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1 Introduction

By a semiparametric model we mean a statistical model1 that involves both parametric

and nonparametric (infinite-dimensional2) components. However, we are mostly interested

in estimation and inference of a finite-dimensional parameter in the model.

Example 1.1 (Population mean). Suppose that X1, . . . , Xn are i.i.d. P belonging to the

class P of distribution. Let ψ(P ) ≡ EP [X1], the mean of the distribution, be the parameter

of interest.

Question: Suppose that P is the class of all distributions that have a finite variance. What

is the most efficient estimator of ψ(P ), i.e., what is the estimator with the best asymptotic

performance?

Example 1.2 (Partial linear regression model). Suppose that we observe i.i.d. data {Xi ≡
(Yi, Zi, Vi) : i = 1, . . . , n} from the following partial linear regression model:

Yi = Z>i β + g(Vi) + εi, (1)

where Yi is the scalar response variable, Zi and Vi are vectors of predictors, g(·) is the

unknown (nonparametric) function, and εi is the unobserved error. For simplicity and

to focus on the semiparametric nature of the problem, we assume that (Zi, Vi) ∼ f(·, ·),
where we assume that the density f(·, ·) is known, is independent of εi ∼ N(0, σ2) (with

σ2 known). The model, under these assumptions, has a parametric component β and a

1A model P is simply a collection of probability distributions for the data we observe.
2By an infinite-dimensional linear space we mean a space which cannot be spanned by any finite set of

elements in the set. An example of an infinite-dimensional linear space is the space of continuous functions
defined on the real line.
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nonparametric component g(·).
Question: How well can we estimate the parametric component β?

Example 1.3 (Symmetric location). Suppose we have data X1, . . . , Xn generated from a

law which has a symmetric and smooth density and one is interested in estimating the

center of symmetry of the density. This means that one can write the density of the data

as f(· − θ), for some even function f (i.e., f(−x) = f(x)) and some unknown parameter θ.

If one assumes that the shape f is known, then only θ is unknown and the model is

parametric. But a much more flexible model is obtained by taking f also unknown. The

corresponding model P is a separated semiparametric3 model indexed by the pair (θ, f).

Historically, this model is one of the first semiparametric models that have been considered.

In the seminal 1956 paper, Charles Stein pointed out the surprising fact that, at least

asymptotically (as n→∞), it is no harder to estimate θ when f is known than when it is

not4.

Example 1.4 (The simplest ‘semiparametric’ model). Suppose that one observes a vector

X = (X1, X2) in R2 whose law belongs to the Gaussian family {N(θ,Σ) : θ ∈ R2} and Σ is

a positive definite matrix (which we denote Σ > 0). The matrix Σ is assumed to be known.

Let us write the vector θ as [θ1 θ2]>.

Goal: We are interested in estimation of the first coordinate µ := θ1 from the sin-

gle observation X ∼ N(θ,Σ) (results with a similar interpretation can be derived for n

observations). Consider the two following cases:

1. The second coordinate θ2 is known.

2. The second coordinate θ2 is unknown.

The natural questions are:

• Does it make a difference?

• In both cases, µ̂ = X1 seems to be a reasonable estimator. Is it optimal, say already

among unbiased estimators when the quadratic risk is considered?

3We say that the model P = {Pν,η} is a separated semiparametric model, where ν is a Euclidean
parameter and η runs through a nonparametric class of distributions (or some infinite-dimensional set).
This gives a semiparametric model in the strict sense, in which we aim at estimating ν and consider η as
a nuisance parameter.

4This is usually termed as adaptive estimation. Adaptive estimation refers to models where param-
eters of interest can be estimated equally well when the nonparametric part of the model is unknown as
when it is known. Such models are those where the semiparametric bound is equal to the parametric bound
that applies when the nonparametric part of the model is known.
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• Does Σ play a role?

Consider the estimation of a parameter of interest ν = ν(P ), where the data has distribution

P ∈ P . Here are some frequent goals or questions:

(Q 1) How well can we estimate ν = ν(P )? What is our “gold standard”?

(Q 2) Can we compare absolute “in principle” standards for estimation of ν in a model P
with estimation of ν in a submodel P0 ⊂ P? What is the effect of not knowing η on

estimation of ν when P = {Pθ : θ ≡ (ν, η) ∈ Θ}?

(Q 3) How do we construct efficient estimators of ν(P )?

Efficiency bounds (i.e., asymptotic lower bounds on variances of estimators of parame-

ters) are of fundamental importance for semiparametric models. Such bounds quantify the

efficiency loss that can result from a semiparametric, rather than parametric, approach.

The extent of this loss is important for the decision to use semiparametric models. The

bounds also provide a guide to estimation methods. They give a standard against which

the asymptotic efficiency of any particular estimator can be measured.

Semiparametric efficiency bounds were introduced by Stein (1956), and developed by Ko-

shevnik and Levit (1976), Pfanzagl (1982), Begun et al. (1983), and Bickel et al. (1993).

The treatment in this course will closely follow the texts Tsiatis (2006), van der Vaart

(1998, Chapter 25) and Bolthausen et al. (2002).

One could imagine that the data are generated by a parametric model that satisfies the

semiparametric assumptions and contains the truth. Such a model is referred to as a para-

metric submodel, where the ‘sub’ prefix refers to the fact that it is a subset of the model

consisting of all distributions satisfying the assumptions. One can obtain the classical

Cramer-Rao lower bound for a parametric submodel. Any semiparametric estimator,

i.e., one that is consistent and asymptotically normal under the semiparametric assump-

tions, has an asymptotic variance that is comparable to the Cramer-Rao lower bound of

a semiparametric model, and therefore has an asymptotic variance no smaller than the

bound for the submodel. Since this comparison holds for each parametric submodel that

one could imagine, it follows that:

The asymptotic variance of any semiparametric estimator is no smaller than the supremum

of the Cramer-Rao lower bounds for all parametric submodel.
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2 Parametric theory: The classical approach

We consider a model P defined as the collection of probability measures {Pθ : θ ∈ Θ} on

some measurable space (X,A) where Θ is an open subset of Rk. For each θ ∈ Θ, let pθ be

a density of Pθ with respect to some dominating σ-finite measure µ.

Question: Suppose that we are interested in estimating ψ(θ) based on the data X ∼ Pθ,

where ψ : Θ → R is a known function. A natural question that arises in this regard is:

What is the “gold-standard” for the performance of an estimator T (X) for ψ(θ)?”.

The log-likelihood for one observation is denoted by

`θ(x) = log pθ(x), for x ∈ X.

Suppose that θ 7→ pθ(x) is differentiable at θ for all x ∈ X (for µ-almost all x suffices); we

denote this derivative by ˙̀
θ(x) and call it the score function.

Definition 2.1 (Fisher information). The Fisher information matrix at θ is defined as

I(θ) ≡ Iθ = E[ ˙̀
θ(X) ˙̀

θ(X)>], where X ∼ Pθ.

The best known lower bound on the performance of any unbiased estimator of ψ(θ) is the

famous Cramér-Rao inequality.

Theorem 2.2 (Cramér-Rao inequality). Suppose that:

(A1) X ∼ Pθ on (X,A) where Pθ ∈ P := {Pθ : θ ∈ Θ}, Θ being an open subset of Rk;

(A2) for each θ ∈ Θ, pθ ≡ dPθ/dµ exists where µ is a σ-finite measure;

(A3) θ 7→ Pθ is differentiable with respect to θ (for µ-almost all x), i.e., there exists a set

B with µ(B) = 0 such that, for x ∈ Bc, ∂
∂θ
pθ(x) exists for all θ ∈ Θ;

(A4) A := {x ∈ X : pθ(x) = 0} does not depend on θ;

(A5) the k × k information matrix I(θ) is positive definite;

(A6) the map ψ : Θ→ R is differentiable at θ ∈ Θ with derivative ψ̇θ ≡ ∇ψ(θ) (we think

of ψ̇θ as a row vector);

(A7) T (X) is an unbiased estimator of ψ(θ), i.e., b(θ) := Eθ[T (X)]− ψ(θ) = 0.
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(A8)
∫
pθ(x)dµ(x) and

∫
T (x)pθ(x)dµ(x) can both be differentiated with respect to θ under

the integral sign, i.e.,

∂

∂θ

∫
pθ(x)dµ(x) =

∫
∂

∂θ
pθ(x)dµ(x),

and
∂

∂θ

∫
T (x)pθ(x)dµ(x) =

∫
T (x)

∂

∂θ
pθ(x)dµ(x).

Then the variance of T (X) at θ is bounded below by

Var(T (X)) ≥ ψ̇θI
−1
θ ψ̇>θ . (2)

Proof. Exercise.

Remark 2.1. Let us consider the case when k = 1. In this case, the above theorem states

that for any unbiased estimator of ψ(θ), Varθ(Tn) ≥ ψ̇2
θ/Iθ.

Remark 2.2 (When does equality hold in the Cramer-Rao bound?). Note that equality in

the Cauchy-Schwarz inequality holds if and only if ˙̀
θ(·) and T (·) are linearly related, i.e.,

iff
˙̀
θ(x) = A(θ)[T (x)− Eθ(T (X))] a.s. Pθ

for some constant A(θ). By (A2) this implies that this holds a.e. µ. Under further regularity

conditions this holds if and only if Pθ is an exponential family; see e.g., Lehmann and Casella

(1998, Theorem 5.12, page 121).

Remark 2.3. If, in addition to conditions (A1)-(A9),
∫
pθ(x)dµ(x) can be differentiated

twice under the integral sign, then the Fisher information matrix can also be expressed as

I(θ) = −Eθ[ ῭
θ(X)] = −Eθ

[
∂2

∂θi∂θj
log pθ(X)

]
.

Remark 2.4 (I.i.d. case). When X = (X1, . . . , Xn) with the Xi’s i.i.d. Pθ ∈ P satisfying

(A1)–(A9), then

˙̀
θ(X) =

n∑
i=1

˙̀
θ(Xi),

In(θ) = nI1(θ) ≡ nI(θ),
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and the conclusion can be written, for an unbiased estimator Tn ≡ T (X1, . . . , Xn), as

Var[
√
n(Tn − ψ(θ))] ≥ ψ̇θI

−1
θ ψ̇>θ . (3)

We can now ask: “Can we find a function of the Xi’s such that this lower bound, in the

above display, is attained?”. Observe that the function (for sample size n = 1) defined as

˜̀
ψ(X1) = ψ̇θI

−1
θ

˙̀
θ(X1)

satisfies the bound. Of course, ˜̀
ψ(·) is not an estimator (as it depends on the unknown

parameters).

We will call ˜̀
ψ(·) the efficient influence function for estimation of ψ(θ), i.e., if Tn

is an asymptotically efficient estimator of ψ(θ) then Tn is asymptotically linear5 with

influence function6 exactly ˜̀
ψ:

√
n(Tn − ψ(θ)) =

1√
n

n∑
i=1

˜̀
ψ(Xi) + op(1)

d→ N(0, ψ̇θI
−1
θ ψ̇>θ ). (5)

Exercise: Consider X1, . . . , Xn i.i.d. N(µ, σ2). Let µ̂n and σ̂2 denote the maximum likeli-

hood estimators of µ and σ2, respectively. Prove that µ̂n and σ̂2 are asymptotically linear

and show that their i-th influence functions are given by (Xi − µ) and (Xi − µ)2 − σ2

respectively.

Most reasonable estimators for the parameter ξ(θ), in either parametric or semiparamet-

ric models, are asymptotically linear and can be uniquely characterized by the influence

function of the estimator. The following result makes this rigorous (Exercise).

Lemma 2.3 (Exercise). An asymptotically linear estimator has a unique (a.s.) influence

function.

5Given i.i.d. data X1, . . . , Xn ∼ P , an estimator Sn ≡ Sn(X1, . . . , Xn) of ξ(P ) (where ξ : P → Rq,
q ≥ 1) is asymptotically linear if there exists a random vector (i.e., a q-dimensional measurable random
function) ϕq×1(X), such that E[ϕ(X)] = 0 and

√
n(Sn − ξ(P )) = n−1/2

n∑
i=1

ϕ(Xi) + op(1), (4)

where op(1) is a term that converges in probability to zero as n goes to infinity and E[ϕ(X1)ϕ(X1)>] is
finite and nonsingular.

