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PART I: WASSERSTEIN DISTANCES AND THE
WGAN (+IMPROVEMENTS)
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The vanilla GAN formulation suffers from:
> Unstable Training

> Limit cycles and general failure to converge
> Sensitive to imbalances in generator/discriminator (in architecture and
instance performance)
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PROBLEMS WITH VANILLA GANS

The vanilla GAN formulation suffers from:
» Unstable Training

> Limit cycles and general failure to converge
> Sensitive to imbalances in generator/discriminator (in architecture and
instance performance)

» Mode Collapse
Several implementation-level changes improve performance:
» —log D trick [Gool4]
» ming E,,_(:)[log(1 — D(G(2)))] = ming E. .,z [— log(D(G(2)))]
» DCGAN [Rad16]
> Unrolled GANs [Met16]
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PROBLEMS WITH VANILLA GANS

The vanilla GAN formulation suffers from:
» Unstable Training

> Limit cycles and general failure to converge
> Sensitive to imbalances in generator/discriminator (in architecture and
instance performance)

» Mode Collapse
Several implementation-level changes improve performance:
» —log D trick [Gool4]
» ming E,,_(:)[log(1 — D(G(2)))] = ming E. .,z [— log(D(G(2)))]
» DCGAN [Rad16]
> Unrolled GANs [Met16]

Is there a theoretical perspective to address all of these underlying problems
(simultaneously)?
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Recall cost V (D, G) (for the vanilla GAN) [Gool4]:

min max V(D, G) = Eqwy, (o) log D(&)] + Eonpioylog(1 — D(G(2)))]
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Recall cost V (D, G) (for the vanilla GAN) [Gool4]:
minmax V (D, G) = By, (o) l0g D()] + Bevpoloa(1 = D(G(2))
Optimizing the discriminator,

max V(D,G) =C(G) = —log(4) + 2JSD(p:||ps)
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Recall cost V (D, G) (for the vanilla GAN) [Gool4]:
minmax V (D, G) = Eyry, (rlog D(@)] + E-yylog(1 ~ D(G(2)))]
Optimizing the discriminator,
max V(D,G) =C(G) = —log(4) + 2JSD(p:||ps)
Where JSD is the Jensen-Shannon Divergence,

1 pr+p pr+p
TSD(pelpo) = 5 K L(pel| 25 22) + L K L(pol| P22
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THEORETICAL PERSPECTIVE: BACK TO GANS

Recall cost V(D, G) (for the vanilla GAN) [Gool4]:

min max V(D,G) = Eqnp, (o) [log D(z)] + E.opz [log(l — D(G(2)))]

Optimizing the discriminator,

max V (D, G) = C(G) = ~log(4) + 275D (py1po)

Where JSD is the Jensen-Shannon Divergence,

1 T Jr T +
TSD(prllpe) = S KL 2=E22) + LK Lpo| 2222

The Jenson-Shannon Divergence is a nice theoretical justification, but is it the right one
to evaluate against? To take gradients against?
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Arjovsky et al. argue no.
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Arjovsky et al. argue no.

> In cases where p, lives on a low-d manifold, p, and pp may be supported on very
different, even disjoint sets

» Many familiar tools for comparing distributions are no longer useful in this setting.
(o0’s in KL divergence)
» Even more so when using these tools for learning, not just comparison (i.e. taking
gradients).
Suggest that the right tool for the job is the Earth Mover’s/Wasserstein Distance.
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EM /WASSERSTEIN DISTANCE

Consider a transportation problem [Vil08]: given a set of N bakeries and M cafes, what

is the optimal way to transport loaves of bread between them?

Define pic1...n the mass of bread held by each bakery, gje1...as the mass of bread

desired by each cafe. Define x;,y; the positions of bakeries and cafes.

We assume that }°, p; = >°,g; = 1, and cost is proportional to work (massxdistance).

