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You have just finished running an experiment. You ana-
lyze the results, and you find a significant effect. Success! 
But wait—how much information does your study really 
give you? How much should you trust your results? In this 
article, we show that when researchers use small samples 
and noisy measurements to study small effects—as they 
often do in psychology as well as other disciplines—a 
significant result is often surprisingly likely to be in the 
wrong direction and to greatly overestimate an effect.

In this article, we examine some critical issues related 
to power analysis and the interpretation of findings aris-
ing from studies with small sample sizes. We highlight 
the use of external information to inform estimates of 
true effect size and propose what we call a design anal-
ysis—a set of statistical calculations about what could 
happen under hypothetical replications of a study—that 
focuses on estimates and uncertainties rather than on sta-
tistical significance.

As a reminder, the power of a statistical test is the 
probability that it correctly rejects the null hypothesis. 
For any experimental design, the power of a study 
depends on sample size, measurement variance, the 

number of comparisons being performed, and the size of 
the effects being studied. In general, the larger the effect, 
the higher the power; thus, power calculations are per-
formed conditionally on some assumption of the size of 
the effect. Power calculations also depend on other 
assumptions, most notably the size of measurement error, 
but these are typically not so difficult to assess with avail-
able data.

It is of course not at all new to recommend the use of 
statistical calculations on the basis of prior guesses of 
effect sizes to inform the design of studies. What is new 
about the present article is as follows:

1. We suggest that design calculations be performed 
after as well as before data collection and 
analysis.
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Abstract
Statistical power analysis provides the conventional approach to assess error rates when designing a research study. 
However, power analysis is flawed in that a narrow emphasis on statistical significance is placed as the primary 
focus of study design. In noisy, small-sample settings, statistically significant results can often be misleading. To help 
researchers address this problem in the context of their own studies, we recommend design calculations in which 
(a) the probability of an estimate being in the wrong direction (Type S [sign] error) and (b) the factor by which the 
magnitude of an effect might be overestimated (Type M [magnitude] error or exaggeration ratio) are estimated. We 
illustrate with examples from recent published research and discuss the largest challenge in a design calculation: 
coming up with reasonable estimates of plausible effect sizes based on external information.
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2. We frame our calculations not in terms of Type 1 
and Type 2 errors but rather Type S (sign) and 
Type M (magnitude) errors, which relate to the 
probability that claims with confidence have the 
wrong sign or are far in magnitude from underly-
ing effect sizes (Gelman & Tuerlinckx, 2000).

Design calculations, whether prospective or retrospec-
tive, should be based on realistic external estimates of 
effect sizes. This is not widely understood because it is 
common practice to use estimates from the current 
study’s data or from isolated reports in the literature, both 
of which can overestimate the magnitude of effects.

The idea that published effect-size estimates tend to 
be too large, essentially because of publication bias, is 
not new (Hedges, 1984; Lane & Dunlap, 1978; for a more 
recent example, also see Button et al., 2013). Here, we 
provide a method to apply to particular studies, making 
use of information specific to the problem at hand. We 
illustrate with recent published studies in biology and 
psychology and conclude with a discussion of the 
broader implications of these ideas.

One practical implication of realistic design analysis is 
to suggest larger sample sizes than are commonly used in 
psychology. We believe that researchers typically think of 
statistical power as a trade-off between the cost of per-
forming a study (acutely felt in a medical context in 
which lives can be at stake) and the potential benefit of 
making a scientific discovery (operationalized as a statis-
tically significant finding, ideally in the direction posited). 
The problem, though, is that if sample size is too small, 
in relation to the true effect size, then what appears to be 
a win (statistical significance) may really be a loss (in the 
form of a claim that does not replicate).

Conventional Design or Power 
Calculations and the Effect-Size 
Assumption

The starting point of any design calculation is the postu-
lated effect size because, of course, the true effect size is 
not known. We recommend thinking of the true effect as 
that which would be observed in a hypothetical infinitely 
large sample. This framing emphasizes that the researcher 
needs to have a clear idea of the population of interest: 
The hypothetical study of very large (effectively infinite) 
sample size should be imaginable in some sense.

How do researchers generally specify effect sizes for 
power calculations? As detailed in numerous texts and 
articles, there are two standard approaches:

1. Empirical: assuming an effect size equal to the 
estimate from a previous study (if performed 

prospectively, in which case the target sample size 
is generally specified such that a desirable level of 
power is achieved) or from the data at hand (if 
performed retrospectively).

2. On the basis of goals: assuming an effect size 
deemed to be substantively important or more 
specifically the minimum effect that would be 
substantively important.

