I \in \mathcal{F}(E)} \Theta^{\mathrm{E},-1} \pi^{-1}_{\mathrm{EI}} \mathcal{B}^{\mathrm{I}}_{\theta}) = \sigma(\bigcup_{I \in \mathcal{F}(E)} \Theta^{\mathrm{I},-1} \mathcal{B}^{\mathrm{I}}_{\theta}) = \sigma(\bigcup_{I \in \mathcal{F}(E)} \sigma(\Theta^{\mathrm{I},-1}) = \mathcal{C}^{\mathrm{E}}.$$
(2)

2 **Proof of Theorem 3**

Proof of (1). We have to construct a candidate for the probability kernel $k^{\rm E}$, and show that T is a posterior index for the projective limit posterior with kernel $k^{\rm E}$. To this end we will show that the conditionals $P_{\Theta}^{\rm I}(\Theta^{\rm I}|T^{\rm I})$ are conditionally projective and define $k^{\rm E}$ in terms of their projective limit. For each $I \in \mathcal{F}(E)$ and $A^{\rm I} \in \mathcal{B}_{\theta}^{\rm I}$, the function $\omega \mapsto k^{\rm I}(A^{\rm I}, .) \circ T^{\rm I} \circ X^{\rm I}(\omega)$ is $\sigma(T^{\rm I} \circ X^{\rm I})$ -measurable, and $k^{\rm I}(A^{\rm I}, .) \circ T^{\rm I} \circ X^{\rm I}(\omega) = P_{\Theta}^{\rm I}(A^{\rm I}|T^{\rm I})(\omega)$ a.e. Therefore, $k^{\rm I}(A^{\rm I}, .) \circ T^{\rm I} \circ X^{\rm I}$ is a version of $P_{\Theta}^{\rm I}(A^{\rm I}|T^{\rm I})$. The conditional probabilities $P_{\Theta}^{\rm I}(\Theta^{\rm I}|T^{\rm I})$ are conditionally projective:

$$P_{\Theta}^{I}(A^{I}|T^{I} = t^{I}) = P_{\Theta}^{I}(A^{I}|X^{I} \in T^{I,-1}(t^{I})) = P_{\Theta}^{J}(\pi_{II}^{-1}A^{I}|X^{J} \in \pi_{II}^{-1}T^{I,-1}(t^{I}))$$
$$= P_{\Theta}^{J}(\pi_{II}^{-1}A^{I}|X^{J} \in T^{J,-1}\pi_{II}^{-1}(t^{J})) = P_{\Theta}^{J}(\pi_{II}^{-1}A^{I}|T^{J} \in \pi_{II}^{-1}(t^{I}))$$
(3)

Hence $P_{\Theta}^{I}(\pi_{II}^{-1}A^{I}|T^{I}) = P_{\Theta}^{I}(A^{I}|T^{I})$, which is just the definition of conditional projectiveness. By Theorem 2 there is an a.e.-unique projective limit of the form $P_{\Theta}^{E}(\Theta^{E}|\mathcal{C}^{E})$, where \mathcal{C}^{E} is the σ -algebra

$$\mathcal{C}^{\mathsf{E}} := \sigma \left(\cup_{I \in \mathcal{F}(E)} \sigma(T^{\mathsf{I}}) \right) \,. \tag{4}$$

It is straightforward to check that $\sigma(T) = C^{E}$, because T satisfies Eq. (4). Therefore, the projective limit $P_{\Theta}^{E}(\Theta^{E}|C^{E})$ can serve as the conditional distribution $P_{\Theta}^{E}(\Theta^{E}|T)$. Now define a candidate for the kernel k^{E} as

$$k^{\mathsf{E}}(A,t) := P^{\mathsf{E}}_{\Theta}(A|T=t) \qquad \text{for all } A \in \mathcal{B}^{\mathsf{E}}_{\theta}, t \in \Omega^{\mathsf{E}}_{t} . \tag{5}$$

