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Abstract

Cluster analysis of ranking data, which
occurs in consumer questionnaires, voting
forms or other inquiries of preferences, at-
tempts to identify typical groups of rank
choices. Empirically measured rankings are
often incomplete, i.e. different numbers of
filled rank positions cause heterogeneity in
the data. We propose a mixture approach for
clustering of heterogeneous rank data. Rank-
ings of different lengths can be described and
compared by means of a single probabilistic
model. A maximum entropy approach avoids
hidden assumptions about missing rank po-
sitions. Parameter estimators and an ef-
ficient EM algorithm for unsupervised in-
ference are derived for the ranking mixture
model. Experiments on both synthetic data
and real-world data demonstrate significantly
improved parameter estimates on heteroge-
neous data when the incomplete rankings are
included in the inference process.

1. Introduction

Ranking data commonly occurs in preference surveys:
A number of subjects are asked to rank a list of items
or concepts according to their personal order of prefer-
ence. Two types of ranking data are usually discussed
in the literature: Complete and partial (or incom-
plete) rankings. A wide range of probabilistic mod-
els is available for both (Diaconis, 1988; Critchlow,
1985). A complete ranking of r items is a permutation
of these items, listed in order of preference. Mathemat-
ical models of rankings are based on the corresponding
permutation group. A partial ranking is a preference

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

list of t out of r items. Partial rankings require some
refinements of models designed for complete rankings,
since two arbitrary partial rankings will in general con-
tain different subsets of the items. An extensive review
of rank comparisons can be found in (Critchlow, 1985).

Clustering of rank data aims at the identification of
groups of rankers with a common, typical preference
behavior (Marden, 1995). An unsupervised clustering
method for complete rankings has been proposed in
(Murphy & Martin, 2003), based on the well-known
Mallows’ model (Mallows, 1957) and its generaliza-
tions. A different but related problem is the combi-
nation of several rankings. This question has recently
been discussed by a number of authors, both in Ma-
chine Learning (Lebanon & Lafferty, 2002) and dis-
crete algorithmics (Ailon et al., 2005).

For real-world surveys, the data analyst is often con-
fronted with heterogeneous data, that is, data con-
taining partial rankings of different lengths. In the
well-studied APA data set (Diaconis, 1989), for ex-
ample, only about a third of the rankings are com-
plete, and the remaining incomplete lists have variable
lengths. Common practice in the analysis of hetero-
geneous rank data is to delete partial rankings, and
analyze only the subset of complete rankings (Mur-
phy & Martin, 2003), or to analyze partial rankings
of different lengths separately. This raises conceptual
problems, as we must expect the removal of a sub-
sample of common characteristic (i.e. incompleteness
of the rankings) to cause a systematic bias. Moreover,
decreasing the sample size by removing partial rank-
ings can result in a significant decrease of estimation
accuracy.

For heterogeneous data, clusters model typical pref-
erences. A ranker associated with any group may ei-
ther state his preferences completely or incompletely.
In other words, each cluster again constitutes a het-
erogeneous data set, containing rankings of different
lengths. As a core contribution of this paper, we
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obtain a model applicable to heterogeneous data by
building on the work of (Fligner & Verducci, 1986).
The model is a parametric location-scale model based
on the Kendall distance (Kendall, 1938), and thus re-
lated to Mallows’ model (Mallows, 1957). We address
the clustering problem by combining several model in-
stances into a parametric mixture. Inference is con-
ducted in a maximum likelihood framework by an
expectation-maximization algorithm. The model ad-
mits an estimation procedure much more efficient than
the straightforward EM approach proposed in the lit-
erature for distance-based rank models. Our experi-
ments clearly demonstrate that the additional infor-
mation in partial rankings can significantly improve
parameter estimates of mixture components in rank
cluster analysis.

The article is organized as follows: Sec. 2 briefly sur-
veys probabilistic models for complete and partial rank
data. A model for heterogeneous rankings is described
in Sec. 3, and its algorithmic estimation from data in
Sec. 4. Experimental results are presented in Sec. 5.