We suggest that both of these conventional approaches 
are likely to lead either to performing studies that are too 
small or to misinterpreting study findings after completion. 
Effect-size estimates based on preliminary data (either 
within the study or elsewhere) are likely to be misleading 
because they are generally based on small samples, and 
when the preliminary results appear interesting, they are 
most likely biased toward unrealistically large effects (by a 
combination of selection biases and the play of chance; 
Vul, Harris, Winkelman, & Pashler, 2009). Determining 
power under an effect size considered to be of “minimal 
substantive importance” can also lead to specifying effect 
sizes that are larger than what is likely to be the true effect.

After data have been collected, and a result is in hand, 
statistical authorities commonly recommend against per-
forming power calculations (see, e.g., Goodman & Berlin, 
1994; Lenth, 2007; Senn, 2002). Hoenig and Heisey (2001) 
wrote, “Dismayingly, there is a large, current literature 
that advocates the inappropriate use of post-experiment 
power calculations as a guide to interpreting tests with 
statistically nonsignificant results” (p. 19). As these 
authors have noted, there are two problems with retro-
spective power analysis as it is commonly done:

1. Effect size—and thus power—is generally overes-
timated, sometimes drastically so, when computed 
on the basis of statistically significant results.

2. From the other direction, post hoc power analysis 
often seems to be used as an alibi to explain away 
nonsignificant findings.

Although we agree with these critiques, we find ret-
rospective design analysis to be useful, and we recom-
mend it in particular when apparently strong (statistically 
significant) evidence for nonnull effects has been 
found. The key differences between our proposal and 
the usual retrospective power calculations that are 
deplored in the statistical literature are (a) that we are 
focused on the sign and direction of effects rather than 
on statistical significance and, most important, (b) that 
we base our design analysis (whether prospective or 
retrospective) on an effect size that is determined from 
literature review or other information external to the 
data at hand.
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Our Recommended Approach to 
Design Analysis

Suppose you perform a study that yields an estimate d 
with standard error s. For concreteness, you may think of 
d as the estimate of the mean difference in a continuous 
outcome measure between two treatment conditions, but 
the discussion applies to any estimate of a well-defined 
population parameter. The standard procedure is to 
report the result as statistically significant if p < .05 (which 
in many situations would correspond approximately to 
finding that |d/s| > 2) and inconclusive (or as evidence 
in favor of the null hypothesis) otherwise.1

The next step is to consider a true effect-size D (the 
value that d would take if observed in a very large sam-
ple), hypothesized on the basis of external information 
(other available data, literature review, and modeling as 
appropriate to apply to the problem at hand). We then 
define the random variable drep to be the estimate that 
would be observed in a hypothetical replication study 
with a design identical to that used in the original study.

Our analysis does not involve elaborate mathematical 
derivations, but it does represent a conceptual leap by 
introducing the hypothetical drep. This step is required so 
that general statements about the design of a study—the 
relation between the true effect size and what can be 
learned from the data—can be made without relying on 
a particular, possibly highly noisy, point estimate. 
Calculations in which drep is used will reveal what infor-
mation can be learned from a study with a given design 
and sample size and will help to interpret the results, 
statistically significant or otherwise.

We consider three key summaries based on the prob-
ability model for drep:

1. The power: the probability that the replication drep 
is larger (in absolute value) than the critical value 
that is considered to define “statistical signifi-
cance” in this analysis.

2. The Type S error rate: the probability that the rep-
licated estimate has the incorrect sign, if it is statis-
tically significantly different from zero.

3. The exaggeration ratio (expected Type M error): 
the expectation of the absolute value of the esti-
mate divided by the effect size, if statistically sig-
nificantly different from zero.

We have implemented these calculations in an R func-
tion, retrodesign(). The inputs to the function are D (the 
hypothesized true effect size), s (the standard error of the 
estimate), D (the statistical significance threshold; e.g., 
.05), and df (the degrees of freedom). The function 
returns three outputs: the power, the Type S error rate, 
and the exaggeration ratio, all computed under the 

assumption that the sampling distribution of the estimate 
is t with center D, scale s, and dfs.2

We sketch the elements of our approach in Figure 1. 
The design analysis can be performed before or after 
data collection and analysis. Given that the calculations 
require external information about effect size, one might 
wonder why a researcher would ever do them after con-
ducting a study, when it is too late to do anything about 
potential problems. Our response is twofold. First, it is 
indeed preferable to do a design analysis ahead of time, 
but a researcher can analyze data in many different 
ways—indeed, an important part of data analysis is the 
discovery of unanticipated patterns (Tukey, 1977) so that 
it is unreasonable to suppose that all potential analyses 
could have been determined ahead of time. The second 
reason for performing postdata design calculations is 
that they can be a useful way to interpret the results 
from a data analysis, as we next demonstrate in two 
examples.

What is the relation among power, Type S error rate, 
and exaggeration ratio? We can work this out for esti-
mates that are unbiased and normally distributed, 
which can be a reasonable approximation in many set-
tings, including averages, differences, and linear 
regression.