6The random vector ϕ(Xi) in (4) is referred to as the i-th influence function of the estimator Sn or the
influence function of the i-th observation of the estimator Sn. The term influence function comes from the
robustness literature, where, to first order, ϕ(Xi) is the influence of the i-th observation on Sn.
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Remark 2.5. The above definitions should not depend on the parametrization of the

model P . Strictly speaking, we are interested in estimating an Euclidean parameter, say ν,

defined on the regular parametric model P . We can identify ν with the parametric function

ψ : Θ→ R, defined by

ψ(θ) = ν(Pθ), for Pθ ∈ P .

Fix P = Pθ and suppose that ψ has differential ψ̇ at θ. Define the information bound for

ν as

I−1(P |ν,P) = ψ̇θI
−1
θ ψ̇>θ , (6)

and the efficient influence function for ν as

˜̀(·, P |ν,P) = ψ̇θI
−1
θ

˙̀
θ(·). (7)

As defined above, the information bound and influence function appear to depend on the

parametrization θ 7→ Pθ of P . However, as our notation indicates, they actually depend

only on ν and P . This is proved in the following proposition.

Proposition 2.4 (Exercise). The information bound I−1(P |ν,P) and the efficient influence

function ˜̀(·, P |ν,P) are invariant under smooth changes of parametrization.

Remark 2.6 (Optimality of maximum likelihood estimation). Let θ̂n be the maximum

likelihood estimator (MLE) of θ in the experiment: X1, . . . , Xn i.i.d. Pθ where the model

P = {Pθ : θ ∈ Θ} satisfies the assumptions in Theorem 2.2 (in fact, a lot less is required;

more on this later). Then the MLE of ψ(θ) is ψ(θ̂n). According to the Cramér-Rao lower

bound, the variance of an unbiased estimator ψ(θ) is at least n−1ψ̇θI
−1
θ ψ̇>θ . Thus, we could

infer that the MLE is asymptotically uniformly minimum-variance unbiased, and in this

sense optimal. We write “could” because the preceding reasoning is informal and unsatis-

fying. The asymptotic normality does not warrant any conclusion about the convergence

of the moments Eθ[ψ(θ̂n)] and Varθ[ψ(θ̂n)]; we have not introduced an asymptotic version

of the Cramér-Rao theorem; and the Cramér-Rao bound does not make any assertion con-

cerning asymptotic normality. Moreover, the unbiasedness required by the Cramer-Rao

theorem is restrictive and can be relaxed considerably in the asymptotic situation. We

present a more satisfying discussion later.

Remark 2.7. When ψ : Θ → Rq, q > 1, similar results can be derived, where now, the

information bound is a m × m covariance matrix, and the efficient influence function is

a vector-valued function. Here ψ̇θ is the q × k Jacobian matrix whose (i, j)-th element is

given by ∂ψi(θ)/∂θj.
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2.1 Back to the simplest ‘semiparametric’ model

Let us try to answer the questions raised in Example 1.4. We denote the elements of Σ−1

by ((δij)), i.e., (Σ−1)i,j = δij.

Case 1. In this case θ2 is known so it can be considered fixed, say θ2 = b, and the statistical

model consists of the distributions {N([θ1, b]
>,Σ) : θ1 ∈ R}. We have

`θ1(X) = − log(2π|Σ|1/2)− 1

2
[X1 − θ1, X2 − b] Σ−1 [X1 − θ1, X2 − b]>.

From this expression we deduce that

∂

∂θ1

`θ1(X) = [1, 0]Σ−1[X1 − θ1, X2 − b]>,

Iθ1 = [1, 0]Σ−1[1, 0]>.

From the 1-dimensional version of the Cramer-Rao lemma, we deduce that any estimator

µ̂ of µ = θ1 = ψ(θ1) in experiment 1 satisfies

Eθ[(µ̂− θ1)2] ≥ I−1
θ1

= δ−1
1,1 = (Σ−1)−1

1,1.

Case 2. In this case both θ1 and θ2 are unknown and the statistical model consists of the

2-dimensional distributions {N([θ1, θ1]>,Σ) : θ = (θ1, θ2) ∈ R2}. We are interested in the

functional ψ(θ1, θ2) = θ1 which has a derivative (gradient) equal to [1, 0]. We have

`θ(X) = − log(2π|Σ|1/2)− 1

2
(X − θ) Σ−1 (X − θ)>.

Thus,

∂

∂θ
`θ(X) = Σ−1(X − θ),

Iθ = Eθ[∇`θ∇`>θ ] = Eθ[Σ−1(X − θ)(X − θ)>Σ−1] = Σ−1.

From the 2-dimensional Cramer-Rao lemma, we deduce that any unbiased estimator µ̂ of

µ = θ1 = ψ(θ1, θ2) in experiment 2 satisfies

Eθ[(µ̂− θ1)2] ≥ ψ̇θI
−1
θ1
ψ̇>θ = [1, 0] Σ [1, 0]> = Σ1,1.

We can now answer the questions. It is a general fact that (Σ−1)−1
1,1 ≤ Σ1,1 (Prove this).
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Thus we have established, for unbiased estimators, the intuitively clear fact (“information

of a sub-model should be larger”) that the best possible variance in the case where θ2

is known is always smaller or equal to the best possible variance when θ2 is unknown.

Moreover, those bounds are achieved for the estimators

µ̂(1) = X1 − (Σ1,2/Σ2,2)(X2 − θ2), and µ̂(2) = X1.

Notice that µ̂(1) is not an estimator in the second experiment since it depends on the un-

known quantity θ2. Finally, we note that the information bounds are the same in both

experiments if and only if the two coordinates of the observed Gaussian vector are inde-

pendent (i.e., if Σ is diagonal).

2.2 Hodges’ estimator

Characterizing asymptotic optimality (efficiency) in general is not as straightforward as it

might seem. In fact, it is not enough to rank all consistent, asymptotically normal esti-

mators by asymptotic variance. The Hodges’ super-efficient estimator (given below)

shows that there exists estimators with an asymptotic variance less than that of the MLE

for some true parameter values:

Suppose that X1, . . . , Xn are i.i.d. N(µ, 1), where µ ∈ R is unknown. Of course, the sample

mean X̄n is the MLE here. Consider the following estimator:

µ̂n =

X̄n, if |X̄n| > n−1/4,

0 if |X̄n| ≤ n−1/4.

Then µ̂n is equal to X̄n with probability approaching 1 if µ 6= 0 and is equal to zero with

probability approaching 1 if µ = 0 (Exercise: Show this). Thus, the asymptotic distribution

of µ̂n is the same as the sample mean if µ 6= 0 but has asymptotic variance zero at µ = 0. At

first sight, µ̂n is an improvement of X̄n. For every µ 6= 0, the estimators behave the same,

while for µ = 0, the sequence µ̂n has an “arbitrary fast” rate of convergence. However, this

reasoning is a bad use of asymptotics.

Figure 1 shows why µ̂n is no improvement. It shows the graph of the risk function µ 7→
Eµ[(µ̂n − µ)2] for three different sample sizes (n). These functions are close to 1 on most

of the domain but possess peaks close to zero. As n→∞, the locations and widths of the

peaks converge to zero but their heights go to infinity. The conclusion is that µ̂n “buys”

its better asymptotic behavior at µ = 0 at the expense of erratic behavior close to zero.
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Figure 1: Quadratic risk function of the Hodges’ estimator based on the means of samples
of size 10 (dashed) and 1000 (solid) observations from the N(µ, 1) distribution.

Because the values of µ at which µ̂n is bad differ from n to n, the erratic behavior is not

visible in the pointwise limit distributions under fixed µ.

2.3 Convolution theorems

Consider the estimation of ψ(θ), where P = {Pθ : θ ∈ Θ} and the model satisfies assump-

tions (A1)-(A2). Here ψ : Θ → Rq, q ≥ 1, is a known function. In the following theorems

we take an asymptotic approach and prove in a variety of ways that the best possible limit

distribution for any estimator of ψ(θ) is the N(0, ψ̇θI
−1
θ ψ̇>θ )-distribution.

It is certainly impossible to give a nontrivial lower bound on the limit distribution of a

standardized estimator
√
n(Tn−ψ(θ)) for a single θ. Hodges’ example shows that it is not

even enough to consider the behavior under every θ, pointwise for all θ. Different values

of the parameters must be taken into account simultaneously when taking the limit as

n → ∞. We shall do this by studying the performance of estimators under parameters in

a “shrinking” neighborhood of a fixed θ (see Definition 2.7).

To carry out this exercise, we need (i) some “smoothness” conditions on the family of dis-

tributions P (see the notion 2.5 described below); (ii) some regularity on the estimators

considered for ψ(θ) as described in 2.7 (which rules out examples like the Hodges’ estima-

tor); (iii) differentiability of the functional ψ(θ) (cf. the regularity conditions needed for

the Cramér-Rao inequality to hold).

We start with the concept of differentiability in quadratic mean which leads to a

fruitful analysis of the parametric model under minimal assumptions.

10



Definition 2.5 (Differentiable in quadratic mean). The (parametric) statistical model

P = {Pθ : θ ∈ Θ} is called differentiable in quadratic mean (DQM) at θ if there exists a

vector of measurable functions ˙̀
θ : X→ Rk such that∫ [√

pθ+h(x)−
√
pθ(x)− 1

2
h> ˙̀

θ(x)
√
pθ(x)

]2

dµ(x) = o(‖h‖2), h→ 0. (8)

Remark 2.8. Usually 1
2

˙̀
θ(x)

√
pθ(x) is the derivative of the map h 7→

√
pθ+h(x) at h = 0

for almost every x. In this case,

˙̀
θ(x) = 2

1√
pθ(x)

[
∂

∂θ

√
pθ(x)

]
=

∂

∂θ
log pθ(x).

Condition (39) does not require differentiability of the map θ 7→ pθ(x) for any single x, but

rather differentiability in (quadratic) mean.

Definition 2.6 (Local data generating process (LDGP)). We consider a triangular array

of random variables {Xin : i = 1, . . . , n} which are i.i.d. Pθn , where
√
n(θn − θ) → h ∈ Rk

as n → ∞ (i.e., θn is close to some fixed parameter θ). This data generating process is

usually referred to as a LDGP.

Definition 2.7 (Regular estimator). An estimator Tn (more specifically Tn(X1n, . . . , Xnn))

is called regular at θ for estimating ψ(θ) if, for every h ∈ Rk,

√
n(Tn − ψ(θ + h/

√
n))

θ+h/
√
n→d Lθ, (9)

where Lθ is an arbitrary probability measure that does not depend on h. Informally, Tn is

regular if its limiting distribution (after appropriate normalization) does not change with

small perturbation of the true parameter θ.

A regular estimator sequence attains its limit distribution in a “locally uniform” manner.

This type of regularity is common and is often considered desirable: A disappearing small

change should not change the (limit) distribution at all. However, some estimator sequences

of interest, such as shrinkage estimators, are not regular. The following convolution theorem

designates a best estimator sequence among the regular estimator sequences.

Theorem 2.8 (Convolution theorem). Assume that the experiment {Pθ : θ ∈ Θ} is DQM

at the point θ with nonsingular Fisher information matrix Iθ. Let ψ(θ) be differentiable

at θ with derivative ψ̇θ. Let Tn be a regular estimator sequence at θ in the experiments

{P n
θ : θ ∈ Θ} with limit distribution Lθ. Then there exists a probability measure Mθ such

11



that

Lθ = N(0, ψ̇θI
−1
θ ψ̇>θ ) ? Mθ.

In particular, if Lθ has covariance matrix Σθ, then the matrix Σθ− ψ̇θI−1
θ ψ̇>θ is nonnegative

definite.

Proof. To be given later.

