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Abstract

The general principles of Bayesian data analysis imply that models for survey responses
should be constructed conditional on all variables that affect the probability of inclusion and
nonresponse, which are also the variables used in survey weighting and clustering. However, such
models can quickly become very complicated, with potentially thousands of post-stratification
cells. It is then a challenge to develop general families of multilevel probability models that
yield reasonable Bayesian inferences. We discuss in the context of several ongoing public health
and social surveys. This work is currently open-ended, and we conclude with thoughts on how
research could proceed to solve these problems.
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1 Background

Survey weighting is a mess. It is not always clear how to use weights in estimating anything more

complicated than a simple mean or ratios, and standard errors are tricky even with simple weighted

means. Contrary to what is assumed by many theoretical statisticians, survey weights are not in

general equal to inverse probabilities of selection but rather are constructed based on a combination

of probabilities and nonresponse adjustments.

Regression modeling is a potentially attractive alternative to weighting. In practice, however,

the potential for large numbers of interactions can make regression adjustments highly variable.

This paper reviews the motivation for hierarchical regression, combined with poststratification, as

a strategy for correcting for differences between sample and population. We sketch some directions

toward a practical solution, which unfortunately has not yet been reached.

1.1 Estimating population quantities from a sample

Our goal is to use sample survey data to estimate a population average or the coefficients of

a regression model. The regression framework also includes small-area estimation, since that is

simply a regression on a discrete variable corresponding to indicators for the small areas.

∗We thank John Carlin, Julian Teitler and Sandra Garcia for helpful discussions, and the National Science Foun-
dation for financial support.
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Figure 1: The proportion of adults surveyed who answered yes in the Gallup Poll to the question,
“Are you in favor of the death penalty for a person convicted of murder?”, among those who
expressed an opinion on the question. It would be interesting to estimate these trends in individual
states.

We shall consider two running examples: a series of CBS/New York Times national polls from

the 1988 election campaign, and the New York City Social Indicators Survey, a biennial survey of

families that is conducted by Columbia University’s School of Social Work (Garfinkel and Meyers,

1999, Meyers and Teitler, 2001, Garfinkel et al., 2003). Both sets of surveys use random digit

dialing.

For the pre-election polls, our quantity of primary interest is the proportion of people1 who

support the Republican candidate for President in the country or in each state. We would also like

to use series of national polls to estimate state-by-state time trends, for example in the support for

the death penalty over the past few decades. (See Figure 1 for the national trends.)

For the Social Indicators Survey, we are interested in population average responses to ques-

tions such as, “Do you rate the schools as poor, fair, good, or very good?”, average responses in

subpopulations (for example, the view of the schools among parents of school-age children), and

so-called “analytical” studies that can be expressed in terms of regressions (for example, predicting

total satisfaction given demographics and specific attitudes about health care, safety, etc.). In this

paper, we focus on trends from 1999 to 2001, as measured by changes in two successive Social

Indicators Surveys, on a somewhat arbitrary selection of questions chosen to illustrate the general

concerns of the survey.

Table 1 shows the questions, the estimated average responses in each year, and the estimated

differences and standard errors as obtained using two different methods of inference. This paper

is centered on the puzzle of how these two estimation methods differ. We shall get back to this

1Or the proportion of voters who support the Republican candidate, which is a ratio: the proportion of people who
will vote and support the Republican, divided by the proportion who will support the Republican. It is straightforward
to move from estimating a population mean to estimating this ratio, as discussed in the context of this example by
Park, Gelman, and Bafumi (2004).
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(a) time (b) linear (a) time (b) logistic

weighted change regression change regression

averages in coefficient on logit coefficient

Question 1999 2001 percent of time scale of time

Adult in good/excellent health 75% 78% 3.4% (2.4%) 6.6% (1.4%) 0.19 (0.13) 0.48 (0.10)

Child in good/excellent health 82% 84% 1.7% (1.5%) 1.2% (1.3%) 0.24 (0.21) 0.18 (0.20)

Neighborhood is safe/very safe 77% 81% 4.5% (2.3%) 4.1% (1.5%) 0.27 (0.14) 0.27 (0.10)

Table 1: Estimates for some responses from two consecutive waves of the New York City Social
Indicators Survey, and estimated changes, with standard errors in parentheses. Changes are esti-
mated in percentages and on the logit scale. In each scale, two estimates are presented: (a) simple
differences in weighted means, (b) regression controlling for the variables used in the weighting.
Approaches (a) and (b) can give similar results but sometimes are much different.

question in a moment after reviewing some basic ideas in survey sampling inference.