It is standard in prospective studies in public health to 
require a power of 80%, that is, a probability of 0.8 that 
the estimate will be statistically significant at the 95% 
level, under some prior assumption about the effect size. 
Under the normal distribution, the power will be 80% if 
the true effect is 2.8 standard errors away from zero. 
Running retrodesign() with D = 2.8, s = 1, D = .05, and 
df = infinity, we get power = 0.80, a Type S error rate of 
1.2 × 10−6, and an expected exaggeration factor of 1.12. 
Thus, if the power is this high, we have nothing to worry 
about regarding the direction of any statistically signifi-
cant estimate, and the overestimation of the magnitude of 
the effect will be small.

However, studies in psychology typically do not have 
80% power for two reasons. First, experiments in psy-
chology are relatively inexpensive and are subject to 
fewer restrictions compared with medical experiments in 
which funders typically require a minimum level of 
power before approving a study. Second, formal power 
calculations are often optimistic, partly in reflection of 
researchers’ positive feelings about their own research 
hypotheses and partly because, when a power analysis is 
required, there is a strong motivation to assume a large 
effect size, as this results in a higher value for the power 
that is computed.

Figure 2 shows the Type S error rate and exaggeration 
ratio for unbiased estimates that are normally distributed 
for studies with power ranging from 0 to 1. Problems 
with the exaggeration ratio start to arise when power is 
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less than 0.5, and problems with the Type S error rate 
start to arise when power is less than 0.1. For reference, 
an unbiased estimate will have 50% power if the true 
effect is 2 standard errors away from zero, it will have 

17% power if the true effect is 1 standard error away from 
0, and it will have 10% power if the true effect is 0.65 
standard errors away from 0. All these are possible in 
psychology experiments with small samples, high 

Design calculations:
Power: the probability that the replication d rep is larger (in absolute value) than the
critical value that is considered to define “statistical significance” in this analysis.
Type S error rate:  the probability that the replicated estimate has the incorrect sign,
if it is statistically significantly different from zero. 
Exaggeration ratio (expected Type M error):  expectation of the absolute value of the
estimate divided by the effect size, if statistically significantly different from zero.

From external information…
D : the true effect size

From the data (or model if 
prospective design)…
d : the observed effect
s : SE of the observed effect
p : the resulting p-value

Hypothetical replicated data
d rep: the effect that would be observed in a hypothetical
replication study with a design like the one used in the
original study (so assumed also to have SE = s )

Figure 1. Diagram of our recommended approach to design analysis. It will typi-
cally make sense to consider different plausible values of D, the assumed true 
effect size.
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Figure 2. Type S error rate and exaggeration ratio as a function of statistical power for unbiased estimates that 
are normally distributed. If the estimate is unbiased, the power must be between 0.05 and 1.0, the Type S error 
rate must be less than 0.5, and the exaggeration ratio must be greater than 1. For studies with high power, the 
Type S error rate and the exaggeration ratio are low. But when power gets much below 0.5, the exaggeration 
ratio becomes high (that is, statistically significant estimates tend to be much larger in magnitude than true 
effect sizes). And when power goes below 0.1, the Type S error rate becomes high (that is, statistically signifi-
cant estimates are likely to be the wrong sign).
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variation (such as arises naturally in between-subjects 
designs), and small effects.

Example: Beauty and Sex Ratios

We first developed the ideas in this article in the context 
of a finding by Kanazawa (2007) from a sample of 2,972 
respondents from the National Longitudinal Study of 
Adolescent Health.

This is not a small sample size by the standards of psy-
chology; however, in this case, the sizes of any true effects 
are so small (as we discuss later) that a much larger sam-
ple would be required to gather any useful information.

Each of the people surveyed had been assigned an 
“attractiveness” rating on a 1–5 scale and then, years later, 
had at least one child. Of the first-born children of the 
parents in the most attractive category, 56% were girls, 
compared with 48% in the other groups. The author’s 
focus on this particular comparison among the many oth-
ers that might have been made may be questioned 
(Gelman, 2007). For the purpose of illustration, however, 
we stay with the estimated difference of 8 percentage 
points with a p value .015—hence, statistically significant 
at the conventional 5% level. Kanazawa (2007) followed 
the usual practice and just stopped right here, claiming a 
novel finding.

We go one step further, though, and perform a design 
analysis. We need to postulate an effect size, which will 
not be 8 percentage points. Instead, we hypothesize a 
range of true effect sizes using the scientific literature:

There is a large literature on variation in the sex 
ratio of human births, and the effects that have 
been found have been on the order of 1 percentage 
point (for example, the probability of a girl birth 
shifting from 48.5 percent to 49.5 percent). Variation 
attributable to factors such as race, parental age, 
birth order, maternal weight, partnership status and 
season of birth is estimated at from less than 0.3 
percentage points to about 2 percentage points, 
with larger changes (as high as 3 percentage points) 
arising under economic conditions of poverty and 
famine. That extreme deprivation increases the 
proportion of girl births is no surprise, given reliable 
findings that male fetuses (and also male babies 
and adults) are more likely than females to die 
under adverse conditions. (Gelman & Weakliem, 
2009, p. 312)

Given the generally small observed differences in sex 
ratios as well as the noisiness of the subjective attractive-
ness rating used in this particular study, we expect any 
true differences in the probability of girl birth to be well 
under 1 percentage point. It is standard for prospective 

design analyses to be performed under a range of 
assumptions, and we do the same here, hypothesizing 
effect sizes of 0.1, 0.3, and 1.0 percentage points. Under 
each hypothesis, we consider what might happen in a 
study with sample size equal to that of Kanazawa (2007).