The above result imposes an a priori restriction on the set of permitted estimator sequences.

The following almost-everywhere convolution theorem imposes no (serious) restriction but

yields no information about some parameters, albeit a null set of parameters.

Theorem 2.9 (Almost-everywhere convolution theorem). Assume that the experiment

{Pθ : θ ∈ Θ} is DQM at every θ with nonsingular Fisher information matrix Iθ. Let

ψ(θ) be differentiable at every θ. Let Tn be an estimator sequence in the experiments

{P n
θ : θ ∈ Θ} such that

√
n(Tn − ψ(θ)) converges to a limit distribution Lθ under every θ.

Then there exist probability distributions Mθ such that for Lebesgue almost every θ,

Lθ = N(0, ψ̇θI
−1
θ ψ̇>θ ) ? Mθ.

In particular, if Lθ has covariance matrix Σθ, then the matrix Σθ− ψ̇θI−1
θ ψ̇>θ is nonnegative

definite for Lebesgue almost every θ.

2.4 Contiguity

The proof of Theorem 2.9 relies on the notion of contiguity, which we define below.

Definition 2.10 (Contiguity). Let (Ωn,An) be measurable spaces, each equipped with a

pair of probability measures Pn and Qn; n ≥ 1.

The sequence {Qn} is contiguous with respect to the sequence {Pn} if

Pn(An)→ 0 implies Qn(An)→ 0 (10)

for every sequence of measurable sets An. This is denoted as Qn / Pn.

“Contiguity”7 can be thought of as “asymptotic absolute continuity”. Contiguity arguments

are a technique to obtain the limit distribution of a sequence of statistics under laws Qn

from a limiting distribution under laws Pn. The following result illustrates this point.

7The concept and theory of contiguity was developed by Le Cam in Le Cam (1960).
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Lemma 2.11 (Le Cam’s first lemma). Let Pn and Qn be sequences of probability measures

on measurable spaces (Ωn,An). Further assume that Pn and Qn have densities pn and qn

with respect to a measure µ. Then the following statements are equivalent:

(i) Qn / Pn.

(ii) If pn/qn
Qn→d U along a subsequence, then P(U > 0) = 1.

(iii) If qn/pn
Pn→d V along a subsequence, then E[V ] = 1.

(iv) For statistics Tn : Ωn → Rs (s ≥ 1): If Tn
Pn→ 0, then Tn

Qn→ 0.

Proof. See van der Vaart (1998, Lemma 6.4).

Note that the equivalence of (i) and (iv) follows directly from the definition of contiguity:

Given statistics Tn, consider the sets An = {‖Tn‖ > ε}; given sets An, consider the statistics

Tn = 1An .

The above lemma gives us equivalent conditions under which a random variable which is

op(1) under Pn, is also op(1) under Qn. The following result allows one to find the exact

weak limit of a random variable under Qn, if we know its limit under Pn.

Lemma 2.12 (Le Cam’s third lemma). Let Pn and Qn be sequences of probability measures

on measurable spaces (Ωn,An). Further assume that Pn and Qn have densities pn and qn

with respect to a measure µ. Let Tn : Ωn → Rs be a sequence of random variables (vectors).

Suppose that Qn / Pn and (
Tn,

qn
pn

)
Pn→d (T, V ).

Then L(B) := E[1B(T )V ] defines a probability measure, and Tn
Qn→d L.

An useful consequence of Le Cam’s third lemma is the following example.

Exercise 2.13 (Show this). If

(
Tn, log

qn
pn

)
Pn→d Ns+1

([
µ

−1
2
σ2

]
,

[
Σ τ

τ> σ2

])
.

Then Tn
Qn→d Ns(µ+ τ,Σ).
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2.5 Local Asymptotic Normality

Recall the setting of Section 2.

Definition 2.14 (Local Asymptotic Normality). We say that the model {P n
θ : θ ∈ Θ}8

is locally asymptotic normal (LAN) at the point θ if the following expansion holds for any

h ∈ Rk (as n→∞):

log
n∏
i=1

pθ+h/√n
pθ

(Xi) =
1√
n
h>

n∑
i=1

˙̀
θ(Xi)−

1

2
h>Iθh+ oPθ(1). (11)

Local asymptotic normality9 is a property of a sequence of statistical models, which

allows this sequence to be asymptotically approximated by a normal location model, after

a rescaling of the parameter, i.e., for large n, the experiments

{
P n
θ+h/

√
n : h ∈ Rk

}
and

{
N(h, I−1

θ ) : h ∈ Rk
}

are similar10 in statistical properties, whenever the original experiments θ 7→ Pθ are

“smooth” in the parameter. The second experiment consists of observing a single ob-

servation from a normal distribution with mean h and known covariance matrix (equal

to the inverse of the Fisher information matrix). This is a simple experiment, which is

easy to analyze, whence the approximation yields much information about the asymptotic

properties of the original experiments.

As a consequence of (11), for every h ∈ Rk,

log
n∏
i=1

pθ+h/√n
pθ

(Xi)→d N

(
−1

2
h>Iθh, h

>Iθh

)
.

An important example when the local asymptotic normality holds is in the case of i.i.d. sam-

pling from a regular parametric model, as shown below.

Theorem 2.15 (DQM implies LAN). Suppose that Θ is an open subset of Rk and that the

model {Pθ : θ ∈ Θ} is differentiable in quadratic mean at θ. Then Pθ ˙̀
θ = 0 and the Fisher

information matrix Iθ = Pθ ˙̀
θ

˙̀>
θ exists. Furthermore, for every h ∈ Rk, as n → ∞, (11)

holds.

8Here Pnθ denotes the joint distribution of (X1, . . . , Xn) where Xi’s are i.i.d. Pθ.
9The notion of local asymptotic normality was introduced by Le Cam (1960).

10Exercise: Find the likelihood ratio of the normal location model and compare with (11).
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Proof. See van der Vaart (1998, Theorem 7.2).

Exercise: Show that the sequences of distributions P n
θ+h/

√
n

and P n
θ are contiguous.
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3 Influence Functions for Parametric Models

As before, we borrow the notation and setup of Section 2. To keep the presentation simple,

we only consider regular (see Definition (2.7)) and asymptotically linear (see (4)) estimators

of ψ(θ). Note that most reasonable estimators are indeed regular and asymptotically linear

(RAL). In this section we study the geometry of influence functions. To do this, we need

some background on Hilbert spaces, introduced below.

3.1 Preliminaries: Hilbert spaces

Recall that a Hilbert space, denoted by H, is a complete normed linear vector space

equipped with an inner product (say 〈·, ·〉). The following is an important result.

Theorem 3.1 (Projection theorem). Let (H, 〈·, ·〉) be a Hilbert space and let U ⊂ H be a

closed linear subspace. For any h ∈ H, there exists a unique u0 ∈ U that is closest to h,

i.e.,

u0 = arg min
u∈U

‖h− u‖.

Furthermore, u0 is characterized by the fact that h− u0 is orthogonal to U , i.e.,

〈h− u0, u〉 = 0, for all u ∈ U .

Example 3.2 (q-dimensional random functions). Let X ∼ P be a random variable tak-

ing values in (X,A). Let H be the Hilbert space of mean-zero q-dimensional measurable

functions of X (i.e., h(X)), with finite second moments equipped with the inner product

〈h1, h2〉 := E[h1(X)>h2(X)].

Let v(X) ≡ (v1(X), . . . , vr(X)) be an r-dimensional random function with mean zero and

E[v(X)>v(X)] <∞. Consider the linear subspace U spanned by v(X), i.e.,

U = {Bq×rv(X) : where B ∈ Rq×r is any arbitrary matrix}. (12)

The linear subspace U defined above is a finite-dimensional linear subspace contained in

the infinite-dimensional Hilbert space H. If the elements v1(X), . . . , vr(X) are linearly

independent, then the dimension of U is q × r (Exercise: Show this).

We now consider the problem of finding the projection of an arbitrary element h(X) ∈ H
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onto U . By Theorem 3.1, such a projection B0v(X) (B0 ∈ Rq×r) is unique and must satisfy

〈h−B0v,Bv〉 = E[{h(X)−B0v(X)}>Bv(X)] = 0 for all B ∈ Rq×r. (13)

The above statement being true for all B ∈ Rq×r is equivalent to (Exercise: Show this):

E[{h(X)−B0v(X)}v(X)>] = 0 ⇔ B0E[v(X)v(X)>] = E[h(X)v(X)>].

Therefore, assuming that E[v(X)v(X)>] is nonsingular (i.e., positive definite),

B0 = E[h(X)v(X)>] {E[v(X)v(X)>]}−1.

Hence, the unique projection of h(X) ∈ H onto U is

Π(h|U) = E[h(X)v(X)>] {E[v(X)v(X)>]}−1v. (14)

Remark 3.1. LetH(1) be the Hilbert space of one-dimensional mean-zero random functions

of X (with finite variance), where we use the superscript (1) to emphasize one-dimensional

random functions. If h1 and h2 are elements of H(1) that are orthogonal to each other,

then, by the Pythagorean theorem, we know that

Var(h1 + h2) = Var(h1) + Var(h2),

making it clear that Var(h1 + h2) is greater than or equal to Var(h1) or Var(h2).

Unfortunately, when H consists of q-dimensional mean-zero random functions, there is

no such general relationship with regard to the variance matrices. However, there is an

important special case when this does occur, which we now discuss.

Definition 3.3 (q-replicating linear space). A linear subspace U ⊂ H is a q-replicating

linear space if U is of the form U (1) × · · · × U (1) ≡ [U (1)]q, where U (1) denotes a linear

subspace in H(1). Note that [U (1)]q ⊂ H represents the linear subspace in H that consists of

elements h = (h(1), · · · , h(q))> such that h(j) ∈ U (1) for all j = 1, . . . , q; i.e., [U (1)]q consists

of q-dimensional random functions, where each element in the vector is an element of U (1),

or the space U (1) stacked up on itself q times.

Remark 3.2. The linear subspace spanned by an r-dimensional vector of mean zero finite

variance random functions vr×1(X), discussed in Example 3.2 is such a subspace. This is

easily seen by defining U (1) to be the space {b>v(X) : b ∈ Rr×1}.
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Theorem 3.4 (Multivariate Pythagorean theorem). If h ∈ H and is an element of a

q-replicating linear space U , and t ∈ H is orthogonal to U , then

Var(t+ h) = Var(t) + Var(h),

where Var(h) := E(hh>). As a consequence, we obtain a multivariate version of the

Pythagorean theorem; namely, for any h∗ ∈ H,

Var(h∗) = Var(Π[h∗|U ]) + Var(h∗ − Π[h∗|U ]).

Proof. Exercise.

3.2 Geometry of Influence Functions

Recall the notation in the beginning of Section 2. Let θ0 ∈ Θ be the true value of the

parameter. We have the following important result.

Theorem 3.5. Assume that the experiment {Pθ : θ ∈ Θ} is DQM at the point θ0 with

nonsingular Fisher information matrix Iθ0 . Let the parameter of interest be ψ(θ), a q-

dimensional function of the k-dimensional parameter θ (q < k) such that

∂

∂θ
ψ(θ) ≡ ψ̇θ,

the q × k-dimensional matrix of partial derivatives (i.e., ψ̇θ = (∂ψi(θ)/∂θj)
1≤j≤k
1≤i≤q ) exists at

θ0. Also let Tn be an asymptotically linear estimator with influence function ϕ(X) such

that Eθ[ϕ(X)>ϕ(X)] exists at θ0. Then, if Tn is regular, this will imply that

E[ϕ(X) ˙̀
θ0(X)>] = ψ̇θ0 . (15)

Proof. Given in class. This follows from using the results on contiguity, the regularity and

asymptotically linearity of Tn.

Remark 3.3. Although influence functions of RAL estimators for ψ(θ) must satisfy (15)

of Theorem 3.5, a natural question is whether the converse is true, i.e., for any element

of the Hilbert space satisfying (15), does there exist an RAL estimator for ψ(θ) with that

influence function? Indeed this is true.