2. Background

The objective of rank data clustering is to (i) group
similar rankings in the input data and (ii) identify
rankings that are prototypical representatives for each
group. Our approach is probabilistic: A probability
model is defined capable of representing an individ-
ual group. A mixture of such models is then fitted to
the data by an alternating estimation procedure. We
will first introduce the standard probability models on
rank data available in the literature.

2.1. Models for Complete Rankings

We assume that rank data for r items are observed.
The items are indexed m = 1, . . . , r, and n subjects
are asked to arrange the items according to their or-
der of preference. Each of the resulting lists can be
regarded as a permutation πi of the item indices, i.e.
πi(m) = j indicates that the i-th ranker has assigned
rank j to item m. The set of possible rankings is then
given by the set of possible permutations of r items.
This set has a group structure and is referred to as the
symmetric group of order r, denoted S(r).

Statistics has developed a sizable amount of rank data
models. Of particular interest for data clustering are
the so-called distance-based models of the form

P (π|λ, σ) :=
1

Z(λ)
exp (−λd(π, σ)) , (1)

with Z(λ) :=
∑

π∈S(r) exp (−λd(π, σ)). The model is
parameterized by a ranking σ ∈ S(r) and a dispersion

parameter λ ∈ R+. The function d : S(r)×S(r) → R≥0

is a distance function, i.e. a function with metric prop-
erties on S(r). Since d is a metric and hence d(π, σ) =
0 iff π = σ, the distribution P assumes its unique
mode at σ, and σ is referred to as the modal rank-
ing. The dispersion parameter λ controls how sharply
the distribution peaks around the mode, i.e. small
(large) λ values code for broad (peaked) distributions.
For clustering, distance-based models capture the no-
tion that two observations belong to the same group if
they are “close”. The approach is related to familiar
clustering methods for other data types, such as Gaus-
sian mixtures for vectorial data (which measure dis-
tance by Euclidean or covariance-adjusted Euclidean
distance) or multinomial mixtures for histogram data
(which measure a distance-like quantity by Kullback-
Leibler divergence). Different models can be obtained
by substituting different types of metrics for d in (1).
Other popular choices include the Spearman rank cor-
relation metric, and the Hamming, Cayley and Ulam
distances (Critchlow, 1985). The present work focuses
on one metric in particular, the widely used Kendall
distance (Kendall, 1938), defined as

dτ (π, σ) := minimum of adjacent transpositions
required to transform π into σ.

Closely related is the Cayley distance, which drops
the adjacency requirement, and thus measures the dis-
tance in terms of arbitrary transpositions. For d = dτ ,
the model (1) is Mallows’ φ model (Mallows, 1957) in
its original form. More generally, models of the form
(1) are usually referred to as Mallows models, provided
that d is a metric.

2.2. Clustering with Mallows’ Model

For clustering, the observed rank data is assumed to
consist of K groups. Each group is modeled by a Mal-
lows distribution

Pk(π|λk, σk) :=
1

Z(λk)
exp (−λkdτ (π, σk)) . (2)

The component distributions are joined in a mixture
model,

Q(π) :=
K∑

k=1

ckPk(π|λk, σk) , (3)

where the mixture weights (c1, . . . , cK) form a parti-
tion of 1. Model parameters can be estimated with an
expectation-maximization (EM) algorithm (McLach-
lan & Krishnan, 1997), or more sophisticated latent
variable estimation algorithms, such as Simulated An-
nealing or Deterministic Annealing (Kirkpatrick et al.,
1983; Hofmann & Buhmann, 1997).
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2.3. Partial Rankings

A partial ranking is a ranking of t out of r items. Usu-
ally, one assumes a top-t ranking, i.e. subjects have
ranked their t favorites out of a larger number of
r items. Distance-based models for partial rankings
can be constructed by generalizing metrics on com-
plete rankings to valid metrics on partial rankings.
(Critchlow, 1985) has proposed such a generalization
based on Hausdorff distances.