Again, we ignore multiple comparisons issues and 
take the published claim of statistical significance at face 
value: From the reported estimate of 8% and p value of 
.015, we can deduce that the standard error of the differ-
ence was 3.3%. Such a result is statistically significant 
only if the estimate is at least 1.96 standard errors from 
zero; that is, the estimated difference in proportion of 
girls, comparing beautiful parents with others, would 
have to be more than 6.5 percentage points or less than 
−6.5 percentage points.

The results of our proposed design calculations for 
this example are displayed in the Appendix for three 
hypothesized true effect sizes. If the true difference is 
0.1% or −0.1% (probability of girl births differing by 0.1 
percentage points, comparing attractive with unattract-
ive parents), the data will have only a slightly greater 
chance of showing statistical significance in the correct 
direction (2.7%) than in the wrong direction (2.3%). 
Conditional on the estimate being statistically signifi-
cant, there is a 46% chance it will have the wrong sign 
(the Type S error rate), and in expectation the estimated 
effect will be 77 times too high (the exaggeration ratio). 
If the result is not statistically significant, the chance of 
the estimate having the wrong sign is 49% (not shown 
in the Appendix; this is the probability of a Type S error 
conditional on nonsignificance)—so that the direction 
of the estimate gives almost no information on the sign 
of the true effect. Even with a true difference of 0.3%, a 
statistically significant result has roughly a 40% chance 
of being in the wrong direction, and in any statistically 
significant finding, the magnitude of the true effect is 
overestimated by an expected factor of 25. Under a true 
difference of 1.0%, there would be a 4.9% chance of the 
result being statistically significantly positive and a 1.1% 
chance of a statistically significantly negative result. A 
statistically significant finding in this case has a 19% 
chance of appearing with the wrong sign, and the mag-
nitude of the true effect would be overestimated by an 
expected factor of 8.

Our design analysis has shown that, even if the true 
difference was as large as 1 percentage point (which we 
are sure is much larger than any true population differ-
ence, given the literature on sex ratios as well as the 
evident noisiness of any measure of attractiveness), and 
even if there were no multiple comparison problems, the 
sample size of this study is such that a statistically signifi-
cant result has a one-in-five chance of having the wrong 
sign, and the magnitude of the effect would be overesti-
mated by nearly an order of magnitude.
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Our retrospective analysis provided useful insight, 
beyond what was revealed by the estimate, confidence 
interval, and p value that came from the original data sum-
mary. In particular, we have learned that, under reasonable 
assumptions about the size of the underlying effect, this 
study was too small to be informative: From this design, 
any statistically significant finding is very likely to be in the 
wrong direction and is almost certain to be a huge overes-
timate. Indeed, we hope that if such calculations had been 
performed after data analysis but before publication, they 
would have motivated the author of the study and the 
reviewers at the journal to recognize how little information 
was provided by the data in this case.

One way to get a sense of required sample size here is 
to consider a simple comparison with n attractive parents 
and n unattractive parents, in which the proportion of 
girls for the two groups is compared. We can compute the 
approximate standard error of this comparison using the 
properties of the binomial distribution, in particular the 
fact that the standard deviation of a sample proportion is 
�(p × (1 − p)/n), and for probabilities p near 0.5, this stan-
dard deviation is approximately 0.5/�n. The standard 
deviation of the difference between the two proportions 
is then 0.5 × �(2/n). Now suppose we are studying a true 
effect of 0.001 (i.e., 0.1 percentage points), then we would 
certainly want the measurement of this difference to have 
a standard error of less than 0.0005 (so that the true effect 
is 2 standard errors away from zero). This would imply 
0.5 × �(2/n) < 0.0005, or n > 500,000, which would require 
that the total sample size 2n would have to be at least a 
million. This number might seem at first to be so large as 
to be ridiculous, but recall that public opinion polls with 
1,000 or 1,500 respondents are reported as having mar-
gins of error of around 3 percentage points.

It is essentially impossible for researchers to study 
effects of less than 1 percentage point using surveys of 
this sort. Paradoxically, though, the very weakness of the 
study design makes it difficult to diagnose this problem 
with conventional methods. Given the small sample size, 
any statistically significant estimate will be large, and if 
the resulting large estimate is used in a power analysis, 
the study will retrospectively seem reasonable. In our 
recommended approach, we escape from this vicious 
circle by using external information about the effect size.