1.2 Poststratification and weighting

Naive promulgators of Bayesian inference—or the modeling approach to inference in general—used

to say that the method of data collection was irrelevant to estimation from survey data. All that

matters, from this slightly misguided perspective, is the likelihood, or the model of how the data

came to be. However, as has been pointed out by Rubin (1976), the usual Bayesian or likelihood

analysis implicitly assumes the design is “ignorable,” which in a sampling context roughly means

that the analysis include all variables that affect the probability of a person being included in the

survey (see chapter 7 of Gelman et al., 2003, for a review).

In a regression context, the analysis should include, as “X variables,” everything that affects

sample selection or nonresponse. Or, to be realistic, all variables should be included that have an

important effect on sampling or nonresponse, if they also are potentially predictive of the outcome

of interest. In a public survey such as the CBS polls, a good starting point is the set of variables

used in their weighting scheme: number of adults and number of telephone lines in the sampled

household; region of the country; and sex, ethnicity, age, and education level of the respondent

(see Voss, Gelman, and King, 1995). For the Social Indicators Survey, we did our own weighting

(Becker, 1998) using similar information: number of telephone lines (counted as 1/2 for families

with intermittent phone service), number of adults and children in the family, and ethnicity, age,

and education of the head of household. Weights for each survey are constructed by multiplying a

series of factors.

With this as a reference, we quickly review the unified notation for poststratification and survey

weighting of Little (1991, 1993) and Gelman and Carlin (2001). Here we use the notation y, z for

variables that are observed in the sample only, and X for variables that are observed in the sample

and known in the population.
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Poststratification. The purpose of poststratification is to correct for known differences between

sample and population. In the basic formulation, we have variables X whose joint distribution

in the population is known, and an outcome y, whose population distribution we are interested in

estimating. We shall assume X is discrete, and label the possible categories of X as poststratification

cells j, with population sizes Nj and sample sizes nj. In this notation, the total population size is

N =
∑J

j=1 Nj and the sample size is n =
∑J

j=1 nj. The implicit model of poststratification is that

the data are collected by simple random sample within each of the J poststrata. The assignment of

sample sizes to poststrata is irrelevant. In fact, classical stratification (in which the sampling really

is performed within strata) is a special case of poststratification as we formulate it. We assume the

population size Nj of each category j is known. These categories include all the cross-classifications

of the predictors X.2

The population mean of any survey response can be written as a sum over poststrata:

definition of population mean: θ =

∑J
j=1 Njθj

∑J
j=1 Wj

,

with corresponding estimate

poststratified estimate: θ̂PS =

∑J
j=1 Nj θ̂j

∑J
j=1 Nj

.

We use the general notation θj rather than Ȳj to allow for immediate generalization to other

estimands such as regression coefficients.

Weighting. When you look at sample survey data from a public-use dataset, the “survey weight”

looks like a unit-level characteristic—just one more column in the data—and it’s easy to think of

it almost as a survey response, wi. In this context it seems natural to use weighted averages of the

form ȳ =
∑n

i=1(wiyi)/
∑n

i=1 wi.

