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Today: Normal Error Regression Model

Yi = β0 + β1Xi + εi

1. Yi value of the response variable in the i th trial

2. β0 and β1 are parameters

3. Xi is a known constant, the value of the predictor variable in
the i th trial

4. εi ∼iid N(0, σ2)

5. i = 1, . . . , n



Inferences concerning β1

Tests concerning β1 (the slope) are often of interest, particularly

H0 : β1 = 0

Ha : β1 6= 0

the null hypothesis model

Yi = β0 + (0)Xi + εi

implies that there is no relationship between Y and X



Review : Hypothesis Testing

1. Elements of a statistical test

1.1 Null hypothesis, H0

1.2 Alternative hypothesis, Ha

1.3 Test statistic
1.4 Rejection region



Review : Hypothesis Testing - Errors

1. Errors

1.1 A type I error is made if H0 is rejected when H0 is true. The
probability of a type I error is denoted by α. The value of α is
called the level of the test.

1.2 A type II error is made if H0 is accepted when Ha is true. The
probability of a type II error is denoted by β.



P-value

The p-value, or attained significance level, is the smallest level of
significance α for which the observed data indicate that the null
hypothesis should be rejected.



Null Hypothesis

If β1 = 0 then with 95% confidence the b1 would fall in some
range around zero



Alternative Hypothesis : Least Squares Fit



Testing This Hypothesis

1. Only have a finite sample

2. Different finite set of samples (from the same population /
source) will (almost always) produce different estimates of β0

and β0 (b0, b1) given the same estimation procedure

3. b0 and b1 are random variables whose sampling distributions
can be statistically characterized

4. Hypothesis tests can be constructed using these distributions.



Example : Sampling Dist. Of b1

1. The point estimator for b1 is

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

2. The sampling distribution for b1 is the distribution over b1

that occurs when the predictor variables Xi are held fixed and
the observed outputs are repeatedly sampled



Sampling Dist. Of b1 In Normal Regr. Model

1. For a normal error regression model the sampling distribution
of b1 is normal, with mean and variance given by

E(b1) = β1

Var(b1) =
σ2∑

(Xi − X̄ )2

2. To show this we need to go through a number of algebraic
steps.



First step

To show ∑
(Xi − X̄ )(Yi − Ȳ ) =

∑
(Xi − X̄ )Yi

we observe∑
(Xi − X̄ )(Yi − Ȳ ) =

∑
(Xi − X̄ )Yi −

∑
(Xi − X̄ )Ȳ

=
∑

(Xi − X̄ )Yi − Ȳ
∑

(Xi − X̄ )

=
∑

(Xi − X̄ )Yi − Ȳ
∑

(Xi ) + Ȳ n

∑
Xi

n

=
∑

(Xi − X̄ )Yi



Slope as linear combination of outputs

b1 can be expressed as a linear combination of the Y ′i s

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

=

∑
(Xi − X̄ )Yi∑
(Xi − X̄ )2

=
∑

kiYi

where

ki =

∑
(Xi − X̄ )∑
(Xi − X̄ )2



Properties of the k ′i s

It can be shown that ∑
ki = 0∑

kiXi = 1∑
k2
i =

1∑
(Xi − X̄ )2

(possible homework). We will use these properties to prove various
properties of the sampling distributions of b1 and b0.



Normality of b′1s Sampling Distribution

1. Useful fact:

1.1 A linear combination of independent normal random variables
is normally distributed

1.2 More formally: when Y1, . . . ,Yn are independent normal
random variables, the linear combination
a1Y1 + a2Y2 + . . .+ anYn is normally distributed, with mean∑

ai E(Yi ) and variance
∑

a2
i Var(Yi )



Normality of b′1s Sampling Distribution

Since b1 is a linear combination of the Y ′i s and each Yi is an
independent normal random variable, then b1 is distributed
normally as well

b1 =
∑

kiYi , ki =
(Xi − X̄ )∑
(Xi − X̄ )2



b1 is an unbiased estimator

This can be seen using two of the properties

E (b1) = E (
∑

kiYi ) =
∑

kiE (Yi ) =
∑

ki (β0 + β1Xi )

= β0

∑
ki + β1

∑
kiXi

= β0(0) + β1(1)

= β1



Variance of b1

Since the Yi are independent random variables with variance σ2

and the k ′i s are constants we get

V (b1) = V (
∑

kiYi ) =
∑

k2
i V (Yi )

=
∑

k2
i σ

2 = σ2
∑

k2
i

= σ2 1∑
(Xi − X̄ )2

note that this assumes that we know σ2. Can we?