Example: Menstrual Cycle and Political 
Attitudes

For our second example, we consider a recent article from 
Psychological Science. Durante, Arsena, and Griskevicius 
(2013) reported differences of 17 percentage points in vot-
ing preferences in a 2012 preelection study, comparing 
women in different parts of their menstrual cycle. However, 
this estimate is highly noisy for several reasons: The design 

is between- rather than within-persons, measurements 
were imprecise (on the basis of recalling the time since last 
menstrual period), and sample size was small. As a result, 
there is a high level of uncertainty in the inference pro-
vided by the data. The reported (two-sided) p value was 
.035, which from the tabulated normal distribution corre-
sponds to a z statistic of d/s = 2.1, so the standard error is 
17/2.1 = 8.1 percentage points.

We perform a design analysis to get a sense of the 
information actually provided by the published estimate, 
taking the published comparison and p value at face 
value and setting aside issues such as measurement and 
selection bias that are not central to our current discus-
sion. It is well known in political science that vote swings 
in presidential general election campaigns are small (e.g., 
Finkel, 1993), and swings have been particularly small 
during the past few election campaigns. For example, 
polling showed President Obama’s support varying by 
only 7 percentage points in total during the 2012 general 
election campaign (Gallup Poll, 2012), and this is consis-
tent with earlier literature on campaigns (Hillygus & 
Jackman, 2003). Given the lack of evidence for large 
swings among any groups during the campaign, one can 
reasonably conclude that any average differences among 
women at different parts of their menstrual cycle would 
be small. Large differences are theoretically possible, as 
any changes during different stages of the cycle would 
cancel out in the general population, but are highly 
implausible given the literature on stable political prefer-
ences. Furthermore, the menstrual cycle data at hand are 
self-reported and thus subject to error. Putting all this 
together, if this study was to be repeated in the general 
population, we would consider an effect size of 2 per-
centage points to be on the upper end of plausible differ-
ences in voting preferences.

Running this through our retrodesign() function, set-
ting the true effect size to 2% and the standard error of 
measurement to 8.1%, the power comes out to 0.06, the 
Type S error probability is 24%, and the expected exag-
geration factor is 9.7. Thus, it is quite likely that a study 
designed in this way would lead to an estimate that is in 
the wrong direction, and if “significant,” it is likely to be 
a huge overestimate of the pattern in the population. 
Even after the data have been gathered, such an analysis 
can and should be informative to a researcher and, in this 
case, should suggest that, even aside from other issues 
(see Gelman, 2014), this statistically significant result pro-
vides only very weak evidence about the pattern of inter-
est in the larger population.

As this example illustrates, a design analysis can 
require a substantial effort and an understanding of the 
relevant literature or, in other settings, some formal or 
informal meta-analysis of data on related studies. We 
return to this challenge later.
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When “Statistical Significance” Does 
Not Mean Much

As the earlier examples illustrate, design calculations can 
reveal three problems:

1. Most obvious, a study with low power is unlikely 
to “succeed” in the sense of yielding a statistically 
significant result.

2. It is quite possible for a result to be significant at 
the 5% level—with a 95% confidence interval that 
entirely excludes zero—and for there to be a high 
chance, sometimes 40% or more, that this interval 
is on the wrong side of zero. Even sophisticated 
users of statistics can be unaware of this point—
that the probability of a Type S error is not the 
same as the p value or significance level.3

3. Using statistical significance as a screener can lead 
researchers to drastically overestimate the magni-
tude of an effect (Button et al., 2013). We suspect 
that this filtering effect of statistical significance 
plays a large part in the decreasing trends that 
have been observed in reported effects in medical 
research (as popularized by Lehrer, 2010).

Design analysis can provide a clue about the impor-
tance of these problems in any particular case.4 These cal-
culations must be performed with a realistic hypothesized 
effect size that is based on prior information external to 
the current study. Compare this with the sometimes- 
recommended strategy of considering a minimal effect 
size deemed to be substantively important. Both these 
approaches use substantive knowledge but in different 
ways. For example, in the beauty-and-sex-ratio example, 
our best estimate from the literature is that any true differ-
ences are less than 0.3 percentage points in absolute value. 
Whether this is a substantively important difference is 
another question entirely. Conversely, suppose that a dif-
ference in this context was judged to be substantively 
important if it was at least 5 percentage points. We have no 
interest in computing power or Type S and Type M error 
estimates under this assumption because our literature 
review suggests that it is extremely implausible, so any 
calculations based on it will be unrealistic.

