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2Abstract

Random effects models (that is, regressions with varying intercepts that are mod-

eled with error) are avoided by some social scientists because of potential issues with

bias and uncertainty estimates. Particularly, when one or more predictors corre-

late with the group or unit effects, a key Gauss-Markov assumption is violated and

estimates are compromised. However, this problem can easily be solved by including

the average of each individual-level predictors in the group-level regression. We ex-

plain the solution, demonstrate its effectiveness using simulations, show how it can

be applied in some commonly-used statistical software, and discuss its potential for

substantive modeling.
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1 Introduction

1.1 What’s the Problem?

Researchers are leery of fitting random effects (better called modeled varying intercepts)

in models where predictors and units may correlate. Such models have compromised

estimates of uncertainty as well as possible bias (Hausman and Taylor 1981). This issue

is most intuitively shown within the framework of a multilevel model. Equation (1) shows

a individual-level equation where some outcome yi is being predicted by modeled varying

intercepts (or random effects) αs and a predictor xi.
1 The error in this regression is

denoted εi. Equation (2) shows a group-level equation that estimates the mean of the

varying intercepts α0’s and the group-level error ηs.

yi = αs[i] + βxi + εi, for i = 1, . . . , n, (1)

where s[i] is the group s containing unit i.

αs = α0 + ηs, for s = 1, . . . , S, (2)

where ηs are group-level errors.

Assume that xi and the varying intercepts αs[i] correlate. If this correlation is not

modeled, it will be absorbed into the error term ηs of (2), which results in the violation

of a key Gauss-Markov assumption. To see why, substitute (2) into (1). The εi and ηs

error terms combine to create a new error term, ε′i;.

yi = α0 + βxi + ε′i, for i = 1, . . . , n. (3)

The regression error ε′i now correlates with the predictor in the model. This violation

of a Gauss-Markov assumption may result in poor estimates of parameter uncertainty.

1The subscript s is used because, later, we will look at an applied examples where the units are the
American states.
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This may make parameter estimates seem more precise than they really are. In turn, this

will lead to inflated reports of statistical significance in regression analysis and a greater

tendency to reject the null hypothesis than is warranted. Further, estimates may also be

biased.

1.2 Why Do We Care?

Modeled varying parameters have been shown to have better statistical properties than

their unmodeled or non-varying counterparts. This has been shown when analyzing

data with low sample size per group (Park, Gelman and Bafumi 2004), when studying

time series/cross sectional data (Western 1998; Beck and Katz 2006; Shor et al. 2005)

and in a variety of contexts by Bartels (1996). It is the partial pooling that varying

intercepts and varying coefficients undergo that provides the added benefit. With partial

pooling, outlying groups provide some information toward parameter estimation but also

are shrunk to the mean. The extent of information they provide and, inversely, the extent

of their shrinkage, is determined by the amount of data in their (and in other) groups.

Such modeled varying parameters are popular in some areas of social science research

but have been slower to gain popularity in others. This is unfortunate given the promise

such a specification offers. There relative obscurity can partly be blamed on the problem-

atic correlation discussed above. To avoid the problem, econometricians have preferred

to completely pool or not pool at all estimates that may vary across groups. In the next

section, we reanalyze modeled varying intercepts in the context of these more popular

competitors. Further, we propose a solution to the problematic correlation between pre-

dictors and group effects that allows researchers to more comfortably estimate modeled

varying parameters.
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2 Econometric Framework

One can estimate a model ignoring group effects. For example, with data with individuals

nested in states or regions, one could ignore the state or region effects and estimate a

common (geographic) intercept for each individual in the model. This is shown in (4),

where α0 does not vary across groups.2 This is a complete pooling model, since groups

are completely pooled together as if they make no difference.

yi = α0 + βxi + εi, (4)

An improved model would allow for group effects. Equation (5) shows a model with

varying intercepts denoted αunmodeled
s . The varying intercepts are superscripted unmod-

eled since an error term is not estimated. Rather, the variance of the parameters is set

to infinity to allow for maximal variation given the data in the estimated group effects.

For the unmodeled varying intercepts, this is equivalent to running separate regressions

for each group. This specification is often referred to as the fixed effects or least squares

dummy variable approach.3 Here, there is no shrinkage to the mean and chance outliers

risk overinfluencing estimates.

yi = αunmodeled
s[i] + βxi + εi, (5)

where αunmodeled
s ∼ N(α0,∞).