Find an optimal coupling (i.e. plan, transport matrix, joint distribution) ~; ; the mass of

bread moved from p; to ¢;. This defines the Earth Mover's (EM) distance:

EMD =miny 3 i — 57,
LA

tration of Monge’s problem: squares stand for production
umption places.
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There are a set of Wasserstein distances, with W;,(pz, ¢y) defined with x € M,y € M
and a distance D on z,y:

Wp = inf / D(IL', y)pd')’(x7 y)
YEI(z,y) J prw M

Here II(z,y) represents the set of all joint distributions having p., gy as their marginals.
We will consider W7 with D(z,y) the Euclidean distance:

W= inf / o =~ ylldr(w,9) = _int Ele = yl]
M

vEI(z,y) J prx v€El(z,y
This identifies the EMD and W3 under a common interpretation.

[image from https://en.wikipedia.org/wiki/Wasserstein,, etric]
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Take the mapping 8 — py. Given a sequence of distributions pg, parametrized by a
sequence 6;, we would like convergence in 6; to imply convergence in pg, (8 — po is
continuous).
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AN ILLUSTRATIVE EXAMPLE

Take the mapping 6 — pg. Given a sequence of distributions pg, parametrized by a
sequence 6¢, we would like convergence in 6; to imply convergence in pg, (0 — po is
continuous).

Example: Let Z ~ U|[0, 1] be the uniform distribution on the unit interval. Let Py be
the distribution of (0, Z) € R2. uniform on a straight line centered at the origin. Now
let Py be the distribution of (6, Z) on R*.

00, ifO£0

KL(Pg|Po)) = KL(Po||Py)) = {0 ifo=0
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Example: Let Z ~ U[0, 1] be the uniform distribution on the unit interval. Let Py be
the distribution of (0, Z) € R?. uniform on a straight line centered at the origin. Now
let Py be the distribution of (§, Z) on R

0o, ifO£0

KL(Po|[Po)) = KL(Po||Ps)) = {0 00

log2, if6#£0
J5(Po, o)) = {0 if0=0

Wi (Po,Po)) = |0]

Roaland lake distributon when = 1
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Example: Let Z ~ U[0, 1] be the uniform distribution on the unit interval. Let Py be
the distribution of (0, Z) € R?. uniform on a straight line centered at the origin. Now
let Py be the distribution of (§, Z) on R

0o, ifO£0

KL(Bs|[Bo) = KL(Bo[Bo) = § = 7

log2, if0+#0
0, if0=0

Wi (Po,Po)) = |0]

JS(Pg,Po)) =

Figure 1: These plots show p(Pg,Po) as a function of 6 when p is the EM distance (left
. ; plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everyuhere. The JS plot is not continuous and does not provide a usable gradient.

[left image from https://www.alexirpan.com/2017/02/22/wasserstein-gan.html]
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» Can be accessed only as the result of an optimization
»> Defines a space of joint distributions

> Induces a weaker topology (rabbit hole)
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How 1S WASSERSTEIN DIFFERENT?

» Can be accessed only as the result of an optimization
» Defines a space of joint distributions
> Induces a weaker topology (rabbit hole)

Formally:
Theorem 1. Let P, be a fixed distribution over X. Let Z be a random variable (e.g.

Gaussian) over another space Z. Let g: Z x R? — X be a function that will be
denoted gg(z) with z the first coordinate and 6 the second. Let Py denote the
distribution of g¢(Z). Then,

> If g is continuous in 6, so is W1i(P,,Py).

> If g is locally Lipschitz and satisfies regularity assumption 1, then W1 (P, Pyg) is
continuous everywhere, and differentiable almost everywhere.

> Statements 1-2 are false for the Jensen-Shannon divergence JSD(P,,Ps) and all
the KLs.
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How 1S WASSERSTEIN DIFFERENT?