Statistics textbooks commonly give the advice that sta-
tistical significance is not the same as practical signifi-
cance, often with examples in which an effect is clearly 
demonstrated but is very small (e.g., a risk ratio estimate 
between two groups of 1.003 with a standard error of 
0.001). In many studies in psychology and medicine, 
however, the problem is the opposite: an estimate that is 
statistically significant but with such a large uncertainty 
that it provides essentially no information about the phe-
nomenon of interest. For example, if the estimate is 3 with 

a standard error of 1, but the true effect is on the order of 
0.3, we are learning very little. Calculations such as the 
positive predictive value (see Button et al., 2013) showing 
the posterior probability that an effect that has been 
claimed on the basis of statistical significance is true (i.e., 
in this case, a positive rather than a zero or negative 
effect) address a different though related set of concerns.

Again, we are primarily concerned with the sizes of 
effects rather than the accept/reject decisions that are 
central to traditional power calculations. It is sometimes 
argued that, for the purpose of basic (as opposed to 
applied) research, what is important is whether an effect 
is there, not its sign or how large it is. However, in the 
human sciences, real effects vary, and a small effect could 
well be positive for one scenario and one population and 
negative in another, so focusing on “present versus 
absent” is usually artificial. Moreover, the sign of an effect 
is often crucially relevant for theory testing, so the pos-
sibility of Type S errors should be particularly troubling 
to basic researchers interested in development and evalu-
ation of scientific theories.

Hypothesizing an Effect Size

Whether considering study design and (potential) results 
prospectively or retrospectively, it is vitally important to 
synthesize all available external evidence about the true 
effect size. In the present article, we have focused on 
design analyses with assumptions derived from system-
atic literature review. In other settings, postulated effect 
sizes could be informed by auxiliary data, meta-analysis, 
or a hierarchical model. It should also be possible to per-
form retrospective design calculations for secondary data 
analyses. In many settings it may be challenging for 
investigators to come up with realistic effect-size esti-
mates, and further work is needed on strategies to man-
age this as an alternative to the traditional “sample size 
samba” (Schulz & Grimes, 2005) in which effect size esti-
mates are more or less arbitrarily adjusted to defend the 
value of a particular sample size.

Like power analysis, the design calculations we rec-
ommend require external estimates of effect sizes or 
population differences. Ranges of plausible effect sizes 
can be determined on the basis of the phenomenon 
being studied and the measurements being used. One 
concern here is that such estimates may not exist when 
one is conducting basic research on a novel effect.

When it is difficult to find any direct literature, a 
broader range of potential effect sizes can be considered. 
For example, heavy cigarette smoking is estimated to 
reduce life span by about 8 years (see, e.g., Streppel, 
Boshuizen, Ocke, Kok, & Kromhout, 2007). Therefore, if 
the effect of some other exposure is being studied, it 
would make sense to consider much lower potential 
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effects in the design calculation. For example, Chen, 
Ebenstein, Greenstone, and Li (2013) reported the results 
of a recent observational study in which they estimated 
that a policy in part of China has resulted in a loss of life 
expectancy of 5.5 years with a 95% confidence interval of 
[0.8, 10.2]. Most of this interval—certainly the high end—
is implausible and is more easily explained as an artifact 
of correlations in their data having nothing to do with air 
pollution. If a future study in this area is designed, we 
think it would be a serious mistake to treat 5.5 years as a 
plausible effect size. Rather, we would recommend treat-
ing this current study as only one contribution to the lit-
erature and instead choosing a much lower, more 
plausible estimate. A similar process can be undertaken 
to consider possible effect sizes in psychology experi-
ments by comparing with demonstrated effects on the 
same sorts of outcome measurements from other 
treatments.

Psychology research involves particular challenges 
because it is common to study effects whose magnitudes 
are unclear, indeed heavily debated (e.g., consider the 
literature on priming and stereotype threat as reviewed 
by Ganley et al., 2013), in a context of large uncontrolled 
variation (especially in between-subjects designs) and 
small sample sizes. The combination of high variation 
and small sample sizes in the literature imply that pub-
lished effect-size estimates may often be overestimated to 
the point of providing no guidance to true effect size. 
However, Button et  al. (2013) have provided a recent 
example of how systematic review and meta-analysis can 
provide guidance on typical effect sizes. They focused on 
neuroscience and summarized 49 meta-analyses, each of 
which provides substantial information on effect sizes 
across a range of research questions. To take just one 
example, Veehof, Oskam, Schreurs, and Bohlmeijer 
(2011) identified 22 studies providing evidence on the 
effectiveness of acceptance-based interventions for the 
treatment of chronic pain, among which 10 controlled 
studies could be used to estimate an effect size (standard-
ized mean difference) of 0.37 on pain, with estimates also 
available for a range of other outcomes.