A partial top-t ranking is best represented as an in-
verse: In standard notation, regarding the permuta-
tion π as a list of numbers, position in the list corre-
sponds to an item index (and the entry value at that
position gives a rank). A ranking of t favorite items is
thus a list with gaps. Written as the inverse π−1, po-
sition denotes rank, and a top-t ranking has the form
π−1 = (π−1(1), . . . , π−1(t), ∗, . . . , ∗). For any partial
ranking π of length t, denote by C(π) the set of all com-
plete rankings π̃ matching π in their first t positions,
that is, C(π) := {π̃ ∈ S(r)|π̃(j) = π(j), j = 1, . . . , t}.
We will refer to C as the consistent set of π (in alge-
braic terms, this is just the right coset Sr−tπ). For
any two different partial rankings of the same length,
the consistent sets are disjoint, and their union over
all partial rankings of a given length is S(r). For a
given metric d on S(r), (Critchlow, 1985) defines an
induced metric d∗ on partial rankings as the Haus-
dorff distance between their consistent sets. As put
by Critchlow, d∗(π, σ) can be imagined as the smallest
amount by which C(π) has to be enlarged to include all
of C(σ). Another approach to partial rankings is the
completion method proposed by (Beckett, 1993), who
estimates complete rankings from partial ones based
on a Mallows model (cf. Sec. 5).

3. Modeling Heterogeneous Data

In the present work, we consider the problem of mod-
eling real-world survey data, which usually includes
partial rankings of variable length t. Differences arise
because many subjects will rank only their favorite t
items. For ranking data on r items, we therefore have
to assume an observed sample to contain partial rank-
ings of all possible lengths t = 1, . . . , (r−1) (note that
t = (r − 1) is equivalent to t = r, since the missing
position is uniquely determined). 1

1We do not consider partial rankings with gaps, i.e.
rankings with a total of t < r filled position and empty
ranks in between, since data of this type can be expected
to be rare. Our model does, in principle, generalize to the
case of rankings with gaps, but the actual computations
become more difficult.

3.1. Choice of Metric

The model described in this section is based on the
Kendall distance. Our choice of the metric is moti-
vated by a range of properties: First, it has an intu-
itive and plausible interpretation as a number of pair-
wise choices. (Mallows, 1957) argues that it provides
the best possible description of the process of rank-
ing items as performed by a human. Second, it enjoys
a high de-facto relevance due to its widespread use.
Third, there is a number of appealing mathematical
properties: It counts (rather than measures), is effi-
ciently computable, decomposable into a sum, and its
standardized distribution has a normal limit (Diaco-
nis, 1988). Though our study is limited to the Kendall
case, Fligner-Verducci type models can be derived for
the Cayley distance as well (Fligner & Verducci, 1986).

3.2. Probabilistic Model

If only a subset of the available items is ranked, the
choice of a probabilistic model implies a distribution
assumption for the missing entries. We take a max-
imum entropy approach, demanding our model to be
maximally noncommittal with respect to the missing
information. Such a model is suitable to address sev-
eral generative scenarios for partial rankings: One is
indifference of the ranker, i.e. a subject ranks t favorite
items, but does not have any preferences concerning
the remainder. Another setting are large sets of items,
where most subjects will not take the time to provide
a complete list (e.g. when the task is to specify a rank-
ing of favorites out of thousands of items). In general,
the approach is applicable unless prior information on
the popularity of items is available. A maximum en-
tropy approach is optimal in the sense that it does not
introduce implicit (hidden) assumptions on the choice
of items. This is a notable difference to the Haus-
dorff metric approach, for example, which constitutes
a worst-case assumption: The distance problem is re-
duced to the original metric by expanding a pair of
partial rankings into that consistent pair of complete
rankings which differs most under the inducing metric.