» Can be accessed only as the result of an optimization
» Defines a space of joint distributions

> Induces a weaker topology (rabbit hole)

Formally:

Theorem 1. Let P, be a fixed distribution over X. Let Z be a random variable (e.g.
Gaussian) over another space Z. Let g: Z x R? — X be a function that will be
denoted gg(z) with z the first coordinate and 6 the second. Let Py denote the
distribution of g¢(Z). Then,

> If g is continuous in 6, so is W1i(P,,Py).

> If g is locally Lipschitz and satisfies regularity assumption 1, then W1 (P, Pyg) is
continuous everywhere, and differentiable almost everywhere.

> Statements 1-2 are false for the Jensen-Shannon divergence JSD(P,,Ps) and all
the KLs.

Corollary 1. Let gy be any feedforward neural network parametrized by 6, and p(z) a
prior over z such that E..,.)[||z]|] < co. Then assumption 1 is satisfied and therefore
W (P,,Py) is continuous everywhere and differentiable almost everywhere.
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> We may now agree that ming W1 (P, Py) is a good thing to do.
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> We may now agree that ming W1 (P, Py) is a good thing to do.

» However, ming inf E, (||z — y||) is intractable for our cases of interest!
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> We may now agree that ming W1 (P, Py) is a good thing to do.

» However, ming inf E, (||z — y||) is intractable for our cases of interest!

Kantorovich-Rubenstein Duality:

Wi (Br, Bp) = inf By ([l — yll) = S Eonp, [f(2)] = Eonr, [f(2)]
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IMPLEMENTATION: TRACTABLE COSTS

Go back to the EMD Picture:

EMD =mind 3 i = 57,
i g

Take z = vec(), ¢ = vec(||lz — y||), b = [pi, ¢;]7, A gives correct marginalization
b= Axz. Then EMD calculation becomes an LP problem:

EMD =minc"z (st. Az =bx > 0)
We can then solve the dual problem (strong duality holds):

EMD = max bT (st. ATp<c)

Recall that b = [p;, g;]7. Divide ¢ into fi, fo. By constraint arguments, we can show

that optimally, fo = —f1 = f, and that changes in f should be bounded by the distance
between points. This gives:

EMD = sup Z 45 — Zfzpz

Iflle<1

Interpretation [Vil08]: Here, f is the price of buying/selling loaves of bread at
bakeries/cafes at z;/y;.

[derivation from https://vincentherrmann.github.io/blog/wasserstein/]
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Approximation 1: Restriction to a parametric family of functions.
We will optimize over a family {fw}wew that are all K-Lipschitz for some K:

min Wi (Pr, Po) & min max Eop, [fu (2)] — Eznp.[fu(90(2))]

» Evaluation gives W1 (P, Pg) up to a multiplicative constant.

> Differentiation w.r.t 6 gives d%Wl (P, Pg) up to a multiplicative constant.
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IMPLEMENTATION: APPROXIMATIONS

Approximation 1: Restriction to a parametric family of functions.
We will optimize over a family {fw}wew that are all K-Lipschitz for some K:

min Wi (Pr, Po) & min max Eop, [fu (2)] — Eznp.[fu(90(2))]

» Evaluation gives W1 (P, Pg) up to a multiplicative constant.
» Differentiation w.r.t 6 gives d%Wl(]P’r,]P’g) up to a multiplicative constant.

Approximation 2: Implementation of WV via clipping.
If the weights of the network are in a compact space, the network will be K-Lipschitz for
some K.

» Clip the weights of the network to a fixed box after each gradient update

» Not the same as updating within the constraints.
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IMPLEMENTATION: APPROXIMATIONS

Approximation 1: Restriction to a parametric family of functions.
We will optimize over a family {fw}wew that are all K-Lipschitz for some K:

min Wi (Pr, Po) & min max Eop, [fu (2)] — Eznp.[fu(90(2))]

» Evaluation gives W1 (P, Pg) up to a multiplicative constant.
» Differentiation w.r.t 6 gives d%Wl(]P’r,]P’g) up to a multiplicative constant.