But survey weights are not attributes of individual units—they are constructions based on an

entire survey. Within any poststratification cell, all units have the same weight.3 We shall refer to

2In some cases the cell populations are unknown and must be estimated. For example, in the Social Indicators
Survey, we adjust to estimated demographics from the Current Population Survey, which includes about 2000 New
York City residents each year. This is enough to give reliable estimates of one-way and two-way margins (for example,
the proportion of city residents who are white females, white males, black females, black males, etc.), but the counts
are too sparse to directly estimate deep interactions (for example, the proportion who are white females, 30–45,
married, with less than a high school education, etc.). The usual practical solution in this case is to poststratify on
the margins (that is, raking; see, for example, Deville, Sarndal, and Sautory, 1993). If the whole table of population
counts is required, it can be estimated using iterative proportional fitting (Deming and Stephan, 1940) which sets
interactions to be as small as possible while being consistent with the available population data. For this paper, we
shall ignore this difficulty and treat the full vector of Nj ’s as known.

3In theory, continuously-varying survey weights could arise from a survey with a continuous range of sampling
probabilities. For example, one could imagine a survey of college-bound students where the probability of selection
is a continuous function of background variables (e.g., Pr(selection) = logit−1(a + b · SAT)). Or one could model
nonresponse as a continuous function of predictors such as age and previous health status in a medical surveys. These
continuous weights do not come up much the sorts of social surveys under consideration in this paper, but they are
interesting research directions that are potentially important in other areas of application.
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respid org year survey y state edu age female black adults phones weight

11352 6140 cbsnyt 7 9158 NA 7 3 1 1 0 2 1 923

11353 6141 cbsnyt 7 9158 1 39 4 2 1 0 2 1 558

11354 6142 cbsnyt 7 9158 0 31 2 4 1 0 1 1 448

11355 6143 cbsnyt 7 9158 0 7 3 1 1 0 2 1 923

11356 6144 cbsnyt 7 9158 1 33 2 2 1 0 1 1 403

Table 2: Data from the first five respondents of a CBS pre-election poll. The weights are listed as
just another survey variable, but they are actually constructed after the survey has been conducted,
so as to match sample with known population information.

unit weights wi, i = 1, . . . , n, and cell weights Wj = njwi for units i within cell j.

weighted average: ȳ =

∑n
i=1 wiyi

∑n
i=1 wi

=

∑J
j=1 Wj ȳj

∑J
j=1 Wj

. (1)

Survey weights in general depend on the actual data collected as well as on the design of

the survey. For example, consider the seven CBS polls conducted during the week before the

1988 Presidential election. These surveys had identical designs and targeted the same population.

However, the weighting factor assigned to men (compared to a factor of 1 for women) varies from as

low as 1.10 to 1.27 among the seven surveys. The different samples happened to contain different

ratios of men to women and hence needed different adjustments.

1.3 Competing methods of estimation: weighted averages, weighted regression,

and unweighted regression controlling for X

Many researchers have noted the challenge of using survey weights in regression models (as reviewed,

for example, by DuMouchel and Duncan, 1983, Kish, 1992, and Pfefferman, 1993). For the goal

of estimating a population mean, it is standard to use the weighted average (1), but it is not so

clear what to do in more complicated analyses. For example, when estimating a regression of y on

z, one recommended approach is to use weighted least squares, and another option is to perform

unweighted regression of y on z, also controlling for the variables X that are used in the weighting.

Computing standard errors is not trivial for weighted estimates, whether means or regressions,

because the weights themselves are random variables that depend on the data. In particular, correct

classical standard errors cannot simply be obtained from the data and the weights; one also needs

to know the procedure used to create the weights. Table 3 illustrates problems with some variance

estimates that do not account for the weighting design. Similarly, with regressions, simple weighted

regression procedures do not in general give correct standard errors.
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True Different standard error estimates

standard assuming conditioning assuming design-

Opinion of NYC error SRS on weights inv-prob based

Become a better place 2.2% 1.2% 2.5% 1.9% 2.1%

Remained the same 2.0% 1.2% 2.3% 1.6% 1.9%

Gotten worse 2.0% 1.2% 2.4% 1.7% 2.0%

Table 3: From simulation study: true standard error and four different standard error estimates
for a question on the Social Indicators Survey. Ignoring the weighting or treating the weights as
constant underestimates uncertainty, whereas uncertainty is overestimated by treating the weights
as inverse probabilities. Accurate standard errors can be obtained using a jackknife-like procedure
that explicitly takes account of the design of the weighting procedure. From Lu and Gelman (2003).