To express lack of knowledge w.r.t. to items beyond the
preferred t choices, we have to assume that the ranker’s
choice effectively encompasses all possible completions
of π to a complete ranking in S(r). In other words, suc-
cessive ranking of items is regarded as a constraining
process: By each additional item entered into the list,
the ranker constrains the set of possible completions.
A full ranking limits S(r) down to a single element. A
partial ranking defines the set C(π) of possible comple-
tions. Any model distribution P on complete rankings
can then be generalized to a distribution P t on par-



Cluster Analysis of Heterogeneous Rank Data

tial rankings by defining the probability of π under P t

as the total probability placed on the set C(π) by the
model P :

P t(π) := P (C(π)) =
∑

π̃∈C(π)

P (π̃) . (4)

For Mallows’ model based on the Kendall distance,
the probability P (C(π)) admits an elegant decompo-
sition. From a statistics point of view, the approach
can be regarded as a censored data problem. For the
Kendall metric, censored rank data has been consid-
ered in (Fligner & Verducci, 1986). They build on the
well-known fact that the Kendall distance, as well as
the Cayley and Hamming distances, can be decom-
posed into a sum. Define the following statistic for
each position j = 1, . . . , (r − 1) in a complete ranking
π of length r:

s̃j(π) :=
r∑

l=j+1

I{π−1(j) > π−1(l)} , (5)

where π−1 denotes the inverse of π in S(r) and I the
indicator function of a set. Intuitively, s̃j is the num-
ber of adjacent transpositions required to move item j
to position j, if the items at the previous 1, . . . , (j−1)
are already ordered. The sum over the statistics s̃j

is the Kendall distance of π and the identity permu-
tation IdS(r) (Fligner & Verducci, 1986). The metric
dτ is right-invariant, that is, for any π1, π2, π3 ∈ S(r),
dτ (π1π3, π2π3) = dτ (π1, π2). Hence, for any σ ∈ S(r),

dτ (π, σ) = dτ (πσ−1, IdS(r)) =
r−1∑
j=1

s̃j(πσ−1) . (6)

This representation is somewhat inconvenient for mod-
eling partial rankings, since the sum ranges over the
suffix of rank j, which includes empty positions. We
therefore substitute equivalent statistics sj involving
only indices up to j. For any permutation ρ, define

sj(ρ) := ρ(j)−
j∑

l=1

I{ρ(j) ≥ ρ(l)} . (7)

The Kendall metric is then computed as dτ (π, σ) :=∑r
j=1 sj(σπ−1), which avoids any explicit use of π:

Since π−1 is a top-t list, it is not invertible. The impor-
tance of the sum representation for modeling partial
rankings is that it can be decomposed into terms cor-
responding to filled and empty positions, respectively:

dτ (π, σ) =
t∑

j=1

sj(σπ−1) +
r∑

j=t+1

sj(σπ−1)

= st(σπ−1) + sempty(σπ−1) . (8)

The probability of the consistent set of π under Mal-
lows’ model can then be expressed as

P (C(π)|λ, σ) =
1

Z(λ)

∑
π̃∈C(π)

exp (−λdτ (π̃, σ))

=
exp

(
−λst(σπ−1)

)
Z(λ)

∑
π̃∈C(π)

exp
(
−λsempty(σπ̃−1)

)
The sum over C(π) depends only on t, and is absorbed
into the partition function Z(λ). Hence, the resulting
partition function Zt(λ) depends on t. The probability
of the partial ranking is thus

P (C(π)|λ, σ) =
1

Zt(λ)
exp

(
−λst(σπ−1)

)
, (9)

and we write P (π|λ, σ) := P (C(π)|λ, σ). The partition
function Zt can be derived from the (somewhat more
complicated) model in (Fligner & Verducci, 1986), as

Zt(λ) :=
t∏

j=1

1− e−λ(r−j+1)

1− e−λ
. (10)

The distribution is a maximum entropy model, as it
constitutes an exponential family distribution given
the modal ranking σ, with the functions sj as its suf-
ficient statistics. The choice of the location parameter
σ does not change the model’s entropy.