Approximation 2: Implementation of WV via clipping.
If the weights of the network are in a compact space, the network will be K-Lipschitz for
some K.

» Clip the weights of the network to a fixed box after each gradient update
» Not the same as updating within the constraints.
Approximation 3: Monte Carlo estimates
» As is standard practice, expectations are approximated via Monte Carlo sampling.
» How does this interact with W; as opposed to JS distance?

> *Restrictions inherit optimality
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GAN Cost:

. = maxy, Eznp, [10g(Du ()] + Ezne, [log(1 — Duw(ge(2)))]
mgm mng(D, g) { =ming —E.p, [Dw (99 (Z))]

WGAN Cost:

min max V(f,9) = Eanp, [fu(@)] — Eznp. [fuw(go(2))]

> Unified cost
> Weights w are now clipped to a restricted range W
» Remove log sigmoid nonlinearity from output of D,, to recover f,,
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GAN Cost:
= maxy, Eznp, [10g(Du ()] + Ezne, [log(1 — Duw(ge(2)))]
ming —E.p, [Dw (99 (z))]

mein max V (D, g) {

WGAN Cost:
min max V(£,9) = Eone, [fu()] — Eane. [fu(g0(2))]
> Unified cost
> Weights w are now clipped to a restricted range W
» Remove log sigmoid nonlinearity from output of D,, to recover f,,
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» We can now train the critic to optimality, no concerns about saturation and loss of
the gradient if the critic becomes too good.

> Avoids mode collapse (?)
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Meaningful loss metric:

— MLP512 — DCGAN

Assmpmn

100000 200000 300000 400000 500000 600000 100000 200000 300000 400000 _ 0¢ 600000
Generator terations. Generator iterations

Wasserstein estimate.

0 100000 200000 300000 400000 500000 600000
Generator terations.

Figure 3: Training curves and samples at different stages of training. We can see a clear
correlation between lower error and better sample quality. Upper left: the generator is an
MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as
training progresses and sample quality increases. Upper right: the generator is a standard
DCGAN. The loss decreases quickly and sample quality increases as well. In both upper
plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.
Lower half: both the generator and the discriminator are MLPs with substlmtwlly high
learning rates (so training failed). Loss is constant and are tant as well. The
training curves were passed through a median filter for msuuhzutwn purposes.

STAT G8201: Deep Generative Models 16 / 40



Compare JS:

5D estimate
S estimate

050000 100000 150000 200000 250000 300000 350000 400000 050000 100000 150000 200000 250000 300000 350000 400000
Generator iterations Generator iterations

— MLP_GMLP.D

050000 100000 150000 200000 250000 300000 350000 400000

Figure 4: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper
right) trained with the standard GAN procedure. Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample
quality and loss. Bottom: MLP with both generator and discriminator. The curve goes up
and down regardless of sample quality. All training curves were passed through the same

median filter as in|Figure 3}
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Stability w.r.t. architecture:

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.

Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
Jormulation. As we can see the standard GAN failed to learn while the WGAN still was
able to produce samples.

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.
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HoOw RELEVANT IS THE THEORY?

Potential Problems
» How are distances implemented when estimating expectations via monte carlo?

> If the compact space W is very large (i.e. K-Lipschitz for K large), will we ever
reach a limit?

> Simpler explanations (matching capacity, etc.)
On the other hand..

» Correlates well with objective

» Simplifies architectures

> Lends basis for sanity checks, improvements (performance on toy problems,
estimating K)
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How else can we enforce Lipschitz continuity?
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How else can we enforce Lipschitz continuity?
If f*, the optimal critic is differentiable and P, and Py have support intersecting in a set
of measure 0, f* has gradient norm 1 almost everywhere under P, and Py.

STAT G8201: Deep Generative Models 20 / 40



How else can we enforce Lipschitz continuity?
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How else can we enforce Lipschitz continuity?
If f*, the optimal critic is differentiable and P, and Py have support intersecting in a set

of measure 0, f* has gradient norm 1 almost everywhere under P, and Py.