To prove this in full generality, especially later when we consider infinite-dimensional nui-

sance parameters, is difficult and requires that some careful technical regularity conditions
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hold. We will come back to this later on.

Remark 3.4. Note that RAL estimators are asymptotically normally distributed:

√
n(Tn − ψ(θ))

d→ N(0,E[ϕ(X)ϕ(X)>]).

Because of this, we can compare competing RAL estimators for ψ(θ) by looking at the

asymptotic variance, where clearly the better estimator is the one with smaller asymptotic

variance. We argued earlier, however, that the asymptotic variance of an RAL estimator

is the variance of its influence function. Therefore, it suffices to consider the variance

of influence functions. We already illustrated that influence functions can be viewed as

elements in a subspace of a Hilbert space. Moreover, in this Hilbert space the distance

to the origin (squared) of any element (random function) is the variance of the element.

Consequently, the search for the best estimator (i.e., the one with the smallest asymptotic

variance) is equivalent to the search for the element in the subspace of influence functions

that has the shortest distance to the origin.

Now we specialize slightly: suppose that θ ≡ (ψ, η) where ψ ∈ S ⊂ Rq, η ∈ N ⊂ Rk−q;

here ψ is the parameter of interest and η is the nuisance parameter. We can think of this

as ψ(θ) ≡ ψ so that Γ(θ) ≡ ψ̇θ = (Iq, 0q×(k−q)) is a q × k matrix; here Iq is the q × q

identity matrix and 0q×(k−q) denotes the q × (k − q) matrix of all zeros. We decompose
˙̀
θ = ( ˙̀(1)

θ , ˙̀(2)
θ ) where ˙̀(1)

θ ≡ ∂`θ/∂ψ ∈ Rq and ˙̀(2)
θ ≡ ∂`θ/∂η ∈ Rk−q. We immediately have

the following corollary.

Corollary 3.6. Under the assumptions of Theorem 3.5,

E[ϕ(X) ˙̀(1)
θ0

(X)>] = Iq (16)

and

E[ϕ(X) ˙̀(2)
θ0

(X)>] = 0q×(k−q). (17)

Although influence functions of RAL estimators for ψ must satisfy conditions (16) and (17)

of Corollary 3.6, a natural question is whether the converse is true; that is, for any element

of the Hilbert space satisfying conditions (16) and (16), does there exist an RAL estimator

for ψ with that influence function? We address this below. But before we do this let us

digress and introduce empirical process theory which will give us many tools to construct

and study “complicated” estimators.
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3.3 Digression: Empirical process theory

Suppose now that X1, . . . , Xn are i.i.d. P on (X,A). Then the empirical measure Pn is

defined by

Pn :=
1

n

n∑
i=1

δXi ,

where δx denotes the Dirac measure at x. For each n ≥ 1, Pn denotes the random discrete

probability measure11 which puts mass 1/n at each of the n points X1, . . . , Xn. For a

real-valued function f on X, we write

Pn[f ] :=

∫
fdPn =

1

n

n∑
i=1

f(Xi).

If F is a collection of real-valued functions defined on X, then {Pn(f) : f ∈ F} is the

empirical measure indexed by F . Let us assume that12

P [f ] :=

∫
fdP

exists for each f ∈ F . The empirical process Gn is defined by

Gn :=
√
n(Pn − P ),

and the collection of random variables {Gn(f) : f ∈ F} as f varies over F is called the

empirical process13 indexed by F . The goal of empirical process theory is to study the

properties of the approximation of Pf by Pnf , uniformly in F . Mainly, we would be

concerned with probability estimates of the random quantity

‖Pn − P‖F := sup
f∈F
|Pnf − Pf | (18)

In particular, we will find appropriate conditions to answer the following two questions:

1. Glivenko-Cantelli: Under what conditions on F does ‖Pn − P‖F converge to zero

almost surely (or in probability)? If this convergence holds, then we say that F is a

11Thus, for any Borel set A ⊂ X, Pn(A) := 1
n

∑n
i=1 1A(Xi) = #{i≤n:Xi∈A}

n .
12We will use the this operator notation for the integral of any function f with respect to P . Note that

such a notation is helpful (and preferable over the expectation notation) as then we can even treat random
(data dependent) functions.

13Note that the classical empirical process for real-valued random variables can be viewed as the special
case of the general theory for which X = R, F = {1(−∞,x](·) : x ∈ R}.
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P -Glivenko-Cantelli class of functions. More generally, given a function class F , we

are interested in tight bounds on the tail probability P(‖Pn − P‖F > ε), for ε > 0.

2. Donsker: Under what conditions on F does {Gn(f) : f ∈ F} converges as a process

to some limiting object as n→∞.

If this convergence holds, then we say that F is a P -Donsker class of functions.

Our main findings reveal that the answers (to the two above questions and more) depend

crucially on the complexity14 or size of the underlying function class F . However, the

scope of empirical process theory is much beyond answering the above two questions15.

The following section introduces the topic of M -estimation (also known as empirical risk

minimization), a field that naturally relies on the study of empirical processes.

3.3.1 M-estimation (or empirical risk minimization)

Many problems in statistics and machine learning are concerned with estimators of the

form

θ̂n := arg max
θ∈Θ

Pn[mθ] = arg max
θ∈Θ

1

n

n∑
i=1

mθ(Xi). (19)

where X,X1, . . . , Xn denote (i.i.d.) observations from P taking values in a space X. Here

Θ denotes the parameter space and, for each θ ∈ Θ, mθ denotes the a real-valued (loss-)

function on X. Such a quantity θ̂n is called an M-estimator as it is obtained by maximizing

(or minimizing) an objective function. The map

θ 7→ −Pnmθ = − 1

n

n∑
i=1

mθ(Xi)

can be thought of as the “empirical risk” and θ̂n denotes the empirical risk minimizer over

θ ∈ Θ. Here are some examples:

1. Maximum likelihood estimators: These correspond to mθ(x) = log pθ(x).

14We will consider different geometric (packing and covering numbers) and combinatorial (shattering
and combinatorial dimension) notions of complexity.

15In the last 20 years there has been enormous interest in understanding the concentration properties of
‖Pn − P‖F about its mean. In particular, one may ask if we can obtain exponential inequalities for the
difference ‖Pn − P‖F − E‖Pn − P‖F (when F is uniformly bounded). Talagrand’s inequality (Talagrand
(1996)) gives an affirmative answer to this question; a result that is considered to be one of the most
important and powerful results in the theory of empirical processes in the last 30 years. We will cover this
topic towards the end of the course (if time permits).
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2. Location estimators:

(a) Median: corresponds to mθ(x) = |x− θ|.

(b) Mode: may correspond to mθ(x) = 1{|x− θ| ≤ 1}.

3. Nonparametric maximum likelihood: Suppose X1, . . . , Xn are i.i.d. from a den-

sity θ on [0,∞) that is known to be non-increasing. Then take Θ to be the collection

of all non-increasing densities on [0,∞) and mθ(x) = log θ(x). The corresponding

M -estimator is the MLE over all non-increasing densities. It can be shown that θ̂n

exists and is unique; θ̂n is usually known as the Grenander estimator.

4. Regression estimators: Let {Xi = (Zi, Yi)}ni=1 denote i.i.d. from a regression model

and let

mθ(x) = mθ(z, y) := −(y − θ(z))2,

for a class θ ∈ Θ of real-valued functions from the domain of Z16. This gives the

usual least squares estimator over the class Θ. The choice mθ(z, y) = −|y − θ(z)|
gives the least absolute deviation estimator over Θ.

In these problems, the parameter of interest is

θ0 := arg max
θ∈Θ

P [mθ].

Perhaps the simplest general way to address this problem is to reason as follows. By the

law of large numbers, we can approximate the ‘risk’ for a fixed parameter θ by the empirical

risk which depends only on the data, i.e.,

P [mθ] ≈ Pn[mθ].

If Pn[mθ] and P [mθ] are uniformly close, then maybe their argmax’s θ̂n and θ0 are close.

The problem is now to quantify how close θ̂n is to θ0 as a function of the number of

samples n, the dimension of the parameter space Θ, the dimension of the space X, etc.

The resolution of this question leads naturally to the investigation of quantities such as the

uniform deviation

sup
θ∈Θ
|(Pn − P )[mθ]|.

16In the simplest setting we could parametrize θ(·) as θβ(z) := β>z, for β ∈ Rd, in which case Θ =
{θβ(·) : β ∈ Rd}.
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Closely related to M -estimators are Z-estimators, which are defined as solutions to a system

of equations of the form
∑n

i=1mθ(Xi) = 0 for θ ∈ Θ, an appropriate function class.

We will learn how to establish consistency, rates of convergence and the limiting distribution

for M and Z-estimators; see van der Vaart and Wellner (1996, Chapters 3.1-3.4) for more

details.

3.3.2 Asymptotic equicontinuity: a further motivation to study empirical pro-

cesses

A commonly recurring theme in statistics is that we want to prove consistency or asymptotic

normality of some statistic which is not a sum of independent random variables, but can

be related to some natural sum of random functions indexed by a parameter in a suitable

(metric) space. The following example illustrates the basic idea.

Example 3.7. Suppose that X,X1, . . . , Xn, . . . are i.i.d. P with c.d.f. G, having a Lebesgue

density g, and E(X2) < ∞. Let µ = E(X). Consider the absolute deviations about the

sample mean,

Mn := Pn|X − X̄n| =
1

n

n∑
i=1

|Xi − X̄n|,

as an estimate of scale. This is an average of the dependent random variables |Xi − X̄n|.
Suppose that we want to find the almost sure (a.s.) limit and the asymptotic distribution17

of Mn (properly normalized).

There are several routes available for showing that Mn
a.s.→ M := E|X−µ|, but the methods

we will develop in this section proceeds as follows. Since X̄n
a.s.→ µ, we know that for any

δ > 0 we have X̄n ∈ [µ − δ, µ + δ] for all sufficiently large n almost surely. Let us define,

for δ > 0, the random functions

Mn(t) = Pn|X − t|, for |t− µ| ≤ δ.

This is just the empirical measure indexed by the collection of functions

Fδ := {ft : |t− µ| ≤ δ}, where ft(x) := |x− t|.
17This example was one of the illustrative examples considered by Pollard (1989).
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Note that Mn ≡Mn(X̄n). To show that Mn
a.s.→ M := E|X − µ|, we write

Mn −M = Pn(fX̄n)− P (fµ)

= (Pn − P )(fX̄n) +
[
P (fX̄n)− P (fµ)

]
= In + IIn.

Note that,

|In| ≤ sup
f∈Fδ
|(Pn − P )(f)| a.s.→ 0, (20)

if Fδ is P -Glivenko-Cantelli. As we will see, this collection of functions Fδ is a VC subgraph

class of functions18 with an integrable envelope19 function, and hence empirical process

theory can be used to establish the desired convergence.

The convergence of the second term in IIn is easy: by the triangle inequality

|IIn| =
∣∣P (fX̄n)− P (fµ)

∣∣ ≤ P |X̄n − µ| = |X̄n − µ|
a.s.→ 0.

Exercise: Give an alternate direct (rigorous) proof of the above result (i.e., Mn
a.s.→ M :=

E|X − µ|).

The corresponding central limit theorem is trickier. Can we show that
√
n(Mn − M)

converges to a normal distribution? This may still not be unreasonable to expect. After

all if X̄n were replaced by µ in the definition of Mn this would be an outcome of the CLT

(assuming a finite variance for the Xi’s) and X̄n is the natural estimate of µ. Note that

√
n(Mn −M) =

√
n(PnfX̄n − Pfµ)

=
√
n(Pn − P )fµ +

√
n(PnfX̄n − Pnfµ)

= Gnfµ + Gn(fX̄n − fµ) +
√
n(ψ(X̄n)− ψ(µ))

= An +Bn + Cn (say),

where ψ(t) := P (ft) = E|X − t|. We will argue later that Bn is asymptotically negligible

18We will formally define VC classes of functions later. Intuitively, these classes of functions have simple
combinatorial properties.