1.4 The crucial role of interactions

Consider a regression of y on z, estimated in some way from a survey where inclusion probabilities

depend on X. In general, y can depend on both X and z, in which case the appropriate way

to estimate the regression of y on z is to regress y on X, z and then average over the population

distribution of X. In general, estimating the regression of y on z requires estimation of the relation

between z and X as well (Graubard and Korn, 2002).

Because of the potential dependence of z and X, it can be important to include interactions

between these predictors in the model for y, even if the ultimate goal is simply to estimate the

relation between y and z.

2 The challenge

2.1 Estimating simple averages and trends

We now return to the example of Table 1. The goal is to estimate Ȳ 2001 − Ȳ 1999, the change

in population average response between two waves of the Social Indicators Survey. This can be

formulated as the coefficient β1 in a regression of y on time: y = β0 + β1z + error, where the data

from the two surveys are combined, z = 0 and 1 for respondents of the 1999 and 2001 surveys,

respectively. Or, y = β0 + β1z + β2X + error, where β2 is a vector of coefficients for the variables

X used in the weighting. Now the quantity of interest is β1 + β2(X
2001

− X
1999

), to account for

demographic changes between the two years. For New York City these changes were minor, and

we would be happy to simply estimate β2.

This brings us to the puzzle of Table 1. For each of three binary outcomes y, we compute the

weighted mean for each year, ȳ1999
w and ȳ2001

w , and two estimates of the change:

• Our first estimate is the simple difference, ȳ2001
w −ȳ1999

w , with standard error
√

var(ȳ2001
w ) + var(ȳ1999

w ),

where the sampling variances are computed using the design of the weights (as in the right-
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most column in Table 3).

• Our other estimate is obtained by linear regression. We combine the data from the two

surveys into a single vector, y = (y1999, y2001) and create an associated indicator vector z that

equals 0 for the data from 1999 and 1 for the data from 2001. We fit a linear regression of

y on z, also controlling for the variables X used in the weighting.4 To estimate the change

from 1999 to 2001, we use the coefficient of z, with standard error automatically coming from

the (unweighted) regression.

As indicated in the third and fourth column of Table 1, the change in weighed averages and

the regression coefficient tend to have the same sign, but the two estimates sometimes differ quite

a bit in magnitude. (Similar results are obtained if we work on the logit scale, as can be seen from

the final two columns of the table.)

What should we believe? For this particular example, the direct analysis of weighted averages

seems more believable to us, since we specifically created the weighting procedure for the goal of

estimating these citywide averages. More generally, however, using weighted averages is awkward

and we would prefer to use the more general techniques of regression and poststratification.

Where do we go from here? We would like an approach to statistical analysis of survey data

that gives the right answers for simple averages and comparisons, and can be smoothly generalized

to more complicated estimands.

2.2 Deep poststratification

One of the difficulties of survey weighting is that the number of poststratification cells can quickly

become large, even exceeding the number of respondents. This leads naturally to multilevel mod-

eling to obtain stable estimates in all the poststratification cells, even those with zero or one

respondent. Choices must then be made in the modeling of interactions.

For example, in our time-trend estimation problem, we could model y = β0 + β1z + β2X +

β3Xz +error, where β3 is a vector of coefficients for the interaction of X and time. We would then

be interested in β1 + β2(X
2001

− X
1999

) + β3X
2001

. Where should the interaction modeling stop?

The practical problem of adjusting for survey nonresponse leads to general questions of inference

under multi-way interactions, an issue that becomes even more relevant in small-area estimation.

Gelman and Carlin (2001) and Park, Gelman, and Bafumi (2004) discuss the estimation of state-

by-state opinions from national polls, using a hierarchical logistic regression with demographics

and state effects, followed by poststratification on Census population totals for 64 demographic

categories in each of the 50 states. The method worked well, but it is not clear how it would

perform if the model included interactions of demographic and state effects.