Heterogeneous, partial ranking data drawn from K
distinct groups can now be described by a mixture
model. Denote by t(π) the length of an arbitrary par-
tial ranking π. The generative model for the data is
then

Q(π|c,λλλ,σσσ) :=
K∑

k=1

ck

Zt(π)(λk)
e−λkst(π)(σπ−1

k ) . (11)

To summarize, lack of knowledge (or indifference of
a ranker) about the order of neglected items is ex-
pressed by substituting the consistent set of a ranking
in the modeling process. Probabilities are comparable
for rankings of different lengths. Formally, this holds
because the model is a distribution on the consistent
sets C(π). For any two rankings, the sets are nested
if one ranking prefixes the other, and are disjoint oth-
erwise. The mixture expresses the separation of the
rankers surveyed in the data into different groups or
types, each of which exhibits a “typical” preference
behavior. The data collected from rankers within a
single group will in general be heterogeneous. For a
given group, the modal ranking describes a consensus
preference, and the corresponding dispersion parame-
ter variation between the associated rankers.
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4. Model Inference

Our approach to inference is based on maximum like-
lihood (ML) estimation. For the mixture model de-
scribed above, the overall ML estimator of the model
parameters is approximated with an expectation-
maximization (EM) algorithm (McLachlan & Krish-
nan, 1997). In this section, we derive estimation equa-
tions for the heterogeneous data model, and discuss
the implementation of efficient EM algorithms for rank
data. Straightforward implementations of such algo-
rithms previously proposed for Mallows mixtures on
complete rankings (Murphy & Martin, 2003) require
the repeated evaluation of sums over all possible rank-
ings. Since the symmetric group S(r) has r! elements,
such methods are only applicable for rankings with a
small number of entries.

For data πi, i = 1, . . . , n and K clusters, we define bi-
nary class assignment vectors Mi := (Mi1, . . . ,MiK).
If πi is assigned to cluster k, then Mik = 1 and all
other entries are set to zero. These are the hidden
variables of the EM estimation problem. The EM
algorithm relaxes the binary assignments to assign-
ment probabilities qik := E [Mik], where qik ∈ [0, 1]
and

∑
k qik = 1 for each i. The E-step of the al-

gorithm computes estimates of the assignment prob-
abilities conditional on the current parameter config-
uration of the model. Given estimates of the com-
ponent parameters λk, σk and the mixture weight ck

for each cluster k, assignment probabilities are esti-
mated as qik := ckP t(πi|λk,σk)∑K

l=1 clP t(πi|λl,σl)
. In the M-step, as-

signment probabilities are assumed to be given. For
each cluster, the parameters to be estimated are ck,
λk and σk. As for any mixture model EM algorithm,
the mixture weights are straightforwardly computed
as ck := 1

n

∑n
i=1 qik. ML estimation of the component

parameters σk, λk proceeds in two steps, first obtain-
ing an estimate of σk (which does not depend on λk),
and then estimating λk conditional on σk. This is rem-
iniscent of e.g. the two-stage ML estimation of location
and scale parameters for Gaussian models. The modal
ranking ML estimate is

σ̂k = arg max
σk

log
n∏

i=1

P (πt
i |λk, σk)qik

= arg min
σk

n∑
i=1

qik

t(πi)∑
j=1

sj(σkπ−1
i ) . (12)

Rather than evaluating the minimum over the whole
group, our algorithm performs a local search step, by
minimizing over all adjacent transpositions around the
estimate σ̃k obtained during the previous M-step. This
strategy is equivalent to searching within a dτ -radius of

1. When initialized at random, the algorithm may thus
require several steps until it reaches the correct σk.
The local search results in a generalized EM (GEM)
algorithm, since the conditional likelihood is increased
but not fully maximized during the M-step. General-
ized EM algorithms satisfy the EM convergence condi-
tions and retain EM convergence guarantees (McLach-
lan & Krishnan, 1997). Our control experiments in
Sec. 5 clearly indicate that the local estimation ap-
proach is adequate. If modal ranking estimation er-
rors occur, they are due to ambiguous data, i.e. data
drawn from clusters for which the distance between the
modal rankings is small w.r.t. to their dispersion. Lo-
cal search over transpositions reduces the estimation
costs for σk from r! to r evaluations.