As stated previously, the true effect size required for a 
design analysis is never known, so we recommend con-
sidering a range of plausible effects. One challenge for 
researchers using historical data to guess effect sizes is 
that these past estimates will themselves tend to be over-
estimates (as also noted by Button et al., 2013), to the 
extent that the published literature selects on statistical 
significance. Researchers should be aware of this and 
make sure that hypothesized effect sizes are substantively 
plausible—using a published point estimate is not 
enough. If little is known about a potential effect size, 
then it would be appropriate to consider a broad range 
of scenarios, and that range will inform the reader of the 

article, so that a particular claim, even if statistically sig-
nificant, only gets a strong interpretation conditional on 
the existence of large potential effects. This is, in many 
ways, the opposite of the standard approach in which 
statistical significance is used as a screener, and in which 
point estimates are taken at face value if that threshold is 
attained.

We recognize that any assumption of effect sizes is just 
that, an assumption. Nonetheless, we consider design 
analysis to be valuable even when good prior information 
is hard to find for three reasons. First, even a rough prior 
guess can provide guidance. Second, the requirement of 
design analysis can stimulate engagement with the exist-
ing literature in the subject-matter field. Third, the process 
forces the researcher to come up with a quantitative state-
ment on effect size, which can be a valuable step forward 
in specifying the problem. Consider the example dis-
cussed earlier of beauty and sex ratio. Had the author of 
this study been required to perform a design analysis, one 
of two things would have happened: Either a small effect 
size consistent with the literature would have been pro-
posed, in which case the result presumably would not 
have been published (or would have been presented as 
speculation rather than as a finding demonstrated by 
data), or a very large effect size would have been pro-
posed, in which case the implausibility of the claimed 
finding might have been noticed earlier (as it would have 
been difficult to justify an effect size of, say, 3 percentage 
points given the literature on sex ratio variation).

Finally, we consider the question of data arising from 
small existing samples. A researcher using a prospective 
design analysis might recommend performing an n = 100 
study of some phenomenon, but what if the study has 
already been performed (or what if the data are publicly 
available at no cost)? Here, we recommend either per-
forming a preregistered replication (as in Nosek, Spies, & 
Motyl, 2013) or else reporting design calculations that 
clarify the limitations of the data.

Discussion

Design calculations surrounding null hypothesis test sta-
tistics are among the few contexts in which there is a 
formal role for the incorporation of external quantitative 
information in classical statistical inference. Any statistical 
method is sensitive to its assumptions, and so one must 
carefully examine the prior information that goes into a 
design calculation, just as one must scrutinize the assump-
tions that go into any method of statistical estimation.

We have provided a tool for performing design analy-
sis given information about a study and a hypothesized 
population difference or effect size. Our goal in develop-
ing this software is not so much to provide a tool for 
routine use but rather to demonstrate that such 
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calculations are possible and to allow researchers to play 
around and get a sense of the sizes of Type S errors and 
Type M errors in realistic data settings.

Our recommended approach can be contrasted to 
existing practice in which p values are taken as data sum-
maries without reference to plausible effect sizes. In this 
article, we have focused attention on the dangers arising 
from not using realistic, externally based estimates of true 
effect size in power/design calculations. In prospective 
power calculations, many investigators use effect-size 
estimates based on unreliable early data, which often 
suggest larger-than-realistic effects, or on the minimal 
substantively important concept, which also may lead to 
unrealistically large effect-size estimates, especially in an 
environment in which multiple comparisons or researcher 
dfs (Simmons, Nelson, & Simonsohn, 2011) make it easy 
for researchers to find large and statistically significant 
effects that could arise from noise alone.

A design calculation requires an assumed effect size 
and adds nothing to an existing data analysis if the pos-
tulated effect size is estimated from the very same data. 
However, when design analysis is seen as a way to use 
prior information, and it is extended beyond the simple 
traditional power calculation to include quantities related 
to likely direction and size of estimate, we believe that it 
can clarify the true value of a study’s data. The relevant 
question is not “What is the power of a test?” but rather is 
“What might be expected to happen in studies of this 
size?” Also, contrary to the common impression, retro-
spective design calculation may be more relevant for sta-
tistically significant findings than for nonsignificant 
findings: The interpretation of a statistically significant 
result can change drastically depending on the plausible 
size of the underlying effect.

The design calculations that we recommend provide a 
clearer perspective on the dangers of erroneous findings 
in small studies, in which “small” must be defined relative 
to the true effect size (and variability of estimation, which 
is particularly important in between-subjects designs). It 

is not sufficiently well understood that “significant” find-
ings from studies that are underpowered (with respect to 
the true effect size) are likely to produce wrong answers, 
both in terms of the direction and magnitude of the 
effect. Critics have bemoaned the lack of attention to sta-
tistical power in the behavioral sciences for a long time: 
Notably, for example, Cohen (1988) reviewed a number 
of surveys of sample size and power over the preceding 
25 years and found little evidence of improvements in the 
apparent power of published studies, foreshadowing the 
generally similar findings reported recently by Button 
et al. (2013). There is a range of evidence to demonstrate 
that it remains the case that too many small studies are 
done and preferentially published when “significant.” We 
suggest that one reason for the continuing lack of real 
movement on this problem is the historic focus on power 
as a lever for ensuring statistical significance, with inad-
equate attention being paid to the difficulties of interpret-
ing statistical significance in underpowered studies.