19An envelope function of a class F is any function x 7→ F (x) such that |f(x)| ≤ F (x), for every x ∈ X
and f ∈ F .

24



using an equicontinuity argument. Let us consider An + Cn. It can be easily shown that

ψ(t) = µ− 2

∫ t

−∞
xg(x)dx− t+ 2tG(t), and ψ′(t) = 2G(t)− 1.

The delta method now yields:

An + Cn = Gnfµ +
√
n(X̄n − µ)ψ′(µ) + op(1) = Gn[fµ +Xψ′(µ)] + oP(1).

The usual CLT now gives the limit distribution of An + Cn.

Exercise: Complete the details and derive the exact form of the limiting distribution.

Definition 3.8. Let {Zn(f) : f ∈ F} be a stochastic process indexed by a class F equipped

with a semi-metric20 d(·, ·). Call {Zn}n≥1 to be asymptotically (or stochastically) equicon-

tinuous at f0 if for each η > 0 and ε > 0 there exists a neighborhood V of f0 for which21

lim sup
n→∞

P
(

sup
f∈V
|Zn(f)− Zn(f0)| > η

)
< ε.

Exercise: Show that if {f̂n}n≥1 is a sequence of (random) elements of F that converge in

probability to f0 (i.e.,d(f̂n, f0)
P→ 0), and {Zn(f) : f ∈ F} is asymptotically equicontinuous

at f0, then Zn(f̂n)−Zn(f0) = oP(1). [Hint: Note that with probability tending to 1, f̂n will

belong to each V .]

Empirical process theory offers very efficient methods for establishing the asymptotic

equicontinuity of Gn over a class of functions F . The fact that F is a VC class of func-

tions with square-integrable envelope function will suffice to show the desired asymptotic

equicontinuity.

20A semi-metric has all the properties of a metric except that d(s, t) = 0 need not imply that s = t.
21There might be measure theoretical difficulties related to taking a supremum over an uncountable set

of f values, but we shall ignore these for the time being.
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3.4 Constructing estimators

Let ϕ(X) be a q-dimensional measurable function with zero mean and finite variance that

satisfies conditions (16) and (17). Define

mψ,η(x) = ϕ(x)− Eψ,η[ϕ(X)]. (21)

We assume that we can find a root-n consistent estimator η̂n for the nuisance parameter

η0 (i.e.,
√
n(η̂n − η0) is bounded in probability). In many cases the estimator η̂n will be

ψ-dependent (i.e., η̂n(ψ)). For example, we might use the MLE for η̂n, or the restricted

MLE for η, fixing the value of ψ.

We will now argue that the solution to the equation

1

n

n∑
i=1

mψ,η̂n(ψ)(Xi) = 0 (22)

which we denote by ψ̂n, will be an asymptotically linear estimator with influence func-

tion ϕ(X). The above equation shows that ψ̂n is a Z-estimator. Using empirical process

notation, we have Pn[mψ̂n,η̂n
] = 0. In general, there are many results that give suffi-

cient conditions under which a (finite-dimensional) Z-estimator will be
√
n-consistent and

asymptotically normal. The following is one such result; see van der Vaart (1998, Theorem

5.21).

Theorem 3.9. Suppose that X1, . . . , Xn are i.i.d. P on (X,A). For each β in an open

subset of Euclidean space, let x 7→ gβ(x) be a measurable vector-valued function such that

Gn[gβ] ≡
√
n(Pn−P )[gβ] is asymptotically equicontinuous at β = β0

22, i.e., Gn[gβ̃n−gβ0 ] =

op(1) if β̃n
P→ β0. Assume that P [g>β0gβ0 ] <∞ and that the map β 7→ P [gβ] is differentiable

at a zero β0 (i.e., P [gβ0 ] = 0) with nonsingular derivative matrix Vβ0 . If Pn[gβ̂n ] = op(n
−1/2),

and β̂n
P→ β0, then

√
n(β̂n − β0) = −V −1

β0

1√
n

n∑
i=1

gβ0(Xi) + oP (1).

In particular, the sequence
√
n(β̂n − β0) is asymptotically normal with mean zero and

22For example, such asymptotically equicontinuity holds if there exists a measurable function L : X→ R
with P [L2] <∞ such that for every β1 and β2 in a neighborhood of β0,

‖gβ1
(x)− gβ2

(x)‖ ≤ L(x)‖β1 − β2‖.
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covariance matrix V −1
β0
P [gβ0g

>
β0

](V −1
β0

)>.

If mψ,η is a “nice” class of functions (indexed by (ψ, η)), and (ψ̂n, η̂n) is a consistent esti-

mator of θ0 ≡ (ψ0, η0) we can expect, by asymptotic equicontinuity,

Gn[mψ̂n,η̂n
−mψ0,η0 ] = oP (1).

However,

Gn[mψ̂n,η̂n
−mψ0,η0 ] =

√
nPn[mψ̂n,η̂n

]−
√
nPn[mψ0,η0 ]−

√
nP [mψ̂n,η̂n

−mψ0,η0 ].

Observe that the first term on the right side is 0 (by definition); the second term is asymp-

totically normal by the CLT; the third term can be handled by using DQM of the parametric

model at (ψ0, η0) (Exercise: Show this.).

3.5 Tangent spaces

We first note that the score vector ˙̀
θ0(X), under suitable regularity conditions (e.g., DQM

of the parametric model at θ0), has mean zero (i.e., Eθ0 [ ˙̀
θ0(X)] = 0k×1).

Definition 3.10 (Tangent space). We can define the finite-dimensional linear subspace

T ⊂ H spanned by the k-dimensional score vector ˙̀
θ0(X) (similar to Example 3.2) as the

set of all q-dimensional mean-zero random vectors consisting of Bq×k ˙̀
θ0(X), i.e.,

T := {B ˙̀
θ0(X) : where B ∈ Rq×k is any arbitrary matrix}. (23)

The linear subspace T is referred to as the tangent space.

Definition 3.11 (Nuisance tangent space). In the case where θ can be partitioned as (ψ, η),

consider the linear subspace spanned by the nuisance score vector ˙̀(2)
θ0

(X), i.e.,

Λ := {B ˙̀(2)
θ0

(X) : where B ∈ Rq×(k−q) is any arbitrary matrix}. (24)

This space is referred to as the nuisance tangent space23 and will be denoted by Λ.

23Since tangent spaces and nuisance tangent spaces are linear subspaces spanned by score vectors, these
are examples of q-replicating linear spaces.
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We note that by (17) of Corollary 3.6 this is equivalent to saying that the q-dimensional

influence function ϕ(X) of Tn is orthogonal to the nuisance tangent space Λ.

3.6 Efficient Influence Function

We will show how the geometry of Hilbert spaces will allow us to identify the efficient

influence function (i.e., the influence function with the smallest variance). First, however,

we give some additional notation and definitions regarding operations on linear subspaces

that will be needed shortly.

Definition 3.12 (Direct sum). We say that M⊕N is a direct sum of two linear subspaces

M ⊂ H and N ⊂ H if M ⊕N is a linear subspace in H and if every element x ∈ M ⊕N
has a unique representation of the form x = m+ n, where m ∈M and n ∈ N .

Definition 3.13 (Orthogonal complement). The set of elements of a Hilbert space that

are orthogonal to a linear subspace M is denoted by M⊥. The space M⊥ is also a linear

subspace, referred to as the orthogonal complement of M . Moreover, if M is closed

(note that all finite-dimensional linear spaces are closed), the entire Hilbert space can be

written as

H = M ⊕M⊥.

Condition (17) of Corollary 3.6 can now be stated as follows: If ϕ(X) is an influence

function of an RAL estimator, then ϕ(X) ∈ Λ⊥, where Λ denotes the nuisance tangent

space defined by (24).

For any arbitrary element h(X) ∈ H, by the projection theorem Π(h|Λ), referred to as the

projection of h(X) onto the space Λ, is the unique element (in Λ) such that

〈h− Π(h|Λ), a〉 = 0 for all a ∈ Λ.

The element with the minimum norm, h−Π(h|Λ), is sometimes referred to as the residual

of h after projecting onto Λ, and it is easy to show that

h− Π(h|Λ) = Π(h|Λ⊥).

Also, observe that Π(h|Λ) has an exact expression as given in (14).

We need the following definition of a linear variety (sometimes also called an affine space).
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Definition 3.14 (Linear variety). A linear variety is the translation of a linear subspace

away from the origin; i.e., a linear variety V can be written as V = x0 +M , where x0 ∈ H
and x0( 6= 0) /∈M , and M is a linear subspace.

Theorem 3.15. The set of all influence functions, namely the elements of H that satisfy

condition (15) of Theorem 3.5, is the linear variety ϕ∗(X) + T ⊥, where ϕ∗(X) is any

influence function and T ⊥ is the space perpendicular to the tangent space.

Proof. Let ϕ∗(X) be any influence function. Note that any element t(X) ∈ T ⊥ must satisfy

E[t(X) ˙̀
θ0(X)>] = 0q×k.

Let ϕ : X→ Rq be defined as ϕ = ϕ∗ + t, where ϕ∗(·) is any influence function. Then

E[ϕ(X) ˙̀
θ0(X)>] = E[{ϕ∗(X) + t(X)} ˙̀

θ0(X)>]

= E[ϕ∗(X) ˙̀
θ0(X)>] + E[t(X) ˙̀

θ0(X)>]

= ψ̇θ0 + 0q×k.

Hence, ϕ(X) is an influence function satisfying condition (15) of Theorem 3.5.

Conversely, if ϕ(X) is an influence function satisfying (15) of Theorem 3.5, then

ϕ(X) = ϕ∗(X) + {ϕ(X)− ϕ∗(X)}.

It is a simple exercise to verify that {ϕ(X)− ϕ∗(X)} ∈ T ⊥.

Definition 3.16 (Efficient influence function). The efficient influence function ϕeff(X),

if it exists, is the influence function with the smallest variance matrix; i.e., for any influence

function ϕ(X) 6= ϕeff(X), Var[ϕeff(X)]− Var[ϕ(X)] is nonpositive definite.

That an efficient influence function exists and is unique is now easy to see from the geometry

of the problem and is explained below.

Theorem 3.17. The efficient influence function is given by

ϕeff(X) = ϕ∗(X)− Π(ϕ∗(X)|T ⊥) = Π(ϕ∗(X)|T ), (25)

where ϕ∗(X) is an arbitrary influence function and can explicitly be written as

ϕeff(X) = ψ̇θ0I
−1
θ0

˙̀
θ0(X). (26)
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Proof. By Theorem 3.15, the class of influence functions is a linear variety, ϕ∗(X) + T ⊥,

where ϕ∗(X) is an arbitrary influence function. Let

ϕeff := ϕ∗ − Π(ϕ∗|T ⊥) = Π(ϕ∗|T ).

As Π(ϕ∗|T ⊥) ∈ T ⊥, this implies that ϕeff is an influence function. Moreover, ϕeff is

orthogonal to T ⊥. Consequently, any other influence function can be written as ϕ = ϕeff +t,

with t ∈ T ⊥. The tangent space T is an example of a q-replicating linear space as defined

by Definition 3.3. As ϕeff ∈ T and t ∈ T ⊥, by Theorem 3.4 we obtain

Var[ϕ(X)] = Var[ϕeff(X)] + Var[t(X)] ≥ Var[ϕeff(X)],

which demonstrates that ϕeff , constructed as above, is an efficient influence function.

We deduce from the argument above that an efficient influence function for ψ(θ0) is ϕeff =

Π(ϕ∗|T ) is an element of the tangent space T and hence can be expressed as ϕeff(X) =

Beff
˙̀
θ0(X) for some constant matrix Beff ∈ Rq×k. Since ϕeff(X) is an influence function, it

must also satisfy relationship (15), i.e.,

BeffE[ ˙̀
θ0(X) ˙̀

θ0(X)>] = ψ̇θ0 ⇒ Beff = ψ̇θ0I
−1
θ0
.