4These X variables are number of adults in household, number of children in family, number of telephone lines,
marital status, and sex, age, ethnicity, and education, and ethnicity × education for head of household.
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3 Using regression modeling to connect weighting and poststrat-

ification

When cell means are estimated using certain linear regression models, poststratified estimates can

be interpreted as weighted averages (Little, 1991, 1993). The idea is to work with the poststratified

estimate (1.2)—an average over cell estimates θ̂j, with the regression model providing the θ̂j’s

based on characteristics of the cells j. Under certain conditions, the poststratified estimate can be

reinterpret this as a weighted average of the form (1), and then we can solve for the cell weights

Wj and the unit weights wi.

3.1 Classical models

Full poststratification. The simplest case is full poststratification of raw data, in which case

the cell estimates are the cell means, θ̂j = ȳj, and (1.2) becomes

θ̂PS =

∑J
j=1 Nj ȳj

∑J
j=1 Nj

,

which is equivalent to (1) with cell weights Wj ∝ Nj or unit weights wi ∝ Nj(i)/nj(i), where j(i) is

the poststratification cell to which unit i belongs.

This estimate can also be viewed as a classical regression including indicators for all J post-

stratification cells.

No weighting. The other extreme is no weighting, that is, unit weights wi = 1 for all i, which

is equivalent to poststratification if the cell estimates θ̂j are all equal to the sample mean ȳ, which

in turn corresponds to classical regression including only a constant term.

Classical regression on cell characteristics. Intermediate cases of weighting can be obtained

by regression models that include information about the poststratification cells without going to

the extreme of fitting a least-squares predictor to each cell. For example, in the CBS/New York

Times pre-election surveys, one could regress y on indicators for sex, ethnicity, age, education, and

region, without necessarily including all their interactions.

Suppose the regression model is y ∼ N(Xβ, σ2
yI). We shall use X to represent the n× k matrix

of predictors in the data, and Xpop to represent the J × k matrix of predictors for the J poststrat-

ification cells. We also label the vector of poststratum populations as N pop = (N1, . . . , NJ), with

a sum of N =
∑J

j=1 Nj.

The estimated vector of regression coefficients is then β̂ = (XtX)−1Xty, and the estimated cell
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means are Xpopβ̂. The poststratified estimate of the population mean is then,

θ̂PS =
1

N

J
∑

j=1

Nj(X
popβ̂)j

=
1

N
(Npop)tXpop(XtX)−1Xty, (2)

which can be written as θ̂PS = 1
n

∑n
i=1 wiyi, with a vector of unit weights,

w =
( n

N
(Npop)tXpop(XtX)−1Xt

)t
. (3)

For convenience, we have renormalized these weights to sum to n (see below). In 3, w is a vec-

tor of length n that takes on at most J distinct values. The vector of J possible unit weights

(corresponding to units in each of the J poststrata) is,

wpop =
( n

N
(Npop)tXpop(XtX)−1(Xpop)t

)t
, (4)

and the poststratified estimate can also be expressed as,

θ̂PS =
1

n

J
∑

j=1

wpop
j ȳj .

The key result that makes the above computations possible—that allows θ̂PS to be interpreted

as a weighted average of data—is that the derived unit weights w in (3) sum to n. The identity
∑n

j=1 wj = n can be proved using matrix algebra but is more easily derived from an invariance

in the classical regression model. With a least-squares regression, if a constant is added to all the

data, that same constant will be added to the intercept, with the other coefficients not changing

at all. The expression (2) includes exactly 1 of the intercept, and so when θ̂PS is expressed as

θ̂PS = 1
n

∑n
i=1 wiyi, these wi/n’s must sum to 1.

The left panel of Figure 2 shows the unit weights obtained by fitting a sequence of classical

regression models to the CBS/New York Times survey data. As more factors and interactions are

included, the weights become more variable.

3.2 Hierarchical models

Hierarchical regression. The results above can be immediately generalized to multilevel regres-

sion models in which some of the coefficients are batches of indicator variables. We shall generalize

the regression model to y ∼ N(Xβ,Σy) with a prior distribution on β of the form β ∼ N(0,Σβ). For

simplicity, we assume independence of the components of β in the prior distribution, conditional

on hyperparameters for the variance components.

