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Part I: Wasserstein distances and the
WGAN (+improvements)
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Problems with vanilla GANs

The vanilla GAN formulation suffers from:

I Unstable Training

I Limit cycles and general failure to converge
I Sensitive to imbalances in generator/discriminator (in architecture and

instance performance)

I Mode Collapse

Several implementation-level changes improve performance:

I − logD trick [Goo14]

I minG Ez∼pz(z)[log(1−D(G(z)))]→ minG Ez∼p(z)[− log(D(G(z)))]

I DCGAN [Rad16]

I Unrolled GANs [Met16]

Is there a theoretical perspective to address all of these underlying problems
(simultaneously)?
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Theoretical perspective: Back to GANs

Recall cost V (D,G) (for the vanilla GAN) [Goo14]:

min
G

max
D

V (D,G) = Ex∼pr(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

Optimizing the discriminator,

max
D

V (D,G) = C(G) = − log(4) + 2JSD(pr‖pθ)

Where JSD is the Jensen-Shannon Divergence,

JSD(pr‖pθ) =
1

2
KL(pr‖

pr + pg
2

) +
1

2
KL(pθ‖

pr + pθ
2

)

The Jenson-Shannon Divergence is a nice theoretical justification, but is it the right one
to evaluate against? To take gradients against?
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Theoretical perspective: Supports and
Distances

Arjovsky et al. argue no.

I In cases where pr lives on a low-d manifold, pr and pθ may be supported on very
different, even disjoint sets

I Many familiar tools for comparing distributions are no longer useful in this setting.
(∞’s in KL divergence)

I Even more so when using these tools for learning, not just comparison (i.e. taking
gradients).

Suggest that the right tool for the job is the Earth Mover’s/Wasserstein Distance.
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EM/Wasserstein Distance

Consider a transportation problem [Vil08]: given a set of N bakeries and M cafes, what
is the optimal way to transport loaves of bread between them?

Define pi∈1...N the mass of bread held by each bakery, qj∈1...M the mass of bread
desired by each cafe. Define xi, yj the positions of bakeries and cafes.

We assume that
∑
i pi =

∑
j qj = 1, and cost is proportional to work (mass×distance).

Find an optimal coupling (i.e. plan, transport matrix, joint distribution) γi,j the mass of
bread moved from pi to qj . This defines the Earth Mover’s (EM) distance:

EMD = min
γ

∑
i

∑
j

‖xi − yj‖γi,j
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EM/Wasserstein Distance

There are a set of Wasserstein distances, with Wp(px, qy) defined with x ∈M ,y ∈M
and a distance D on x, y:

Wp = inf
γ∈Π(x,y)

∫
M×M

D(x, y)pdγ(x, y)

Here Π(x, y) represents the set of all joint distributions having px, qy as their marginals.
We will consider W1 with D(x, y) the Euclidean distance:

W1 = inf
γ∈Π(x,y)

∫
M×M

‖x− y‖dγ(x, y) = inf
γ∈Π(x,y)

E[‖x− y‖]

This identifies the EMD and W1 under a common interpretation.

[image from https://en.wikipedia.org/wiki/Wassersteinmetric]
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An Illustrative Example

Take the mapping θ → pθ. Given a sequence of distributions pθt parametrized by a
sequence θt, we would like convergence in θt to imply convergence in pθt (θ → pθ is
continuous).

Example: Let Z ∼ U [0, 1] be the uniform distribution on the unit interval. Let P0 be
the distribution of (0, Z) ∈ R2. uniform on a straight line centered at the origin. Now
let Pθ be the distribution of (θ, Z) on R2.

KL(Pθ‖P0)) = KL(P0‖Pθ)) =

{
∞, if θ 6= 0

0, if θ = 0

JS(Pθ‖P0)) =

{
log 2, if θ 6= 0

0, if θ = 0

W1(Pθ‖P0)) = |θ|
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How is Wasserstein Different?

I Can be accessed only as the result of an optimization

I Defines a space of joint distributions

I Induces a weaker topology (rabbit hole)

Formally:
Theorem 1. Let Pr be a fixed distribution over X . Let Z be a random variable (e.g.
Gaussian) over another space Z. Let g : Z × Rd → X be a function that will be
denoted gθ(z) with z the first coordinate and θ the second. Let Pθ denote the
distribution of gθ(Z). Then,

I If g is continuous in θ, so is W1(Pr,Pθ).

I If g is locally Lipschitz and satisfies regularity assumption 1, then W1(Pr,Pθ) is
continuous everywhere, and differentiable almost everywhere.

I Statements 1-2 are false for the Jensen-Shannon divergence JSD(Pr,Pθ) and all
the KLs.