WGAN-GP cost:

min max V(f, 9) = Ea~e, [fu(®)] = Ezne. [fu(g0(2))] + MEore, [(| Ve D(#)]2 - 1)’]

Swiss Roll

(a) Value surfaces of WGAN critics trained to op-
timality on toy datasets using (top) weight clipping
and (bottom) gradient penalty. Critics trained with
weight clipping fail to capture higher moments of the
data distribution. The ‘generator’ is held fixed at the
real data plus Gaussian noise.

[— Weight clipping (c = 0001)

101 — Weight clipping (c = 0.01)
—— Weight clipping (c = 0.1)
= Gradient penalty

Gradient norm (log scale)

T

10 )
Discriminator layer
(b) (left) Gradient norms of deep WGAN critics dur-
ing training on the Swiss Roll dataset either explode
or vanish when using weight clipping, but not when
using a gradient penalty. (right) Weight clipping (top)
pushes weights towards two values (the extremes of
the clipping range), unlike gradient penalty (bottom).

Figure 1: Gradient penalty in WGANSs does not exhibit undesired behavior like weight clipping.
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THEORY-DRIVEN IMPROVEMENT: WGAN-GP

How else can we enforce Lipschitz continuity?
If f*, the optimal critic is differentiable and PP, and Py have support intersecting in a set

of measure 0, f* has gradient norm 1 almost everywhere under P, and Py.
WGAN-GP cost:

min max V(f,9) = Eane, [fu(®)] — Eznp. [fuw(90(2))] + ABanp, [(|[VaD(&)[|2 — 1)°]

Inspired by, but within the theory?

STAT G8201

8 Gaussians 25 Gaussians ~ Swiss Roll

(a) Value surfaces of WGAN critics trained to op-
timality on toy datasets using (top) weight clipping
and (bottom) gradient penalty. Critics trained with
weight clipping fail to capture higher moments of the
data distribution. The ‘generator’ is held fixed at the

real data plus Gaussian noise.

Gradient norm (log scale)

i 7 i
Discriminator layer

(b) (left) Gradient norms of deep WGAN critics dur-
ing training on the Swiss Roll dataset either explode
or vanish when using weight clipping, but not when
using a gradient penalty. (right) Weight clipping (top)

pushes weights towards two values (the extremes of

the clipping range), unlike gradient penalty (bottom).

Figure 1: Gradient penalty in WGANSs does not exhibit undesired behavior like weight clipping.
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Table 2: Outcomes of training 200 random architectures, for different success thresholds. For
comparison, our standard DCGAN scored 7.24.

Min. score  Only GAN  Only WGAN-GP  Both succeeded  Both failed
Lo 0 8 192 0

30 1 88 110 1
50 0 147 a2 1
70 1 104 5 90
9.0 0 0 0 200
DCGAN LSGAN ‘WGAN (clipping) ‘WGAN-GP (ours)

Baseline (G: DCGAN, D: DCGAN)
Jeden

e i

G: No BN and a constant number of filters, D: DCGAN'

-layer 512-dim ReLU MLP, D: DCGAN

No normalization in either G or D

E-Fs B &

101-layer ResNet G and D

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.
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Integral probability metrics:

dr(Pr,Pg) = sup Eonp, [f(2)] — Egnr,[f(2))
fer

» F = l-Lipschitz — dr = W1
» F = 1-Bounded — dr =6 (TV)
> F={feH:|fllo <1} = MMD

Suggests potentially rich theoretical framework for understanding architecture-level
changes.
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PART II: WASSERSTEIN AUTO-ENCODERS
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VAE ELBO maximization:

max Eq, (z|x) log o (X12) — Dr1(Qe(Z]X), Po(2)) (1)

1. not guarantee that the aggregated posterior Ep(x)Q4(Z|X) matches Py

2. require non-deterministic (always gaussian) encoder and random decoder to
compute gradients

GAN objective function:

m(}n max Ep(x)log(D(X)) + Ep(z)log(l — D(G(Z))) (2)

1. sometimes maxout and provide no gradients when training
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Optimal transport (OT) problem:

We.(Px, Pg) = Ex,vyerle(X,Y)], (3)

inf
PeP(XEPx,YEPg)
when ¢(z,y) = dP(z,y),p > 1, W, is p-Wasserstein distance.