Since the dispersion parameter is continuous, a maxi-
mum condition for the likelihood w.r.t. λk can be ob-
tained by differentiation. Setting the derivative of the
log-likelihood of one mode to zero yields

−
n∑

i=1

∂

∂λk
log Zt(πi)(λk) =

n∑
i=1

d(πi, σk) . (13)

For our heterogeneous data model as described in
Sec. 3, (i) the partition function has a closed-form so-
lution and the derivative can be obtained explicitly,
and (ii) the model has to be decomposed over different
types of rankings, since the partition function depends
on t. Assume that the observations πi have different
lengths t ∈ {1, . . . , r}. Denote by It ⊂ {1, . . . , n} the
set of indices i for which πi has length t. The log-
likelihood of the complete data set under cluster k is

log
n∏

i=1

P (πi|λk, σk) =
r∑

t=1

∑
i∈It

log P (πi|λk, σk)

= −
r∑

t=1

|It| log(Zt(λk)) −
r∑

t=1

∑
i∈It

λk

t∑
j=1

sj(σkπ−1
i )

Equating the derivative to zero gives

−
r∑

t=1

|It|
∂

∂λk
log(Zt(λk)) =

n∑
i=1

t(πi)∑
j=1

sj(σkπ−1
i ) .

(14)
The derivative of log(Zt(λk)) for given t is

∂

∂λk
log(Zt(λk)) =

r∑
j=r−t+1

j

ejλk − 1
− t

eλk − 1
.

This expression is both rapidly computable and
smooth w.r.t. λk. The right hand side of (14) does
not depend on λk, hence the maximum likelihood es-
timator λ̂k can be efficiently evaluated by numerical
solution of equation (14).
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Table 1. Estimation errors on artificial data of sample size
n = 300, with K = 3 clusters. For uniform c, all clusters
have equal size. For non-uniform c, cluster sizes differ.

Settings Results
c d λ K̂ error ĉ error λ̂

[2, 9, 9] 0.50 1 0.033 0.086
1.00 3 0.007 0.056
1.50 3 0.027 0.151

[8, 6, 6] 0.50 1 0.155 0.274

un
ifo

rm

1.00 3 0.029 0.094
1.50 3 0.016 0.050

[2, 9, 9] 0.50 1 0.248 0.324
1.00 3 0.013 0.032
1.50 3 0.001 0.048

[8, 6, 6] 0.50 1 0.189 0.331
1.00 3 0.047 0.144no

n-
un

ifo
rm

1.50 3 0.013 0.057

5. Experimental Results

The experiments include artificial and real-world rank
data. The mixture analysis with artificial data drawn
from a density with known parameters is conducted to
evaluate the algorithm’s effectiveness in recovering pa-
rameters from rank data. Additional experiments are
conducted on the American Psychological Association
(APA) data set (Diaconis, 1989). All experiments are
performed with the EM algorithm described in Sec. 4.
The number of clusters is selected by a Bayesian In-
formation Criterion (BIC) (McLachlan & Krishnan,
1997). For comparison, we use a clustering approach
based on the completion method described in (Beckett,
1993). The method explicitly estimates a maximum
likelihood completion to a full ranking by treating the
missing positions as latent information, and assum-
ing complete rankings to be distributed according to
a Mallows model. An estimate of the full ranking is
obtained with an EM algorithm, which alternatingly
estimates a Mallows model from current completion
estimates, and then estimates completions based on
the current model. The method can be used as basis
for partial rank data clustering model, by performing

Table 2. Long rankings: Estimation error comparison for
ranking length r = 20, with K = 10 clusters and n = 1000
samples (uniform over partial lengths).