The preferred specification for many data sets is varying intercepts that are modeled

with error. This is shown in (6) and (7). An error, ηs, is estimated for the varying

intercepts. A group effect is partially pooled contingent on how much data informs it and

how much data informs the other effects. Each group borrows and offers information to

2The same can be said of β.
3Some distinguish the two in that fixed effects may refer to the procedure where group effects are

subtracted out rather than being picked-up by a set of indicators. The two yield equivalent results but
one must deal with the inflated sense of degrees of freedom that come about with fixed effects.
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all other groups for optimal estimation.

yi = αmodeled
s[i] + βxi + εi, (6)

αmodeled
s = α0 + ηs, (7)

However, it is well known that when the predictors and the groups in a model correlate,

these models risk poor estimates of uncertainty. For this reason, econometricians rely

most heavily on the specification where there is no pooling across groups, as in (5). This

presents little costs when econometricians are really focused on β and do not care so

much about the αs. This is because (6), without the problematic correlation between the

predictors and the groups, and (5) yield the same estimate for β. However, many of us

are interested in the how the intercepts vary across groups or we may be interested in

varying the coefficient β across groups. To satisfy this interest, it is important to deal

with the problematic correlation.

Is there a solution? Can one fit a multilevel model with varying intercepts (or coeffi-

cients) when the units and predictors correlate? The answer is yes. And the solution is

simple. The problem can usefully be viewed as an omitted variable bias. Once a model is

as well specified as a researcher deems possible, and if the correlation between the units

and the predictor still exists, one can remove the correlation with the predictor from the

group-level error by calculating the mean of the predictor at each unit and including it as

a group-level predictor. In equation (9), α1 represents the coefficient for this new, second

level regressor. By accounted for xi’s correlation with the varying effects, the error term

ηs is free of this pattern and a violation of the Gauss-Markov assumption does not occur.

This leaves researchers free to estimate multilevel models with varying intercepts.4

yi = αmodeled
s[i] + βxi + εi, (8)

4The same logic can be applied to modeled varying coefficients.
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αmodeled
s = α0 + α1x̄s + ηs, (9)

3 Simulations

Simulations can illustrate the problem and the solution further. First, we generate a

random normal predictor of length 100 with a mean of 0 and a standard deviation of 2.

Then, we generate an outcome (often called a dependent variable) that is equal to the

predictor plus random normal noise with a mean of 0 and a standard deviation of 7. This

ensures a strong, but not perfect, correlation between the two variables. Units effects are

added to the outcome by adding a random normal component with a nonzero mean to

each quarter of the data. So, for example, a set of random normal values with a mean

of 1 and a tight standard deviation of .001 are added to the first 25 observations in the

outcome.5.

We start by predicting the outcome by the varying unit effects and the explanatory

variable free of unit effects. These results should not be problematic since the units and

the predictor do not correlate. Next, we estimate the same equation but with a predictor

that, like the outcome, varies across the units. We estimate each equation 1000 times

and record the coefficient and standard error of the key predictor. We plot a histogram

of the t statistics (the coefficient divided by the standard error) calculated in each of the

1000 simulations.

Figure 1 shows that the t statistic for the model where the predictor does not correlate

with the units tends to be smaller than the model where the correlation exists. The

larger t statistic in the second plot results in an inflated sense of statistical significance in

parameter analysis and a greater tendency to falsely reject the null hypothesis in research

works, as mentioned earlier. This is the problem that researchers are cautioned against

when estimating modeled varying intercepts. The problem is thought to be so severe,

that this model is often cast aside as inviable.

5The means for the next three quarters are -1,-3 and 2. The standard deviations remain tight at .001
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Figure 1: Simulated t statistics for β in two varying intercept (modeled with error) models:
one where the predictor does not correlate with the units and one where it does. 1000
regressions were fit on data sets of length 100. Four group effects (one for each quarter
of the data) were created.

To see if the solution highlighted above works as promised, let’s run another sim-

ulation. We have seen the t statistics when the correlation between the units and the

predictor does not exist and we have seen how the statistic has grown when the corre-

lation is instituted. Now consider a model where the correlation exists but the mean of

the predictor per unit is included as a group-level predictor. Figure 2 shows the result.

The first two plots are as before. Now, we add a third plot, showing the t statistic when

the group-level regressor is added to the model.

The t statistic for the key predictor looks virtually identical as in the model with

no correlation between the units and the predictor. The additional group-level covariate

successfully accounted for the correlation before it fell into the group-level error term

and caused a problem. In the next section, we will discuss how to run multilevel models

incorporating the above fix in commonly used software such as R and Stata.
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Figure 2: Simulated t statistics for β in three models: one where the predictor does not
correlate with the units, one where it does and one where it does and the correlation is
controlled for with a second level regressor equal to the predictor at its mean per unit. 1000
regressions were fit on data sets of length 100. Four group effects (one for each quarter
of the data) were created. The first two plots are the same as those shown in Figure 1.
The key finding here is that the values of the t statistics are alike in a model without the
problematic correlation and in a model with the correlation and the fix proposed in this
paper.