Corollary 1. Let gθ be any feedforward neural network parametrized by θ, and p(z) a
prior over z such that Ez∼p(z)[‖z‖] <∞. Then assumption 1 is satisfied and therefore
W (Pr,Pθ) is continuous everywhere and differentiable almost everywhere.
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Implementation: tractable costs

I We may now agree that minθW1(Pr,Pθ) is a good thing to do.

I However, minθ inf Eγ(‖x− y‖) is intractable for our cases of interest!

Kantorovich-Rubenstein Duality:

W1(Pr,Pθ) = inf
γ

Eγ(‖x− y‖) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]
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Implementation: Tractable costs

Go back to the EMD Picture:

EMD = min
γ

∑
i

∑
j

‖xi − yj‖γi,j

Take x = vec(γ), c = vec(‖x− y‖), b = [pi, qj ]
T , A gives correct marginalization

b = Ax. Then EMD calculation becomes an LP problem:

EMD = min
x
cTx (s.t. Ax = b,x ≥ 0)

We can then solve the dual problem (strong duality holds):

EMD = max
φ

bTφ (s.t. ATφ ≤ c)

Recall that b = [pi, qj ]
T . Divide φ into f1, f2. By constraint arguments, we can show

that optimally, f2 = −f1 = f , and that changes in f should be bounded by the distance
between points. This gives:

EMD = sup
‖f‖L≤1

∑
j

fjqj −
∑
i

fipi

Interpretation [Vil08]: Here, f is the price of buying/selling loaves of bread at
bakeries/cafes at xi/yj . [derivation from https://vincentherrmann.github.io/blog/wasserstein/]
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Implementation: Approximations

Approximation 1: Restriction to a parametric family of functions.
We will optimize over a family {fw}w∈W that are all K-Lipschitz for some K:

min
θ
W1(Pr,Pθ) ≈ min

θ
max
w∈W

Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))]

I Evaluation gives W1(Pr,Pθ) up to a multiplicative constant.

I Differentiation w.r.t θ gives d
dθ
W1(Pr,Pθ) up to a multiplicative constant.

Approximation 2: Implementation of W via clipping.
If the weights of the network are in a compact space, the network will be K-Lipschitz for
some K.

I Clip the weights of the network to a fixed box after each gradient update

I Not the same as updating within the constraints.

Approximation 3: Monte Carlo estimates

I As is standard practice, expectations are approximated via Monte Carlo sampling.

I How does this interact with W1 as opposed to JS distance?

I *Restrictions inherit optimality
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What has actually changed?

GAN Cost:

min
θ

max
w

V (D, g)

{
= maxw Ex∼Pr [log(Dw(x)] + Ez∼Pz [log(1−Dw(gθ(z)))]

= minθ −Ez∼Pz [Dw(gθ(z))]

WGAN Cost:

min
θ

max
w∈W

Ṽ (f, g) = Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))]

I Unified cost

I Weights w are now clipped to a restricted range W
I Remove log sigmoid nonlinearity from output of Dw to recover fw
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Practical Implications

I We can now train the critic to optimality, no concerns about saturation and loss of
the gradient if the critic becomes too good.

I Avoids mode collapse (?)
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Empirical Results

Meaningful loss metric:
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Empirical Results

Compare JS:
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Empirical Results

Stability w.r.t. architecture:
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How relevant is the theory?

Potential Problems

I How are distances implemented when estimating expectations via monte carlo?

I If the compact space W is very large (i.e. K-Lipschitz for K large), will we ever
reach a limit?

I Simpler explanations (matching capacity, etc.)

On the other hand..

I Correlates well with objective

I Simplifies architectures

I Lends basis for sanity checks, improvements (performance on toy problems,
estimating K)
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Theory-Driven Improvement: WGAN-GP

How else can we enforce Lipschitz continuity?

If f∗, the optimal critic is differentiable and Pr and Pθ have support intersecting in a set
of measure 0, f∗ has gradient norm 1 almost everywhere under Pr and Pθ.
WGAN-GP cost:

min
θ

max
w∈W

V̄ (f, g) = Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))] + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

Inspired by, but within the theory?

STAT G8201: Deep Generative Models 20 / 40



Theory-Driven Improvement: WGAN-GP

How else can we enforce Lipschitz continuity?
If f∗, the optimal critic is differentiable and Pr and Pθ have support intersecting in a set
of measure 0, f∗ has gradient norm 1 almost everywhere under Pr and Pθ.

WGAN-GP cost:

min
θ

max
w∈W

V̄ (f, g) = Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))] + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

Inspired by, but within the theory?

STAT G8201: Deep Generative Models 20 / 40



Theory-Driven Improvement: WGAN-GP

How else can we enforce Lipschitz continuity?
If f∗, the optimal critic is differentiable and Pr and Pθ have support intersecting in a set
of measure 0, f∗ has gradient norm 1 almost everywhere under Pr and Pθ.
WGAN-GP cost:

min
θ

max
w∈W

V̄ (f, g) = Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))] + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

Inspired by, but within the theory?