What remains to be shown is that $k^{E}(A, T(x)) = P_{\Theta}^{E}(A|X^{E} = x)$ a.e. for all $A \in \mathcal{F}(E)$. If this identity can be shown to hold for $A \in \mathcal{Z}^{E}$, then it holds for all A: Since $\sigma(\mathcal{Z}^{E}) = \mathcal{B}_{\theta}^{E}$, and since \mathcal{Z}^{E} is an algebra, the Carathéodory extension theorem is applicable to extend measures from \mathcal{Z}^{E} to \mathcal{B}_{θ}^{E} . Since the conditional probability k^{E} is a Markov kernel, the Carathéodory theorem can be applied pointwise in x. (For a conditional that is not a Markov kernel, the subset of exceptional points $x \in \Omega_{x}^{E}$ on which the conditional is not unique depends on A. Over all A, these could then aggregate into a non-null set.) To show that the identity holds on \mathcal{Z}^{E} , consider any $A \in \mathcal{Z}^{E}$, i.e. there is some $I \in \mathcal{F}(E)$ such that $A = \pi_{\text{EI}}^{-1}A^{\text{I}}$. Then

$$k^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}, t \in \pi_{\mathrm{EI}}^{-1}t^{\mathrm{I}}) = P_{\Theta}^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}|T \in \pi_{\mathrm{EI}}^{-1}t^{\mathrm{I}}) = P_{\Theta}^{\mathrm{I}}(A^{\mathrm{I}}|T^{\mathrm{I}} = t^{\mathrm{I}}) = P_{\Theta}^{\mathrm{I}}(A^{\mathrm{I}}|X^{\mathrm{I}} \in T^{\mathrm{I},-1}t^{\mathrm{I}})$$

$$= P_{\Theta}^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}|X^{\mathrm{E}} \in \pi_{\mathrm{EI}}^{-1}T^{\mathrm{I},-1}t^{\mathrm{I}}) = P_{\Theta}^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}|X^{\mathrm{E}} \in T^{-1}\pi_{\mathrm{EI}}^{-1}t^{\mathrm{I}}) ,$$
(6)

such that $k^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}, T(x)) = P_{\Theta}^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}|X^{\mathrm{E}} = x)$. By the Carathéodory theorem, this implies that $k^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}, T(x)) = P_{\Theta}^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}|X^{\mathrm{E}} = x)$, and hence T is a posterior index for the projective limit posterior $P_{\Theta}^{\mathrm{E}}(\Theta^{\mathrm{E}}|X^{\mathrm{E}})$, and k^{E} is the probability kernel corresponding to T.

Proof of (2). To proof part (2), we have to show that the posterior index T^{I} and corresponding probability kernel k^{I} as specified in the theorem make each of the marginal Bayesian systems on the finite-dimensional subspaces Ω_{x}^{I} conjugate. That is, we have to verify $k^{I}(A^{I}, T^{I}(x^{I})) = P_{\Theta}^{I}(A^{I}|X^{I} = x^{I})$. To this end, write

$$k^{\mathrm{I}}(A^{\mathrm{I}}, t^{\mathrm{I}}) = k(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}, t \in \pi_{\mathrm{EI}}^{-1}t^{\mathrm{I}}) = P_{\Theta}^{\mathrm{E}}(\pi_{\mathrm{EI}}^{-1}A^{\mathrm{I}}|X^{\mathrm{E}} \in T^{-1}\pi_{\mathrm{EI}}^{-1}t^{\mathrm{I}}) = P_{\Theta}^{\mathrm{I}}(A^{\mathrm{I}}|X^{\mathrm{I}} \in \pi_{\mathrm{EI}}T^{-1}\pi_{\mathrm{EI}}^{-1}t^{\mathrm{I}})$$

$$= P_{\Theta}^{\mathrm{I}}(A^{\mathrm{I}}|X^{\mathrm{I}} \in \pi_{\mathrm{EI}}T^{\mathrm{I},-1}t^{\mathrm{I}})$$
(7)

Since, for each x^{I} , there is some t^{I} such that $T^{I}(x^{I}) = t^{I}$, this means:

$$k^{\mathrm{I}}(A^{\mathrm{I}}, t^{\mathrm{I}}) = P^{\mathrm{I}}_{\Theta}(A^{\mathrm{I}}|X^{\mathrm{I}} = x^{\mathrm{I}}) \qquad \Leftrightarrow \qquad x^{\mathrm{I}} \in T^{\mathrm{I}, \mathrm{I}}(t^{\mathrm{I}}) ,$$
(8)

and thus $P_{\Theta}^{I}(A^{I}|X^{I} = x^{I}) = k^{I}(A^{I}, T^{I}(x^{I}))$ as we had to show. In other words, the posterior $P_{\Theta}^{I}(A^{I}|X^{I})$ is conjugate with posterior index T^{I} and probability kernel k^{I} .

[1] H. Bauer. Probability Theory. W. de Gruyter, 1996.

[2] M. J. Schervish. Theory of Statistics. Springer, 1995.