4 Practical Issues of Fitting

Multilevel models have begun to take hold in the political science literature as well as

in other disciplines (for applied examples in political science, see ?Gelman and King

(1994); Gelman and Little (1997); Reilly, Gelman and King (2001); Steenbergen and Jones

(2002); Park, Gelman and Bafumi (2004); Bafumi (2004a,b); Gelman et al. (2005) and

the collection of papers in Political Analysis, Volume 13). In response, major statistical

software programs such as R and Stata now incorporate easy to use code to run these

models. Most early multilevel modelers who did not write their own estimation code

turned to Bugs (Bayesian inference using the Gibbs Sampler) to fit their models. This

program proved to be very flexible although it often took a great deal of time to iterate,

was prone to trap, required start-up costs and required an understanding of Bayesian

updating. Not to be outdone, R and Stata programmers built in pre-packaged code so

that practitioners could more easily and much more quickly fit multilevel models.
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Bugs models are programmed just as one would write the mathematical notation for

a multilevel model.6 The notation is repeated below.

yi = αs[i] + βxi + εi, (10)

αs = α0 + α1x̄s + ηs, (11)

In Bugs, a practitioner would specify priors and starting values and run the model for

a pre-specified number of iterations in search of parameter convergence. Via the lmer()

function in R and the xtmixed command in Stata, these programs can also run multilevel

models. However, they do not easily allow for predictors at a secondary level such as x̄s.

So, for example, if one has individuals nested in states with individual level and state

level predictors (most applicably, an individual level variable calculated at it’s mean per

state), one needs to incorporate the group-level variables into the single equation.

This is accomplished in R and Stata by generating a variable equal in length to

the individual-level predictors but varying only across the units or groups. So, this new

group-level predictor will have the same value for each group of, say, states. This variable

could be, as we discussed above, the mean per unit of an individual-level variable or some

other substantive variable measured at the group level. The parameter estimate for the

former will be equivalent to α1 above.

We do not consider varying coefficients very deeply here but practitioners will often

want to vary a predictor across the group effects and regress the varying coefficients

by group-level variables. Again, this is intuitive in Bugs where two or more different

equations with separate error terms are specified. In R or Stata, a practitioner would

achieve the proper specification by interacting the expanded group-level covariate ex-

plained above with the variable that is modeled to vary across groups. The coefficient of

this interaction will offer the estimate of the group-level covariate predicting the varying

6It is not our purpose to teach the programming language used in these software programs but to
show that one can deal with group-level variables (such as the solution to dealing with a correlation
between the units and predictors in a model) in each program.
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coefficients. This coefficient and α1 serve to wipe away a problematic correlation, but, as

we shall see next, they also may offer an interesting substantive result.

5 Red/Blue Example

Gelman et al. (2005) wish to understand the paradox of how poor states vote Republican

and rich states vote Democratic while individuals are known to vote in more traditional

ways. We used a model where the Republican vote is predicted by varying state intercepts,

varying coefficients for individual-level income, and average state income predicting both

the varying intercepts and coefficients (at the group level). We included average state

income in the model, partly to alleviate the possibility of a correlation between income

and state effects.7 However, it also offers an interesting substantive result.

The main findings in Gelman et al. (2005) are revealed in Figure 3. It tells an

individual-level and a state-level story. First, the probability of voting Republican in-

creases for individuals as a whole as their income levels rise. However, income matters

little or none at all for individuals in richer states (as shown by Connecticut) and a lot for

individuals in poorer states (as Mississippi makes clear). Meanwhile, it also shows that

as average state income (labeled with solid, black dots) goes up, states are less likely to

be Republican. These findings are summarized by the group-level coefficients discussed

above. The coefficient and standard error for average income predicting the varying in-

tercepts are -1.7 and 0.2. It is negative and significant. Similarly, the coefficient and

standard error for average income predicting the varying coefficients are -0.6 and 0.1.

The parameter predicting the intercepts shows that as average state income increases,

states are less likely to be Republican. The parameter predicting the varying income

coefficients show that as average state income rises, income is a poorer predictor of the

vote.

The inclusion of the correlating predictor measured at its mean per group is important

7Average state income is not calculated directly from individual level income but works in the same
way. It is obtained from U.S. census data.
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Figure 3: Figure from Gelman et al. (2005). A varying intercepts and varying slopes
model judging income’s capacity to predict the vote across states and individuals. Open
dots represent the relative portion in that income category in each state. Darkened dots
represent the average income in the state.

for alleviating methodological concerns in multilevel modeling. As above, it may also

offer important substantive findings. This is because the new variable is an (cross-level)

interaction and its inclusion resolves an omitted variable problem. It should be treated

both as a methodological tool and, where useful, as a substantive covariate.

6 Conclusion

To date, many social scientists have been reluctant to fit regressions with modeled pa-

rameters that vary by group (or units). The reason is that uncertainty estimates can

be highly problematic in these models when predictors and group effects correlate. Esti-

mates may also be biased. We propose that this problem of modeling can be solved with

more modeling. Practitioners can get around this problem by taking advantage of the

multilevel structure of their regression equation.

Specifically, they can include the mean per group of the predictor in question as a



13

second level covariate predicting the varying intercepts. This will capture the problematic

correlation before it falls into the group-level error term and creates a violation of an

important Gauss-Markov regression assumption. This solution will leave researchers free

to estimate modeled varying effects or, more generally, multilevel models when their data

is best served with such a specification.
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