STAT G8201: Deep Generative Models 20 / 40



Theory-Driven Improvement: WGAN-GP

How else can we enforce Lipschitz continuity?
If f∗, the optimal critic is differentiable and Pr and Pθ have support intersecting in a set
of measure 0, f∗ has gradient norm 1 almost everywhere under Pr and Pθ.
WGAN-GP cost:

min
θ

max
w∈W

V̄ (f, g) = Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))] + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

Inspired by, but within the theory?

STAT G8201: Deep Generative Models 20 / 40



Theory-Driven Improvement: WGAN-GP

How else can we enforce Lipschitz continuity?
If f∗, the optimal critic is differentiable and Pr and Pθ have support intersecting in a set
of measure 0, f∗ has gradient norm 1 almost everywhere under Pr and Pθ.
WGAN-GP cost:

min
θ

max
w∈W

V̄ (f, g) = Ex∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))] + λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

Inspired by, but within the theory?
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Robustness of Architectures
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Connecting weight constraints to theory

Integral probability metrics:

dF (Pr,Pθ) = sup
f∈F

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)]

I F = 1-Lipschitz → dF = W1

I F = 1-Bounded → dF = δ (TV)

I F = {f ∈ H : ‖f‖∞ ≤ 1} = MMD

Suggests potentially rich theoretical framework for understanding architecture-level
changes.
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Part II: Wasserstein Auto-Encoders
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Motivation

VAE ELBO maximization:

max
φ,θ

EQφ(Z|X) logPθ(X|Z)−DKL(Qφ(Z|X), Pθ(Z)) (1)

1. not guarantee that the aggregated posterior EP (X)Qφ(Z|X) matches PZ

2. require non-deterministic (always gaussian) encoder and random decoder to
compute gradients

GAN objective function:

min
G

max
D

EP (X) log(D(X)) + EP (Z) log(1−D(G(Z))) (2)

1. sometimes maxout and provide no gradients when training
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Formulation

Optimal transport (OT) problem:

Wc(PX , PG) = inf
Γ∈P(X∈PX ,Y ∈PG)

E(X,Y )∈Γ[c(X,Y )], (3)

when c(x, y) = dp(x, y), p ≥ 1,Wc, is p-Wasserstein distance.

Theorem:

inf
Γ∈P(X∈PX ,Y ∈PG)

E(X,Y )∈Γ[c(X,Y )] = inf
Q:QZ=PZ

EPXEQ(Z|X)[c(X,G(Z))], (4)

where QZ(Z) = EX∈PX [Q(Z|X)], PG(X) =
∫
Z pG(x|z)pz(z)dz, pG(x|z) is

deterministic with any function G : Z → X .

WAE objective function:

DWAE(PX , PG) = inf
Q(Z|X)∈Q

EPXEQ(Z|X)[c(X,G(Z))] + λ · DZ(QZ , PZ), (5)

where DZ can be arbitrary divergence between PZ and QZ .
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Algorithm WAE-GAN

Option 1: DZ = DJS(QZ , PZ) and use adversarial discriminator Dγ to estimate it:

inf
Q(Z|X)∈Q

max
Dγ

EPXEQ(Z|X)[c(X,G(Z))]+λ·
(
EPZ logDγ(PZ(Z)) + EQZ log(1−Dγ(QZ(Z)))

)
(6)

Note:

1. Though it’s min-max again, here
we match the nice shape single
mode (if gaussion prior) PZ rather
than unknown, complex, possibly
multimodal PX as in GAN.

2. Q(Z|x) = δµφ(x), µφ(x) : X → Z.

3. When c(x, y) = ‖x− y‖22,
WAE-GAN is equivalent to AAE.

4. The dual algorithm in WGAN
does not apply to other cost Wc

and does not have encoder.
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Algorithm WAE-MMD

Option 2:

DZ = MMDk(QZ , PZ) = ‖
∫
Z
k(z, ·)dPZ(z)−

∫
Z
k(z, ·)dQZ(z)‖Hk , (7)

where k : Z × Z → R is a positive-definite reproducing kernel, and Hk is the
corresponding RKHS.
Note:

1. This is not a min-max game.

2. Use the unbiased U-statistic
estimator in SGD.

3. Use k(x, y) =
C/(C + ‖x− y‖22), C = 2dzσ

2
z as

it has heavy tails than RBF
kernels.

4. Papers [LSZ15, DRG15] estimate
MMDk(PX , PG), which requires
number of samples roughly
proportional to the dimensionality
of the input space X for each
mini-batch.
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Experiments
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Two metrics:

1. Frechet Inception Distance (FID) [HRU+17]: smaller means the generated images
are more similar to real ones.

2. sharpness: larger means less blurry of the image.

Conclusions: The images sampled from the trained WAE models are of better quality,
without compromising the stability of training and the quality of reconstruction
compared with VAE.
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