Method error σ̂k error λ̂k

Maximum Entropy 0 0.06± 0.01
Beckett’s completion 1.52± 0.57 0.11± 0.02

Figure 1. Full versus restricted data set: Average estima-
tion error for cluster assignments (vertical) versus the num-
ber of ranking types present in the data set (horizontal).

Figure 2. APA data set: Variance of dispersion estimates
(vertical) versus number of ranking types present in the
data set (horizontal), for our method (left) and Beckett’s
completion model (right). Minimum length 5 corresponds
to the subset of complete rankings, 1 to the whole data set.
The variance is computed over 20 bootstrap samples.

completions based on the data currently assigned to
a cluster during the clustering E-step, and performing
maximum likelihood estimation for the mixture com-
ponents given the current completion estimates during
the M-step.

5.1. Synthetic Data

Synthetic data observations were drawn at random
from a mixture model (11). Sample experiments for
r = 5 items and K = 3 clusters are shown in Tab. 1.
By d, we denote the pairwise Kendall distances be-
tween the cluster centers. The quality of parame-
ter estimates is reported as mean squared error on
n = 300 observations. The BIC estimate K̂ of the
number of clusters is accurate except for very small λ
which corresponds to broad modes. This behavior is
expected since the different modes strongly overlap for
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small λ and, consequently, are not resolvable for the
chosen number of observations. When BIC underes-
timates the number of clusters, the estimation errors
for λ and c generally increase. Estimation errors in-
crease again for λ = 1.5 in the case of two close clus-
ters (d = [2, 9, 9]), a distortion effect caused by points
of the neighboring cluster. The dispersion at which
the effect becomes visible depends on a trade-off be-
tween the dispersion and the distance of the clusters.
It will occur at a larger value of λ if the clusters are
closer. Remarkably, the modal rankings σk are always
estimated correctly, unless the estimate of the cluster
number is wrong.

The value of partial rankings for estimation is illus-
trated by Fig. 1. EM estimation of the mixture model
was conducted on a random data set, with r = 5 and
a proportion of 25% complete rankings. The partial
rankings of lengths {1, 2, 3} are also drawn with prob-
ability 0.25 each. The estimation error for the clus-
ter assignments was recorded and plotted against the
number of ranking length types present in the data
(horizontal), where 5 denotes the case where all partial
rankings are removed from the data set, correspond-
ing to the common practice of analyzing only the sub-
set of complete rankings. When more categories are
added (with 1 corresponding to the complete hetero-
geneous data set), we observe a significant decrease in
both the estimation error and its variance. A double-
logarithmic plot of these results reveals an approxi-
mate scaling behavior of O(1/

√
n). We conclude that,

at least in the controlled setting of synthetically gener-
ated data, the inference procedure is capable of using
the information carried by partial rankings to its ad-
vantage.

Comparisons with Beckett’s completion method were
conducted for rankings of length r = 5 and r = 20
on synthetic data. Parameter estimates obtained by
our method are more accurate then those obtained by
the completion approach. The difference is statisti-
cally significant even for r = 5, and becomes more
pronounced as the number of items is increased. Re-
sults for r = 20 are reported in Tab. 2. Application of
Beckett’s method to rankings of this length requires a
modification of the original algorithm. Beckett’s esti-
mation step completely enumerates the consistent set
of each partial ranking, and hence scales exponentially
in the number of unranked items. It can be made ap-
plicable to large rankings by substituting a sampling
step, at the price of an increase in the variance of esti-
mates. The completion method introduces an error in
the estimation of the modal ranking. Errors are caused
by the large number of latent variables required by the
completion model, which result in diffuse distributions

of the cluster assignments.