Consequently, the unique efficient influence function is given by ϕeff(X) = ψ̇θ0I
−1
θ0

˙̀
θ0(X).

It is instructive to consider the special case of a separable semiparametric model, i.e.,

θ = (ψ, η). We first define the important notion of an efficient score vector and then

show the relationship of the efficient score to the efficient influence function.

Definition 3.18 (Efficient score). The efficient score is the residual of the score vector with

respect to the parameter of interest after projecting it onto the nuisance tangent space, i.e.,

˙̀eff
θ0

:= ˙̀(1)
θ0
− Π( ˙̀(1)

θ0
|Λ).

Note that by (14), we have

Π( ˙̀(1)
θ0
|Λ) = E[ ˙̀(1)

θ0
(X) ˙̀(2)

θ0
(X)>]{E[ ˙̀(2)

θ0
(X) ˙̀(2)

θ0
(X)>]}−1 ˙̀(2)

θ0
.

Corollary 3.19. When the parameter θ can be partitioned as (ψ, η), where ψ is the

parameter of interest and η is the nuisance parameter, then the efficient influence function
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(at θ0) can be written as

ϕeff = {E[ ˙̀eff
θ0

(X) ˙̀eff
θ0

(X)>]}−1 ˙̀eff
θ0
. (27)

Proof. By construction, the efficient score vector is orthogonal to the nuisance tangent

space, i.e., it satisfies condition (17) for any influence function.

By appropriately scaling the efficient score, we can construct an influence function, which

we will show is the efficient influence function. We first note that

Eθ0 [ ˙̀eff
θ0

(X) ˙̀(1)
θ0

(X)>] = Eθ0 [ ˙̀eff
θ0

(X) ˙̀eff
θ0

(X)>].

This follows as

Eθ0 [ ˙̀eff
θ0

(X) ˙̀(1)
θ0

(X)>] = Eθ0 [ ˙̀eff
θ0

(X) ˙̀eff
θ0

(X)>] + Eθ0 [ ˙̀eff
θ0

(X)Π( ˙̀(1)
θ0
|Λ)>],

where the second term on the right side equals 0q×q as `eff
θ0
⊥ Λ. Therefore, if we define

ϕ∗ := {E[ ˙̀eff
θ0

(X) ˙̀eff
θ0

(X)>]}−1`eff
θ0

, then ϕ∗ is an influence function as it satisfies the two

conditions in Corollary 3.6.

As argued above, the efficient influence function is the unique influence function belonging

to the tangent space T . Since both ˙̀(1)
θ0

and Π( ˙̀(1)
θ0
|Λ) are elements of T , so is

ϕeff = ϕ∗ = {E[ ˙̀eff
θ0

(X) ˙̀eff
θ0

(X)>]}−1[ ˙̀(1)
θ0
− Π( ˙̀(1)

θ0
|Λ)]

thus demonstrating that (27) is the efficient influence function for RAL estimators of ψ.

Remark 3.5. The variance of the efficient influence function is ϕeff is {E[ ˙̀eff
θ0

(X) ˙̀eff
θ0

(X)>]}−1,

the inverse of the variance matrix of the efficient score. If we define

I11 := E[ ˙̀(1)
θ0

(X) ˙̀(1)
θ0

(X)>], I22 := E[ ˙̀(2)
θ0

(X) ˙̀(2)
θ0

(X)>], and I12 := E[ ˙̀(1)
θ0

(X) ˙̀(2)
θ0

(X)>],

then we obtain the well-known result that the minimum variance for an efficient RAL

estimator is

[I11 − I12I
−1
22 I21]−1

where I11, I12, I22 are elements of the information matrix used in likelihood theory.

Exercise: Compare the above variance with the limiting variance of an efficient RAL esti-

mator of ψ if η ≡ η0 where known.
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4 Semiparametric models

4.1 Separated semiparametric models

We assume for most of the following discussion that the data X1, . . . , Xn are i.i.d. random

variables (vectors) taking values in (X,A) with density belonging to the class

P :=
{
pψ,η(·) : where ψ is q-dimensional and η is infinite-dimensional

}
with respect to some dominating measure µ. Thus we assume a separated semiparametric

model24. We will denote the “truth” (i.e., the density that generated the data) by p0 ≡
pψ0,η0 ∈ P .

Question: What is a non-trivial lower bound on the variance of any “reasonable” estimator

of ψ in the semiparametric model P?

As is often the case in mathematics, infinite-dimensional problems are tackled by first

working with a finite-dimensional problem as an approximation and then taking limits to

infinity. Therefore, the first step in dealing with a semiparametric model is to consider

a simpler finite-dimensional parametric model contained within the semiparametric model

and use the theory and methods developed in the previous sections. Towards that end, we

define a parametric submodel.

Definition 4.1 (Parametric submodel). A parametric submodel, which we will denote

by Pψ,γ = {pψ,γ(·)}, is a class of densities characterized by a finite-dimensional parameter

(ψ, γ) ∈ Ωψ,γ ⊂ Rq+r (Ωψ,γ is an open set) such that

(i) Pψ,γ ⊂ P (i.e., every density in Pψ,γ belongs to the semiparametric model P), and

(ii) p0 ≡ pψ0,γ0 ∈ Pψ,γ (i.e., the parametric submodel contains the truth).

We further assume that Pψ,γ is DQM at p0.

Example 4.2 (Cox proportional hazards model). In the proportional hazards model, we

assume that

λ(t|Z) = λ(t) exp(ψ>Z),

24In a separated semiparametric model, ψ, the parameter of interest, is finite-dimensional (q-dimensional)
and η, the nuisance parameter, is infinite-dimensional, and ψ and η are variationally independent — i.e.,
any choice of ψ and η in a neighborhood about the true ψ0 and η0 would result in a density pψ,η(·)
in the semiparametric model. This will allow us, for example, to explicitly define partial derivatives
∂pψ,η0(x)/∂ψ|ψ=ψ0

.
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where Z = (Z1, . . . , Zq) denotes a q-dimensional vector of covariates, λ(t) is some arbi-

trary hazard function25 (for the response Y ) that is left unspecified and hence is infinite-

dimensional (whose true value is denoted by λ0), and ψ is the q-dimensional parameter of

interest.

An example of a parametric submodel is as follows. Let h1(·), . . . , hr(·) be r different

functions of time that are specified by the data analyst (any smooth function will do).

Consider the model

Pψ,γ =
{

class of densities with hazard function λ(t|Z) = λ0(t) exp
[ r∑
j=1

γjhj(t)
]

exp(ψ>Z)
}

where γ = (γ1, . . . , γr) ∈ Rr. Note that is indeed a parametric submodel and the truth is

obtained by setting ψ = ψ0 and γ = 0.

Question: What are “reasonable” semiparametric estimators?

Definition 4.3 (Semiparametric RAL estimator). An estimator for ψ is a RAL estimator

for a semiparametric model (at (ψ0, η0)) if it is an AL estimator at (ψ0, η0) and a regular

estimator for every parametric submodel.

Therefore, any influence function of an RAL estimator in a semiparametric model must be

an influence function of an RAL estimator within a parametric submodel, i.e.,

{class of influence functions of semiparametric RAL estimators of ψ for P}

⊂ {class of influence functions of RAL estimators of ψ for Pψ,γ} .

Consequently, the class of semiparametric RAL estimators must be contained within the

class of RAL estimators for a parametric submodel. Therefore:

25Suppose that Y is a random variable with c.d.f. F . An alternative characterization of the distribution
of Y is given by the hazard function, or instantaneous rate of occurrence of the event, defined as

λ(t) = lim
dt→0

P(t ≤ Y < t+ dt | Y ≥ t)
dt

.

The numerator of this expression is the conditional probability that the event (if Y denotes time of oc-
currence of an event) will occur in the interval [t, t + dt) given that it has not occurred before, and the
denominator is the width of the interval; dividing one by the other we obtain a rate of event occurrence per
unit of time. Taking the limit as the width of the interval goes down to zero, we obtain an instantaneous
rate of occurrence. If F has a density f and survival function S ≡ 1−F , then the hazard function reduces
to λ(t) = f(t)/S(t). Moreover, if Y ≥ 0, we can expresses the survival function in terms of the hazard

function as S(t) = exp{−
∫ t
0
λ(x)dx}.
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• Any influence function of an RAL semiparametric estimator for ψ must be orthog-

onal to all parametric submodel nuisance tangent spaces.

• The variance of any semiparametric RAL influence function must be greater than

or equal to {
E[ ˙̀eff

ψ,γ(X) ˙̀eff
ψ,γ(X)>]

}−1

for all parametric submodels Pψ,γ, where ˙̀eff
ψ,γ is the efficient score (at (ψ0, η0)) for

ψ0 for the parametric submodel Pψ,γ (note the slight change in our notation for the

efficient score). Recall that

˙̀eff
ψ,γ = ˙̀(1)

ψ,γ − Π( ˙̀(1)
ψ,γ|Λγ), (28)

where by ˙̀(1)
ψ,γ we now mean the score vector for the finite-dimensional parameter ψ

for the parametric submodel Pψ,γ at the point (ψ0, η0), i.e.,

˙̀(1)
ψ,γ(x) :=

∂

∂ψ
log pψ,γ(x)

∣∣∣
ψ=ψ0,γ=0

=
∂

∂ψ
log pψ,η0(x)

∣∣∣
ψ=ψ0

, for all x ∈ X,

(here we have assumed that γ = 0 gives us η0; we want the score function to be

evaluated at the truth (ψ0, η0)) and

Λγ := {B ˙̀(2)
ψ,γ(X) : B ∈ Rq×r},

and ˙̀(2)
ψ,γ is the score sub-vector for the nuisance parameter γ for the parametric

submodel Pψ,γ at the point (ψ0, η0). Note that in this new notation, ˙̀(1)
ψ,γ is the same

as ˙̀(1)
ψ0,η0

in our previous notation.

Hence, the variance of the influence function for any semiparametric estimator for ψ must

be greater than or equal to {
E[ ˙̀eff

ψ,γ(X) ˙̀eff
ψ,γ(X)>]

}−1

. (29)

for all parametric submodels Pψ,γ.

Definition 4.4 (Locally efficient semiparametric estimator). A semiparametric RAL esti-

mator Tn with asymptotic variance matrix V ∈ Rq×q is said to be locally efficient at p0

if

sup{
all para. submodels Pψ,γ

} a>{E[ ˙̀eff
ψ,γ(X) ˙̀eff

ψ,γ(X)>]
}−1

a = a>Va, for all a ∈ Rq. (30)
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Definition 4.5 (Semiparametric efficiency bound). The matrix V for which (30) holds is

known as the semiparametric efficiency bound.

If the same estimator Tn is semiparametric efficient regardless of p0 ∈ P , then we say that

such an estimator is globally semiparametric efficient.

4.2 Semiparametric Nuisance tangent set

Definition 4.6 (Nuisance tangent set for a semiparametric model). The nuisance tan-

gent space for a semiparametric model, denoted by Λ, is defined as the mean-square

closure26 of all parametric submodel nuisance tangent spaces Λγ.

Specifically, the mean-square closure of the spaces above is defined as the space Λ ⊂
H (where H consists of all measurable q-dimensional functions of X, i.e., h(X), with

Eψ0,η0 [h(X)] = 0 and Eψ0,η0 [h(X)>h(X)] <∞) such that there exists a sequence {Bj
˙̀(2)
j (X)}j≥1

such that

‖h−Bj
˙̀(2)
j ‖2 → 0, as j →∞,

for a sequence of parametric submodels indexed by j (note that ‖h‖2 = E[h(X)>h(X)]).

Here by ˙̀(2)
j (·) we mean the the score sub-vector for the nuisance parameter γ for a para-

metric submodel indexed by j.

Remark 4.1. If we denote by S the union of all parametric submodel nuisance tangent

spaces, then Λ = S̄ is the semiparametric nuisance tangent set (here we are equipping the

Hilbert space H with the metric d(h1, h2) = ‖h1 − h2‖).