The prior precision matrix Σ−1
β is then diagonal, with zeroes for non-hierarchical regression

coefficients (including the constant term in the regression). For example, consider a regression for

the CBS/New York Times polls, with the following predictors:
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Figure 2: Implicit weights wi for one of the CBS/New York Times surveys, based on a series
of models fit first using classical regression and then using Bayesian hierarchical regression. The
models are nested, controlling for (1) male/female, (2) also black/white, (3) also male/female ×

black/white, (4) also four age categories, (5) also four education categories, (6) also age × education,
(7) also state indicators. Each model includes more factors and thus has more possible weights,
which are renormalized to average to 1 for each model. For the Bayes models, the indicators for
age, education, age × education, and state are given independent batches of varying coefficients.
For the classical weights, model (7) is not included because of collinearity.
The lines in each graph connect the weights for individual respondents, which are divided into
successively more categories as predictors are added to the models.

• A constant term

• An indicator for sex (1 if female, 0 if male)

• An indicator for ethnicity (1 if black, 0 otherwise)

• Sex × ethnicity

• 4 indicators for age categories

• 4 indicators for education categories

• 16 age × education indicators.

The classical regression has 1+1+1+1+3+3+9=19 predictors (avoiding collinearity by excluding

the baseline age and education categories). The hierarchical regression has 1+1+1+1+4+4+16=28

predictors, and its prior precision matrix has the form,

Σ−1
β = Diag(0, 0, 0, 0, σ−2

age , σ
−2
age, σ

−2
age, σ

−2
age, σ

−2
edu, σ−2

edu, σ−2
edu, σ−2

edu, σ−2
age.edu, . . . , σ−2

age.edu), with the pa-

rameters σage, σedu, σage.edu estimated from data.
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The estimated vector of regression coefficients is then β̂ = (XtΣ−1
y X + Σ−1

β )−1XtΣ−1
y y, and

expressions (2)–(4) become,

θ̂PS =
1

N
(Npop)tXpop(XtΣ−1

y X + Σ−1
β )−1Xtσ−1

y y

w =
( n

N
(Npop)tXpop(XtΣ−1

y X + Σ−1
β )−1XtΣ−1

y

)t

wpop =
( n

N
(Npop)tXpop(XtΣ−1

y X + Σ−1
β )−1(Xpop)tΣ−1

y

)t
. (5)

Conditional on the variance parameters in Σy and Σbeta, then, estimates from this model correspond

to weighted averages.

The right panel of Figure 2 shows the unit weights obtained by fitting a sequence of Bayesian

models to the CBS/New York Times poll. The first three models are actually identical to the

classical versions, since we assign noninformative uniform prior distributions to the coefficients for

sex, ethnicity, and their interactions. Models 4 and 5 are similar to the classical fits because age

and education have only four categories, so there is little information available for partial pooling

of these effects (see Gelman, 2005). The weights in model 6, with age × education interactions

included, are smoothed somewhat compared to the corresponding classical model. Finally, intro-

ducing state effects leasds to a downweighting of some of respondents in states that happen to

be overrepresented in the survey, and an upweighting for respondents in the undersampled states.

There is no corresponding classical model here because the survey does not actually include data

from all 50 states.

Exchangeable normal model. To understand these formulas better, we consider the special

case of an exchangeable normal model for the J cell means (see also Lazzeroni and Little, 1998,

and Elliott and Little, 2000). This model can be expressed in terms of the cell means:

ȳj ∼ N(θj , σ
2/nj)

θj ∼ N(µ, σ2
θ).

This is a special case of the hierarchical regression model discussed above, so we already know

that the poststratified estimate, conditional on the (estimated) variance parameters σy, σθ, can be

expressed as a weighted average of the cell means, ȳj, or equivalently as a weighted average of the

data points yi.

In this simple example, however, we can gain some understanding by deriving algebraic expres-

sions for the weights. Our goal is to express them in terms of the completely-smoothed weights,

wj = 1, and the weights from full poststratification, wj = Nk/N
nj/n .

We start with the posterior means (conditional on the variance parameters) of the cell means.