Theorem:

inf E X,Y) = inf EpE X,G(2), (4
rerxa L ep Bamer[dX V)] = ) inf | EpyEoezix[c(X,G(2))],  (4)

where Qz(Z) = Exery [Q(Z]X)], Pa(X) = [, pa(x|2)p:(2)dz, pc(z|z) is
deterministic with any function G : Z — X.

WAE objective function:

Dwag(Px,Pg) = inf Ep.E X, G(Z)] +\-D P, 5
wae(Px, Pa) ot o Erx Qzix)[e(X, G(2))] + 2(Qz,Pz),  (5)

where Dz can be arbitrary divergence between Pz and Q7.
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(a) VAE (b) WAE

z Pz Z

Pa(X|Z el¢|X) Pa(X|Z ZIX

(gisxqllyjssny

VAE reconstruction WAE reconstruction

Figure 1: Both VAE and WAE minimize two terms: the reconstruction cost and the regular-
izer penalizing discrepancy between Pz and distribution induced by the encoder ). VAE forces
Q(Z|X = z) to match Py for all the different input examples z drawn from Px. This is illustrated
on picture (a), where every single red ball is forced to match Pz depicted as the white shape. Red
balls start intersecting, which leads to problems with reconstruction. In contrast, WAE forces the
continuous mixture Qz := [ Q(Z|X)dPx to match Pz, as depicted with the green ball in picture
(b). As a result latent codes of different examples get a chance to stay far away from each other,
promoting a better reconstruction.

STAT G8201: Deep Generative Models 26

40



ALGORITHM WAE-GAN

Option 1: Dz = Djs(Qz, Pz) and use adversarial discriminator D~ to estimate it:

maX]EpX]EQ(Z‘X)[C(X G( ))]-‘r—)v(]EpZ log D»Y(Pz(Z)) + ]EQZ log(l — D»Y(Qz(Z))))
(6)

Q(Z\X)€Q

Algorithm 1 Wasserstein Auto-Encoder
with GAN-based penalty (WAE-GAN).

Require: Regularization coefficient A > 0.

Note:

1 Though it's min-max again here Initialize the parameters of the encoder @4,

we match the nice shape single
mode (if gaussion prior) Pz rather

decoder Gy, and latent discriminator D, .
while (¢, 8) not converged do

‘ Sample {z1,...,z,} from the training set
than unknown, complex, pOSSIny Sample {z1,...,2n} from the prior Pz
multimodal Px as in GAN. Sample Z; from Qy(Z|z;) for i =1,...,n

9 Q(Z‘.Z‘) _ 5#4)(1)7 /1«¢($) Xz Update D, by ascending:

3. When ¢(z,y) = ||z — yl|3. %ZlogDA,(zi)-%—lOg(l - D,(%))
WAE-GAN is equivalent to AAE. =t

4. The dual algorithm in WGAN Update Q@ and Gy by descending;
does not apply to other cost W,
and does not have encoder.

n
=3 (e, Go(2)) ~ A+ log D (3)
i=1

end while
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ALGORITHM WAE-MMD

Option 2:

Dz = MMDy(Qz, Pz) = ||/

)Py (z) - /Z k(2 )dQ 2 (2) 7.

where k : Z X Z — R is a positive-definite reproducing kernel, and Hj is the

corresponding RKHS.
Note:

1. This is not a min-max game.

2. Use the unbiased U-statistic
estimator in SGD.

3. Use k(z,y) =
C/(C+ ||z —yl3),C = 2d.0? as
it has heavy tails than RBF
kernels.

4. Papers [LSZ15, DRG15] estimate
MMDy, (Px, Pg), which requires
number of samples roughly
proportional to the dimensionality
of the input space X for each
mini-batch.
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Algorithm 2 Wasserstein Auto-Encoder
with MMD-based penalty (WAE-MMD).