5.2. APA Data

The APA data set of real-world rankings was obtained
from the results of the American Psychological Asso-
ciation’s 1980 presidential election. Each ballot is a
ranking of five candidates. The data set is remarkably
large (about 15,000 observations) and it has been ex-
tensively analyzed (Diaconis, 1988). The data is het-
erogeneous, that is, only 5738 ballots contain complete
rankings. The remainder contains top-t rankings of
all possible lengths t = 1 through t = 3 (note that
t = 4 is equivalent to a complete ranking). Since no
ground-truth is available for this data, the estimation
errors cannot be computed. However, to analyze the
value of the partial rankings for estimation accuracy,
we consider the variance of the estimate of λ. Fig. 2
shows a plot of the bootstrap variance estimate of the
estimators λ1, . . . , λK , for both our model and clus-
tering based on Beckett’s completion approach. The
variance estimates are plotted versus the number of
ranking types (i.e. different lengths). The error bars
meausure variances over multiple repetitions of the
bootstrap estimation experiment. For our maximum
entropy model (left), inclusion of additional partial ob-
servations in the analysis clearly stabilizes parameter
estimates. The variance remains notably higher for
the Beckett approach (right). Using Beckett’s comple-
tion requires latent variables to account for the missing
positions, in addition to the assignment variables re-
quired by the mixture model. Since additional latent
variables increase the overall entropy of the model, the
completion approach has a destabilizing effect, which
becomes more pronounced as the proportion of par-
tial rankings in the data increases. It will also slow
down convergence of the inference algorithm, as the
convergence speed of EM algorithms depends on the
proportion of latent variables (McLachlan & Krishnan,
1997).

6. Conclusion

We have presented an unsupervised clustering ap-
proach for ranking data that is capable of perform-
ing an integrated analysis on heterogeneous, real-world
data, rather then decimating the data to fit the model.
An efficient EM algorithm has been derived and shown
to recover parameters accurately from data.

Our method offers two advantages compared to rank
data clustering techniques available in the literature:
(i) the ability to analyze a data set composed of dif-
ferent ranking types, and (ii) efficient inference. The
value of the former point was demonstrated by our



Cluster Analysis of Heterogeneous Rank Data

experiments: Removing partial rankings from a given
data set significantly reduces the accuracy of parame-
ter estimates. For data containing only complete rank-
ings, a decrease in estimation accuracy would have to
be expected if samples are removed. That the same ef-
fect is observable (Fig. 1) when the removed rankings
are partial shows that incomplete rankings carry valu-
able information – even those containing only a single
entry.

However, on real-world survey data, this effective loss
in sample size is not the only consequence of removing
data. In a survey, ranking only partially may consti-
tute a typical behavior. That is, if providing a par-
tial rather than a complete ranking correlates with
certain preferences, removing partial rankings will ex-
clude these modes of behavior from the analysis. In
addition to reducing the sample size, it also introduces
a systematic bias. Both drawbacks can be avoided
by automatic analysis methods capable of processing
heterogeneous data, and combining estimate contribu-
tions obtained on rankings of different lengths in a
meaningful way. Our modeling approach permits the
natural integration of different length types by defining
a distribution on the subset of completions consistent
with a given partial ranking.

Algorithmic inference of our model is substantially
more efficient than the algorithms available in the
literature for distance-based models. The EM algo-
rithm presented in Sec. 4 scales linearly in the number
of ranked items (i.e. the order r of the permutation
group), rather than exponentially, as other algorithms
do (Murphy & Martin, 2003).

Our modeling approach relies on the decomposition of
the Kendall distance into a sum over ranking positions
and, therefore, it generalizes to ranking metrics with
the same property. Such a decomposition is known for
the Kendall, Cayley and Hamming distances, but re-
sults from Weyl group theory suggest that it does not
exist for other metrics (Diaconis, 1988). Approximate
decompositions for other metrics, however, might ren-
der efficient relaxations possible which would general-
ize our approach to these cases. Our emphasis on the
Kendall metric is motivated by its ubiquitous usage
in rank mixture analysis and by its natural properties
(see Sec. 3.1) for rank comparisons.
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