We write these as θ̂k, k = 1, . . . , J (using k as a subscript rather than k because this results in more
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convenient notation later):

θ̂k =

nk

σ2
y
yk + 1

σ2

θ

µ̂

nk

σ2
y

+ 1
σ2

θ

, (6)

where

µ̂ =

∑J
k=1

1
σ2

y/nk+σ2

θ

yk

∑J
k=1

1
σ2

y/nk+σ2

θ

. (7)

We can combine (6) and (7) to express each θ̂j as a linear combination of the cell means ȳk:

θ̂k =

J
∑

j=1

ckj ȳj.

After some algebra, we can write these coefficients as

ckj =







σ2
y

nk
AkAj/A for j 6= k

σ2
θAk +

σ2
y

nk
A2

k for j = k,

where

Ak =

J
∑

k=1

1

σ2
y/nk + σ2

θ

.

The payoff now comes in computing the poststratified estimate,

θ̂PS =

J
∑

k=1

Nkθ̂/N

=

J
∑

k=1

J
∑

j=1

Nk

N
ckj ȳj

and equating this to
∑j

j=1 Wj ȳj, thus deriving the cell weights,

Wj =
J

∑

k=1

Nk

N
ckj

= Aj

[

Nj

N
σ2

θ +

J
∑

k=1

Nk

N

Ak

A

σ2
y

nk

]

.

The implicit unit weights are then wpop
j = (n/nj)Wj, or

wpop
j = Aj

n

nj

[

Nj

N
σ2

θ +
σ2

y

AN

J
∑

k=1

Ak
Nk

nk

]

=
n

σ2
y + njσ2

θ





Nj

N
σ2

θ +
σ2

y

N

∑J
k=1

1
σ2

y+nkσ2

θ

Nk

∑J
k=1

1
σ2

y+nkσ2

θ

nk



 (8)
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The ratio of sums in (8) is a constant (given the fitted model) that does not the depend on j. Let

us approximate it by N/n (which is appropriate if the sample proportions nk/Nk are independent

of the group sizes Nk. Under this approximation, the unit weights can be written as,

approximate wpop
j =

nj

σ2
y

nj

σ2
y

+ 1
σ2

θ

·
Nk/N

nk/n
+

1
σ2

θ
nj

σ2
y

+ 1
σ2

θ

· 1, (9)

which is a weighted average of the full poststratification unit weight, Nk/N
nk/n , and the completely-

smoothed weight of 1. Hierarchical poststratification is thus approximately equivalent to a shrinkage

of weights by the same factors as in the shrinkage of the parameter estimates (6).

Thus, as with hierarchical regression models in general, the amount of shrinkage of the weights

depends on the between and within-stratum variance in the outcome of interest, y.

Other hierarchical models. Lazzeroni and Little (1998, and Elliott and Little (2000) discuss

various hierarchical linear regression models, including combinations of the two models described

above (that is, a hierarchical regression a cell-level variance component) and models with correla-

tions between adjacent cell categories for ordered predictors.

Another natural generalization is to use logistic regression for binary inputs. Unfortunately,

when we move away from linear regression, we abandon the translation-invariance of the parameter

estimates (that is, the property that adding a constant to all the data affects only the constant

term and none of the other regression coefficients). As a result, for logistic regression, the post-

stratified estimate θ̂PS is no longer a weighted average of the data, even after controlling for the

variance parameters in the model. However, we suspect that the model could be linearized, yielding

approximate weights.

3.3 Properties of the model-based poststratified estimates

Standard errors. The variance of the poststratified estimate, ignoring sampling variation in X,

can be expressed using various formulas:

var(θ̂PS) =
1

n2

n
∑

i=1

w2
i σ

2
y =

1

n

J
∑

j=1

(wpop
j )2njσ

2
y =

1

nN

J
∑

j=1

wpop
j Npop

j σ2
y.

Any of these equivalent expressions can be viewed as the posterior variance of θ given a nonin-

formative prior distribution on the regression coefficients, and ignoring posterior uncertainty in σy

(Holt and Smith, 1979, Little, 1993).