Require: Regularization coefficient A > 0,

characteristic positive-definite kernel k.
Initialize the parameters of the encoder Qg,
decoder Gy, and latent discriminator D, .
while (¢,6) not converged do

Sample {z1,...,z,} from the training set
Sample {z1,...,2,} from the prior Pz
Sample Z; from Qy(Z|z;) fori=1,...,n
Update Q4 and Gy by descending:

n

1
=3 (i, Go(2)) + nn—1) > k(2. 2)
nia - 1’#]

A U .
+ mzk(mzj) - ﬁ;k 24, 25)

o

end while

(7)

o
@
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Figure 2: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained

on MNIST dataset. In “test reconstructions” odd rows correspond to the real test points.
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Figure 3: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained
on CelebA dataset. In “test reconstructions” odd rows correspond to the real test points.
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Two metrics:

1. Frechet Inception Distance (FID) [HRUT17]: smaller means the generated images
are more similar to real ones.

2. sharpness: larger means less blurry of the image.

Algorithm FID Sharpness

VAE 63 3x 1073
WAE-MMD 55 6 x 1073
WAE-GAN 42 6 x 1073

True data 2 2 x 102

Table 1: FID (smaller is better) and
sharpness (larger is better) scores for
samples of various models for CelebA.

Conclusions: The images sampled from the trained WAE models are of better quality,
without compromising the stability of training and the quality of reconstruction
compared with VAE.
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E Generator’s cost during normal GAN training

Pigure 8 Cost of the generator during normal GAN training, for an MLP generator (upper
left) and a DOGAN generator (upper right). Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the cost of the
generator increases, pointing towards no significant correlation between sample quality and
loss. Bottom: MLP with both generator and discriminator. The curve goes up and down
regardless of sample quality. All training curves were passed through the same median filter
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Comeegonce on CIEAR10

Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs
comparably to DCGAN.

36 /40



STAT G8201

Deep Generative Models

‘Table 3: Inception scores on CIFAR-10. Our unsupervised model achieves state-of-the-art perfor-
‘mance, and our conditional model outperforms all others except SGA

Unsupervised Supervised
Method Score Method Score
ALI[8] (in [27]) 534+.05  SteinGAN [26]
BEGAN [4] 5.62 DCGAN (with labels, in [26])
DCGAN [22] (in [11]) 6.164.07  Improved GAN [23]
Improved GAN (-L+HA) [23]  6.864.06  AC-GAN [20]
EGAN-Ent-VI [7] 707+.10  SGAN-no-joint [11]
DEM [27] 772413 WGAN-GP ResNet (ours)
WGAN-GP ResNet (ours)  7.86£.07  SGAN([11]
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Figure 4: Samples of 128 x 128 LSUN bedrooms. We believe these samples are at least comparable
0 the best published results so far.
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Table 4: Samples from a WGAN-GP character-level language model trained on sentences from
the Billion Word dataset, truncated to 32 characters. The model learns to directly output one-hot
character embeddings from a latent vector without any discrete sampling step. We were unable to
achieve comparable results with the standard GAN objective and a continuous generator.
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Figure 5 (a) The negative criic loss of our model on LSUN bedrooms converges toward a minimum
as the network trains. (b) WGAN training and validation losses on a random 1000-digit subset of
MNIST show overfitting when using cither our method (left) or weight clipping (right). In particular,
with our method, the critic overfits faster than the generator, causing the training loss to increase
gradually over time even as the validation loss drops.
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