Remark 4.2. Although the set Λ is closed, it may not necessarily be a linear space.

However, in most applications it will be a linear space. In fact, Λ is always a cone, i.e., if

h ∈ Λ then αh ∈ Λ, for any α > 0 (Exercise: Show this).

For the rest of this section we assume that Λ, the nuisance tangent set, is a linear subspace.

Before deriving the semiparametric efficient influence function, we first define the semipara-

metric efficient score vector and give some results regarding the semiparametric efficiency

bound.

26The closure of a set S in a metric space is defined as the smallest closed set that contains S, or
equivalently, as the set of all elements in S together with all the limit points of S. The closure of S is
denoted by S̄.
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Definition 4.7 (Semiparametric efficient score). The semiparametric efficient score

for ψ at (ψ0, η0) is defined as

˙̀eff := ˙̀(1)
ψ0,η0
− Π( ˙̀(1)

ψ0,η0
|Λ), (31)

where ˙̀(1)
ψ0,η0

is the score vector for the finite-dimensional parameter ψ at the point (ψ0, η0),

i.e.,

˙̀(1)
ψ0,η0

(x) =
∂

∂ψ
log pψ,η0(x)

∣∣∣
ψ=ψ0

, for all x ∈ X.

Theorem 4.8. Suppose that Λ, the nuisance tangent set, is a linear subspace. Then, the

semiparametric efficiency bound, defined by (30), is equal to the inverse of the variance

matrix of the semiparametric efficient score; i.e.,

sup{
all parametric submodels Pψ,γ

} a>{E[ ˙̀eff
ψ,γ(X) ˙̀eff

ψ,γ(X)>]
}−1

a = a>{E[ ˙̀eff(X) ˙̀eff(X)>]}−1a,

for all a ∈ Rq.

Proof. For simplicity, we take ψ to be a scalar (i.e., q = 1). In this case we denote by V
the semiparametric efficiency bound, i.e.,

V := sup{
all parametric submodels Pψ,γ

} ‖ ˙̀eff
ψ,γ‖−2.

Since Λγ ⊂ Λ, from the definition of ˙̀eff
ψ,γ in (28) and ˙̀eff in (31), it follows that ‖ ˙̀eff(X)‖ ≤

‖ ˙̀eff
ψ,γ(X)‖ for all parametric submodels Pψ,γ. Hence,

‖ ˙̀eff(X)‖−2 ≥ sup{
all parametric submodels Pψ,γ

} ‖ ˙̀eff
ψ,γ(X)‖−2 = V .

To complete the proof of the theorem, we need to show that ‖ ˙̀eff(X)‖−2 is also less than or

equal to V . As Π( ˙̀(1)
ψ0,η0
|Λ) this means that there exists a sequence of parametric submodels

Pψ,γj with nuisance score vectors ˙̀(2)
j such that

‖Π( ˙̀(1)
ψ0,η0
|Λ)−Bj

˙̀(2)
j ‖ → 0, as j →∞,

36



for matrices Bj ∈ Rq×rj . Therefore,

V−1 ≤ ‖ ˙̀eff
ψ,γj
‖2 = ‖ ˙̀(1)

ψ,γj
− Π( ˙̀(1)

ψ,γ|Λγj)‖2 ≤ ‖ ˙̀(1)
ψ,γj
−Bj

˙̀(2)
j ‖2

= ‖ ˙̀(1)
ψ0,η0
− Π( ˙̀(1)

ψ0,η0
|Λ)‖2 + ‖Bj

˙̀(2)
j − Π( ˙̀(1)

ψ0,η0
|Λ)‖2

where the last equality follows from the Pythagorean theorem as ˙̀(1)
ψ0,η0

− Π( ˙̀(1)
ψ0,η0
|Λ) is

orthogonal to Λ and Bj
˙̀(2)
j − Π( ˙̀(1)

ψ0,η0
|Λ) is an element of Λ. Taking j →∞ implies that

‖ ˙̀(1)
ψ0,η0

(X)− Π( ˙̀(1)
ψ0,η0
|Λ)(X)‖2 = ‖ ˙̀eff(X)‖2 ≥ V−1,

which completes the proof.

Exercise: Prove this result for dimension q > 1 using the generalization of the Pythagorean

theorem.

Definition 4.9 (Efficient influence function). The efficient influence function is defined

as the influence function of a semiparametric RAL estimator that achieves the semipara-

metric efficiency bound (if it exists27).

Theorem 4.10. Suppose that there exists a semiparametric RAL estimator for ψ at

(ψ0, η0). Then any semiparametric RAL estimator for ψ at (ψ0, η0) must have an influ-

ence function ϕ(X) that satisfies

E[ϕ(X) ˙̀(1)
ψ0,η0

(X)>] = E[ϕ(X) ˙̀eff(X)>] = Iq×q, (32)

and

Π[ϕ|Λ] = 0, (33)

i.e., ϕ(X) is orthogonal to the nuisance tangent set.

Further, in this situation, the efficient influence function is now defined as the unique

element satisfying conditions (32) and (33) whose variance matrix equals the efficiency

bound and is equal to

ϕeff = {E[ ˙̀eff(X) ˙̀eff(X)>]}−1 ˙̀eff . (34)

Proof. We first prove condition (33). To show that ϕ(X) is orthogonal to Λ, we must

prove that 〈ϕ, h〉 = 0 for all h ∈ Λ. Given any h ∈ Λ, there exists a sequence Bj
˙̀(2)
j (X),

27There is no guarantee that an semiparametric RAL estimator can be derived.
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parametric submodels Λj indexed by j, such that

‖h−Bj
˙̀(2)
j ‖ → 0, as j →∞.

Hence,

〈ϕ, h〉 = 〈ϕ,Bj
˙̀(2)
j 〉+ 〈ϕ, h−Bj

˙̀(2)
j 〉 = 0 + 〈ϕ, h−Bj

˙̀(2)
j 〉,

as any influence function of a semiparametric RAL estimator for ψ must be an influence

function for an RAL estimator in a parametric submodel, and thus by (17), ϕ is orthogonal

to Λj. By the Cauchy-Schwartz inequality, we obtain

|〈ϕ, h〉| ≤ ‖ϕ‖‖h−Bj
˙̀(2)
j ‖.

Taking limits as j →∞ gives us the desired result.

To prove (32), we note that by (16) that ϕ(X) must satisfy E[ϕ(X) ˙̀(1)
ψ0,η0

(X)>] = Iq×q.

The second equality in (32) can also be shown. Further it can be shown that the left side

of (34) is an influence function whose variance matches the semiparametric efficiency bound

(Exercise: Prove these two statements).

4.3 Non-separated semiparametric model

Suppose now that the data X1, . . . Xn are i.i.d. pθ, where θ ∈ Θ, Θ being an infinite

dimensional space. The interest is on estimating ψ : θ 7→ Rq, where ψ(·) is a “smooth”28

q-dimensional function of θ.

Definition 4.11 (Semiparametric tangent set). The semiparametric tangent set is

defined as the mean-square closure of all parametric submodel tangent spaces.

The following result characterizes all semiparametric influence functions of ψ(θ) and the

efficient influence function.

Theorem 4.12. If a semiparametric RAL estimator for ψ(θ) exists, then the influence

function of this estimator must belong to the space of all influence functions, the linear

variety ϕ(X) + T ⊥, where ϕ(X) is the influence function of any semiparametric RAL

estimator for ψ(θ) and T is the semiparametric tangent space. Moreover, if a RAL estimator

for ψ(θ) exists that achieves the semiparametric efficiency bound (i.e., a semiparametric

28This notion will be made precise later.
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efficient estimator), then the influence function of this estimator must be the unique and

well-defined element

ϕeff := ϕ− Π(ϕ|T ⊥) = Π(ϕ|T ).

Proof. Exercise: Show this.

Remark 4.3. What is not clear is whether there exist semiparametric estimators that

will have influence functions corresponding to the elements of the Hilbert space satisfying

conditions (32) and (33) of Theorem 4.10 or Theorem 4.12 (although we might expect that

arguments similar to those in Section 3.4, used to construct estimators for finite-dimensional

parametric models, will extend to semiparametric models as well).

In many cases, deriving the space of influence functions, or even the space orthogonal to the

nuisance tangent space, for semiparametric models, will suggest how semiparametric esti-

mators may be constructed and even how to find locally or globally efficient semiparametric

estimators.

4.4 Tangent space for nonparametric models

Suppose we are interested in estimating some q-dimensional parameter ψ for a nonparamet-

ric model. That is, let X1, . . . , Xn be i.i.d. random variables (taking values in (X,A)) with

arbitrary density p(·) with respect to a dominating measure µ, where the only restriction

on p(·) is that

p(x) ≥ 0 for all x ∈ X, and

∫
p(x)dµ(x) = 1.

Theorem 4.13. The tangent space (i.e., the mean-square closure of all parametric sub-

model tangent spaces) is the entire Hilbert space H.

4.5 Semiparametric restricted moment model

A common statistical problem is to model the relationship of a response variable Y as a

function of a vector of covariates X. The following example is taken from Tsiatis (2006,

Section 4.5), where complete proofs of many of the results in this section are provided.

Suppose that we have i.i.d. data {(Yi, Xi)}ni=1 where

Yi = µ(Xi, β) + εi, E[εi|Xi] = 0, (35)
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or equivalently

E[Yi|Xi] = µ(Xi, β).

Here µ(X, β) is a known function of X ∈ X ⊂ Rq and the unknown q-dimensional parameter

β. The function µ(X, β) may be linear or nonlinear in β, and it is assumed that β is

finite-dimensional. For example, we might consider a linear model where µ(X, β) = β>X

or a nonlinear model, such as a log-linear model, where µ(X, β) = exp(β>X). No other

assumptions will be made on the class of probability distributions other than the constraint

given by the conditional expectation of Y given X stated above.

The density of a single observation, denoted by p(·), belongs to the semiparametric model

P = {pβ,η(·)}

defined with respect to the dominating measure λ× νX . As there is a one-to-one transfor-

mation of (Y,X) and (ε,X), we can express the density

pY,X(y, x) = pε,X(y − µ(x, β), x),

where pε,X is a density with respect to the dominating measure λ × νX . The density of

(ε,X) can be expressed as

pε,X(e, x) = η1(e, x) η2(x),

where η1(e, x) = pε|X(e|x) is any nonnegative function such that∫
η1(e, x)de = 1, for all x ∈ X,

∫
eη1(e, x)de = 0, for all x ∈ X (36)

and pX(x) = η2(x) is a nonnegative function of x such that
∫
η2(x)dνX(x) = 1. Suppose

that the true density generating the data is denoted by

p0(y, x) = η10(y − µ(x, β0), x) η20(x).

To develop the semiparametric theory and define the semiparametric nuisance tangent

space, we first consider parametric submodels. We will consider parametric submodels

pε|X(e|x, γ1) and pX(x, γ2),

where γ1 is an r1-dimensional vector and γ2 is an r2-dimensional vector. Thus γ = (γ1, γ2)
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is an r-dimensional vector, r = r1 + r2. This parametric submodel is given as

Pβ,γ =
{
pβ,γ1,γ2(y, x) = pε|X(e|x, γ1)pX(x, γ2), (y, x) ∈ R× X, for (β, γ1, γ2) ∈ Ωβ,γ ⊂ Rq+r

}
.

It can be easily seen that the score vector for the nuisance parameters, at the truth

(β0, γ10, γ20), equals

˙̀
γ1(y, x) =

∂ log pε|X(y − µ(x, β)|x, γ10)

∂γ1

∣∣∣
β=β0,γ=γ0

, and ˙̀
γ2(y, x) =

∂ log pX(x, γ20)

∂γ2

where γ = (γ1, γ2). Since we are taking derivatives with respect to γ1 and γ2 and leaving β

fixed for the time being at β0 we will use the simplifying notation that ε = Y − µ(X, β0).

A typical element in the parametric submodel nuisance tangent space is given by

Bq×r ˙̀
γ(ε,X) = B

(1)
q×r1

˙̀
γ1(ε,X) +B

(2)
q×r2

˙̀
γ2(X).