Dependence of implicit weights on the outcome variable. Classical survey weights depend

only on the nj’s and the Nj’s, as well as the design matrix X (used, for example, to define the

margins used in raking), but do not formally depend on y. (There is an informal dependence on y
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in the sense that there is no urgency to weight on variables X that do not help predict outcomes y

of interest.) Similarly, the implicit weights (3) obtained from a classical regression model depend

only on n, N , and X, not on y.

However, the implicit weights (5) from hierarchical regression do depend on the data, implic-

itly, through the hyperparameters in Σy and Σβ, which are estimated from the data. Thus, the

appropriate weights could differ for different survey responses.

4 Where to go next

There are currently two standard approaches to adjusting for known differences between sample

and population in survey data: weighting and regression modeling.

Practical limitations of weighting. The weighting approach has the advantage of giving simple

estimates for population averages but has several disadvantages. First, it is not generally clear

how to apply the weighting to more complicated estimands such as regression coefficients. There

has been some work on weighted regression for surveys (e.g., DuMouchel and Duncan, 1983, and

Pfefferman, 1993) but these procedures are not very flexible, which is one reason why the modeling

approach is more popular for problems such as small-area estimation. A second problem with

weighted estimates is that standard errors are more difficult to evaluate (recall Table 3). Finally,

weighting may be “dirty” but it is not always “quick”: actually constructing the weighting for a

survey is more difficult than you might think. Creating practical weights requires arbitrary choices

about inclusion of weighting factors and interactions, pooling of weighting cells, and truncation

of weights.5 The resulting vector of weights is in general a complicated and not-fully-specified

function of data and prior knowledge. Subjective choices arise in virtually all statistical methods,

of course, but good advice on creating weights tends to be much vaguer than for other methods in

the statistical literature (see, e.g., Lohr, 1999).

Practical limitations of modeling. Regression modeling is easy to do—even hierarchical re-

gression is becoming increasingly easy in Bugs, Stata, and other software packages—but for analysis

of survey data it has the disadvantage that, to combine with population information, the regression

must theoretically condition on all the poststratification cells, which can lead to very complicated

models—more complicated than we are comfortable with in current statistical practice—even in

surveys of moderate size (see Section 2.2). When a model is too complicated, it becomes difficult

5For example, in the Social Indicators Survey, we decided to weight on some interactions and not others in order
to control variability of the weights. While setting up the weightin procedure, we repeatedly compared weighted
estimates to Census values for various outcomes that we thought could be “canaries in the coal mine” if the survey
estimate did not fit the population. These “canary” variables included percentage of New York City residents who
are U.S. citizens, the percent who own their own home, and income quintiles.
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to interpret or use the results, leading to awkward situations such as in Table 1, where we simply

can’t trust the regression coefficients for time trends in the Social Indicators Survey.

It’s a delicate point, because sometimes we do have confidence in regression coefficients, even

with complicated hierarchical models with many parameters. For example, as discussed in Gel-

man and Carlin (2001) and Park, Gelman, and Bafumi (2004), hierarchical regression combined

with poststratification performs excellently at estimating state-level opinions from the national

CBS/New York Times polls. So it’s not just the number of parameters that’s important, but

rather some connection between the model and the quantities of interest, which is somehow more

difficult to establish in the models whose results are shown in Table 1.

Putting it together using hierarchical models and poststratification. Our ideal proce-

dure should be as easy to use as hierarchical modeling, with population information included using

poststratification as in (1.2). The procedure should feature a smooth transition from classical

weighting so that when different estimation methods give different results, it is possible to under-

stand this difference as a result of interactions in the model (as discussed by Graubard and Korn,

2002).

How do we get there? One place to start is to focus on examples such as in Table 1 where

different methods give different answers, and try to figure out which, if either, of the two estimates

make sense. Our goal is to come up with a general modeling procedure which gives believable

estimates for time trends and as a byproduct produces a good set of weights that can be used

for simple estimands. Given the difficulties with current methods for weighting and modeling, we

believe this approach is of both practical and theoretical interest.
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