Estimated variance of b1

1. When we don’t know σ2 then we have to replace it with the
MSE estimate

2. Remember

s2 = MSE =
SSE

n − 2
=

∑
(Yi − Ŷi )

2

n − 2
=

∑
e2
i

n − 2

plugging in we get

V (b1) =
σ2∑

(Xi − X̄ )2

V̂ (b1) =
s2∑

(Xi − X̄ )2



Digression : Gauss-Markov Theorem

In a regression model where E(2i) = 0 and variance V(2i) = ?2 ¡ 1
and 2i and 2j are uncorrelated for all i and j the least squares
estimators b0 and b1 and unbiased and have minimum variance
among all unbiased linear estimators.
Remember

b1 =

∑
(Xi − X̄ )(Yi − Ȳ )∑

(Xi − X̄ )2

b0 = Ȳ − b1X̄



Proof

1. The theorem states that b1 as minimum variance among all
unbiased linear estimators of the form

β̂1 =
∑

ciYi

2. As this estimator must be unbiased we have

E (β̂1) =
∑

ciE (Yi ) = β1

=
∑

ci (β0 + β1Xi ) = β0

∑
ci + β1

∑
ciXi = β1



Proof cont.

1. Given these constraints

β0

∑
ci + β1

∑
ciXi = β1

clearly it must be the case that
∑

ci = 0 and
∑

ciXi = 1

2. The variance of this estimator is

V (β̂1) =
∑

c2
i V (Yi ) = σ2

∑
c2
i



Proof cont.

Now define ci = ki + di where the ki are the constants we already
defined and the di are arbitrary constants. Let’s look at the
variance of the estimator

V (β̂1) =
∑

c2
i V (Yi ) = σ2

∑
(ki + di )

2

= σ2(
∑

k2
i +

∑
d2
i + 2

∑
kidi )

Note we just demonstrated that

σ2
∑

k2
i = V (b1)



Proof cont.

Now by showing that
∑

kidi = 0 we’re almost done∑
kidi =

∑
ki (ci − ki )

=
∑

ki (ci − ki )

=
∑

kici −
∑

k2
i

=
∑

ci

(
Xi − X̄∑
(Xi − X̄ )2

)
− 1∑

(Xi − X̄ )2

=

∑
ciXi − X̄

∑
ci∑

(Xi − X̄ )2
− 1∑

(Xi − X̄ )2
= 0



Proof end

So we are left with

V (β̂1) = σ2(
∑

k2
i +

∑
d2
i )

= V (b1) + σ2(
∑

d2
i )

which is minimized when the d ′i s = 0. This means that the least
squares estimator b1 has minimum variance among all unbiased
linear estimators.



Sampling Distribution of (b1 − β1)/S(b1)

1. b1 is normally distributed so (b1 − β1)/(Var(b1)1/2) is a
standard normal variable

2. We don’t know Var(b1) so it must be estimated from data.
We have already denoted it’s estimate

3. Using this estimate we it can be shown that

b1 − β1

Ŝ(b1)
∼ t(n − 2)

Ŝ(b1) =

√
V̂ (b1)



Where does this come from?

1. We need to rely upon the following theorem
For the normal error regression model

SSE

σ2
=

∑
(Yi − Ŷi )

2

σ2
∼ χ2(n − 2)

and is independent of b0 and b1

2. Intuitively this follows the standard result for the sum of
squared normal random variables
Here there are two linear constraints imposed by the
regression parameter estimation that each reduce the number
of degrees of freedom by one.



Another useful fact : t distribution

Let z and χ2(ν) be independent random variables (standard
normal and χ2 respectively). We then define a t random variable
as follows:

t(ν) =
z√
χ2(ν)
ν

This version of the t distribution has one parameter, the degrees of
freedom ν



Distribution of the studentized statistic

To derive the distribution of this statistic, first we do the following
rewrite

b1 − β1

Ŝ(b1)
=

b1−β1

S(b1)

Ŝ(b1)
S(b1)

Ŝ(b1)

S(b1)
=

√
V̂ (b1)

V (b1)



Studentized statistic cont.

And note the following

V̂ (b1)

V (b1)
=

MSEP
(Xi−X̄ )2

σ2P
(Xi−X̄ )2

=
MSE

σ2
=

SSE

σ2(n − 2)

where we know (by the given theorem) the distribution of the last
term is χ2 and indep. of b1 and b0

SSE

σ2(n − 2)
∼ χ2(n − 2)

n − 2



Studentized statistic final

But by the given definition of the t distribution we have our result

b1 − β1

Ŝ(b1)
∼ t(n − 2)

because putting everything together we can see that

b1 − β1

Ŝ(b1)
∼ z√

χ2(n−2)
n−2



Confidence Intervals and Hypothesis Tests

Now that we know the sampling distribution of b1 (t with n-2
degrees of freedom) we can construct confidence intervals and
hypothesis tests easily