Because insufficient attention has been paid to these 
issues, we believe that too many small studies are done 
and preferentially published when “significant.” There is 
a common misconception that if you happen to obtain 
statistical significance with low power, then you have 
achieved a particularly impressive feat, obtaining scien-
tific success under difficult conditions.

However, that is incorrect if the goal is scientific under-
standing rather than (say) publication in a top journal. In 
fact, statistically significant results in a noisy setting are 
highly likely to be in the wrong direction and invariably 
overestimate the absolute values of any actual effect 
sizes, often by a substantial factor. We believe that there 
continues to be widespread confusion regarding statisti-
cal power (in particular, there is an idea that statistical 
significance is a goal in itself) that contributes to the cur-
rent crisis of criticism and replication in social science 
and public health research, and we suggest that the use 
of the broader design calculations proposed here could 
address some of these problems.

Appendix

retrodesign <- function(A, s, alpha=.05, df=Inf, n.sims=10000){
z <- qt(1-alpha/2, df) 
p.hi <- 1 - pt(z-A/s, df) 
p.lo <- pt(-z-A/s, df)  
power <- p.hi + p.lo
typeS <- p.lo/power
estimate <- A + s*rt(n.sims,df)
significant <- abs(estimate) > s*z
exaggeration <- mean(abs(estimate)[significant])/A
return(list(power=power, typeS=typeS, exaggeration=exaggeration))

}
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Notes

1. See Broer et al. (2013) for a recent empirical examination 
of the need for context-specific significance thresholds to deal 
with the problem of multiple comparisons.
2. If the estimate has a normal distribution, then the power is 
Pr(|drep/s| > 1.96) = Pr(drep/s > 1.96) + Pr(drep/s < −1.96) = 1 
− )(1.96 − D/s) + )(−1.96 − D/s), where ) is the normal cumu-
lative distribution function. The Type S error rate is the ratio of 

the second term in this expression for power, divided by the 
sum of the two terms; for the normal distribution, this becomes 
the following probability ratio (assuming D is positive): )(−1.96 
− D/s)/{[1 – )(1.96 − D/s)] + )(−1.96 − D/s)}. The exaggeration 
ratio can be computed via simulation of the hypothesized sam-
pling distribution, truncated to have absolute value greater than 
the specified statistical significance threshold.
3. For example, Froehlich (1999), who attempted to clarify p val-
ues for a clinical audience, described a problem in which the 
data have a one-sided tail probability of .46 (compared with a 
specified threshold for a minimum worthwhile effect) and incor-
rectly wrote, “In other words, there is a 46% chance that the true 
effect” exceeds the threshold (p. 236). The mistake here is to treat 
a sampling distribution as a Bayesian posterior distribution—and 
this is particularly likely to cause a problem in settings with small 
effects and small sample sizes (see also Gelman, 2013).
4. A more direct probability calculation can be performed with 
a Bayesian approach; however, in the present article, we are 
emphasizing the gains that are possible using prior information 
without necessarily using Bayesian inference.

# Example: true effect size of 0.1, standard error 3.28, alpha=0.05  
retrodesign(.1, 3.28)
# Example: true effect size of 2, standard error 8.1, alpha=0.05  
retrodesign(2, 8.1)

# Producing Figures 2a and 2b for the Gelman and Carlin paper

D_range <- c(seq(0,1,.01),seq(1,10,.1),100)
n <- length(D_range)  
power <- rep(NA, n)  
typeS <- rep(NA, n)
exaggeration <- rep(NA, n)
for (i in 1:n){

a <- retrodesign(D_range[i], 1)
power[i] <- a$power 
typeS[i] <- a$typeS 
exaggeration[i] <- a$exaggeration

}

pdf(“pow1.pdf”, height=2.5, width=3)
par(mar=c(3,3,0,0), mgp=c(1.7,.5,0), tck=-.01) 
plot(power, typeS, type=“l”, xlim=c(0,1.05), ylim=c(0,0.54), xaxs=“i”, yaxs=“i”, 
  xlab=“Power”, ylab=“Type S error rate”, bty=“l”, cex.axis=.9, cex.lab=.9) 
dev.off() 
 
pdf(“pow2.pdf”, height=2.5, width=3) 
par(mar=c(3,3,0,0), mgp=c(1.7,.5,0), tck=-.01) 
plot(power, exaggeration, type=“l”, xlim=c(0,1.05), ylim=c(0,12), xaxs=“i”, yaxs=“i”, 
  xlab=“Power”, ylab=“Exaggeration ratio”, bty=“l”, yaxt=“n”, cex.axis=.9, cex.lab=.9) 
axis(2, c(0,5,10)) 
segments(.05, 1, 1, 1, col=“gray”) 
dev.off()
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