Therefore, the parametric submodel nuisance tangent space

Λγ = {B ˙̀
γ(ε,X) : B ∈ Rq×r}

can be written as the direct sum Λγ1 ⊕ Λγ2 , where

Λγ1 = {B ˙̀
γ1(ε,X) : B ∈ Rq×r1} and Λγ2 = {B ˙̀

γ2(X) : B ∈ Rq×r2}.

It is easy to show that the space Λγ1 is orthogonal to the space Λγ2 , as we demonstrate in

the following lemma.

Lemma 4.14. The space Λγ1 is orthogonal to the space Λγ2 .

Proof. Exercise: Show this.

Thus, the semiparametric nuisance tangent space

Λ = {mean-square closure of Λγ1 ⊕ Λγ2 , over all parametric submodels}.

As γ1, γ2 are variationally independent — i.e., proper densities in the parametric submodel

can be defined by considering any combination of γ1 and γ2 — this implies that Λ =

Λ1s ⊕ Λ2s, where

Λ1s = {mean-square closure of all Λγ1} and Λ2s = {mean-square closure of all Λγ2}.
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4.5.1 The Space Λ2s

Since here we are considering marginal distributions of X with no restrictions, finding the

space Λ2s is similar to finding the nuisance tangent space for the nonparametric model

given in Section 4.4.

Theorem 4.15. The space Λ2s consists of all q-dimensional mean-zero functions of X with

finite variance.

4.5.2 The Space Λ1s

Theorem 4.16. The space Λ2s is the space of all q-dimensional random functions a(ε,X)

that satisfy

E[a(ε,X)|X] = 0q×1, (37)

and

E[a(ε,X)ε] = 0q×1, (38)

Thus, Λ1s is the intersection of two linear subspaces, i.e.,

Λ1s = Λ1sa ∩ Λ1sb

where

Λ1sa :=
{
aq×1(ε,X) : E[a(ε,X)|X] = 0q×1

}
and

Λ1sb :=
{
aq×1(ε,X) : E[a(ε,X)ε|X] = 0q×1

}
One can also demonstrate easily that Λ1s ⊥ Λ2s; see Tsiatis (2006, Lemma 4.2).

Thus, the nuisance tangent space Λ = (Λ1sa ∩Λ1sb)⊕Λ2s. The following relationships hold

among the above defined subspaces.

Theorem 4.17. We have

Λ1sa = Λ⊥2s, Λ2s ⊂ Λ1sb

and thus,

Λ = (Λ1sa ∩ Λ1sb)⊕ Λ2s = Λ1sb.
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4.5.3 Influence Functions

The key to deriving the space of influence functions is first to identify elements of the

Hilbert space that are orthogonal to Λ. Equivalently, the space Λ⊥ is the linear space of

residuals

h(ε,X)− Π(h|Λ)(ε,X)

for all h(ε,X) ∈ H.

Theorem 4.18. The space orthogonal to the nuisance tangent space, Λ⊥, or equivalently

Λ⊥1sb, is

{
Aq×1(X)ε : A(X) is a vector of arbitrary q-dimensional function of X

}
.

Moreover, the projection of any arbitrary element h(ε,X) ∈ H onto Λ1sb satisfies satisfies

h(ε,X)− Π(h|Λ)(ε,X) = gq×1(X)ε,

where

g(X) := E[h(ε,X)ε|X]{E[ε2|X]}−1.

We have thus demonstrated that, for the semiparametric restricted moment model, any

element of the Hilbert space perpendicular to the nuisance tangent space is given by

A(X)ε or A(X){Y − µ(X, β0)}.

Influence functions of RAL estimators for β (i.e., ϕ(ε,X)) are normalized versions of ele-

ments perpendicular to the nuisance tangent space. That is, the space of influence functions,

as well as being orthogonal to the nuisance tangent space, must also satisfy condition 32,

namely,

E[ϕ(ε,X) ˙̀
β0(ε,X)>] = Iq,

where ˙̀
β0 is the score vector with respect to the parameter β at the true parameter value

(β0).

If we start with any A(X), and define ϕ(ε,X) = Cq×qA(X)ε, where Cq×q is a q×q constant

matrix (i.e., normalization factor), then the above condition implies

E[CA(X)ε ˙̀
β0(ε,X)>] = Iq ⇒ C = {E[A(X)ε ˙̀

β0(ε,X)>]}−1.
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Since a typical element orthogonal to the nuisance tangent space is given by A(X){Y −
µ(X, β0)} and since a typical influence function is given by CA(X){Y − µ(X, β0)}, where

C is defined above, this motivates us to consider a Z-estimator for β of the form

n∑
i=1

CA(Xi){Yi − µ(Xi, β)} = 0.

Because C is a multiplicative constant matrix, then, as long as C is invertible, this is

equivalent to solving the equation

n∑
i=1

A(Xi){Yi − µ(Xi, β)} = 0.

This logic suggests that estimators can often be motivated by identifying elements orthog-

onal to the nuisance tangent space, a theme that will be used frequently throughout the

course.

4.5.4 The Efficient Influence Function

To derive an efficient semiparametric estimator, we must find the efficient influence function.

For this, we need to derive the efficient score (i.e., the residual after projecting the score

vector with respect to β onto the nuisance tangent space Λ). we can show that

˙̀eff := ˙̀
β0 − Π( ˙̀

β0|Λ) = E[ ˙̀
β0(ε,X)ε]V (X)−1ε.

We can further show that (Exercise) the efficient score is given by

˙̀eff = D(X)>V (X)−1ε,

where

V (x) := E[ε2|X = x] and D(x) =
∂µ(x, β0)

∂β
.

Further, the optimal estimator is obtained by solving the estimating equation (Exercise)

n∑
i=1

D(Xi)
>V (Xi)

−1{Yi − µ(Xi, β)} = 0.

44



Thus, the semiparametric efficiency bound is given as

V = {E[ ˙̀eff(ε,X) ˙̀eff(ε,X)>]}−1 = {E[D(X)>V (X)−1D(X)]}−1.
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5 Semiparametric theory

Suppose that we observe a random sample X1, . . . , Xn from a distribution P that is known

to belong to a set P of probability measures on the sample space (X,A). The goal is to

estimate the value of ψ(P ) where ψ : P → Rq is a functional. In this section we develop a

notion of information for estimating ψ(P ). For simplicity we assume that all measures are

dominated by a common σ-finite measure µ.

To estimate the parameter ψ(P ) given the model P is certainly harder than to estimate

this parameter given that P belongs to a submodel P0 ⊂ P . For every smooth parametric

submodel P0 = {Pt : t ∈ R} ⊂ P , such that P0 ≡ P , we can calculate the Fisher

information for estimating ψ(P ). Then the information for estimating ψ(P ) in the whole

model is certainly not bigger than the infimum of the informations over all submodels. We

shall simply define the information for the whole model as this infimum. A submodel for

which the infimum is attained (if there is one such) is called least favorable or a “hardest”

submodel. In most situations it suffices to consider one-dimensional submodels P0.

5.1 Tangent sets

Definition 5.1 (Path). A path (Pt) at P within the model P is a mapping where t 7→ Pt ∈
P , for t ∈ [0,+∞), with P0 = P .

Definition 5.2 (Differentiable path). A differentiable path (Pt) at P is a path at P such

that there exists g : X→ R measurable such that, if pt and p denote the respective densities

of Pt and P with respect to µ, as t→ 0,∫ [√
pt −

√
p

t
− 1

2
g
√
p

]2

dµ→ 0. (39)

The function g is called the score function of the path (Pt) at P . One also says that the

model P is differentiable in quadratic mean (DQM) at P along the submodel t 7→ Pt with

score function g.

Remark 5.1. One can check that this definition does not depend on the choice of the dom-

inating measure. If there is no fixed dominating measure µ, one can extend the definition

by checking it along all sequences tn → 0 and for each particular sequence (tn) work with a

convex combination of the countably many measures Ptn + P as the dominating measure.
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In all cases, one sometimes adopts the following shorthand notation for (39):

∫ [√
dPt −

√
dP

t
− 1

2
g
√
dP

]2

→ 0. (40)

Lemma 5.3. Assume that the path t 7→ Pt in P satisfies (40) with score function g. Then

g belongs to L2(P ) and Pg = 0.

Each particular differentiable path through the model leads to a score function g. One can

then consider the set of all scores.

Definition 5.4 (Tangent set). A tangent set of the model P at P is a collection of score

functions of paths at P . The tangent set is denoted by ṖP .

Definition 5.5 (Tangent space). When the tangent set is, in fact, a linear space it is called

a tangent space.

Remark 5.2. A tangent set can be identified with a subset of L2(P ). Sometimes, but not

always, one looks for a ‘maximal tangent set’, which is defined as the set of all possible score

functions arising from differentiable paths. Note that the maximal tangent set is always a

cone.

Remark 5.3. Geometrically, we may visualize the model P , or rather the corresponding

set of “square roots of measures”
√
p, as a subset of the unit ball of L2(µ), and ṖP , or

rather the set of all objects 1
2
g
√
p, as its tangent set.

Remark 5.4. Usually, we construct the submodels t 7→ Pt such that, for every x,

g(x) =
∂

∂t
log pt(x)

∣∣∣
t=0
. (41)

5.1.1 LAN and DQM property

As in a parametric model, the existence of a differentiable path Pt (with score g) implies

that the likelihood ratio along the path is (locally) asymptotically quadratic (with curvature

Pg2) with a scaled normal distribution.

Theorem 5.6. Assume that the path t→ Pt in P satisfies (40), then, for

log
n∏
i=1

dPt/√n
dP

(Xi) =
t√
n

n∑
i=1

g(Xi)−
t2

2
Pg2 + op(1). (42)

47



In turn, the DQM property is valid if the model is smooth enough. Existence of one

continuous derivative plus a continuity property suffices. For the next lemma, one supposes

that paths are defined on an open neighborhood t ∈ (−ε, ε) of t = 0 (this requires to extend

the path to the left of zero, which is rarely a problem in practice).

Lemma 5.7. Let pt be, for any t, a probability density relative to a fixed measure µ.

Suppose that t 7→
√
pt(x) is continuously differentiable in an open neighborhood of t = 0

for all x ∈ X, and that t 7→
∫
ṗ2
t/ptdµ is finite and continuous in this neighborhood. Then

the map t 7→ √pt satisfies (40) with p = p0 and score g = ṗ0/p0.

5.2 Information lower bounds and efficient influence function

Next, to define the information for estimating ψ(P ), we need a notion of “smoothness” for

the functional ψ, which is introduced next.

Definition 5.8 (Differentiable functional). We say that ψ : P → Rp is differentiable at P

relative to a given tangent set ṖP if there exists a continuous linear map ψ̇P : L2(P )→ Rp

such that for every g ∈ ṖP and a submodel t 7→ Pt with score function g,

ψ(Pt)− ψ(P )

t
→ ψ̇Pg. (43)

By the Riesz representation theorem29, the map ψ̇P can always be written in the form of

an inner product with a fixed vector-valued, measurable function ψ̃P : X→ Rp, i.e.,

ψ̇Pg = 〈ψ̃P , g〉P =

∫
ψ̃Pg dP. (44)

Definition 5.9 (Efficient influence function). The unique30 function ψ̃P which satisfies (44)

and whose coordinate functions are contained in lin ṖP (the closure of the linear span of

the tangent set) is called the efficient influence function.

29Let (H, 〈·, ·〉) be a Hilbert space, and let H∗ denote its dual space, consisting of all continuous linear
functionals from H into the field R. If x is an element of H, then the function ϕx : H → R defined by
ϕx(y) = 〈y, x〉, is an element of H∗. The Riesz representation theorem states that every element of H∗ can
be written uniquely in this form.

30The function ψ̃P , defined in (44), is not uniquely defined by the functional ψ and the model P, because
only inner products of ψ̃P with elements of the tangent set are specified, and the tangent set does not
span all of L2(P ). However, it is always possible to find a candidate ψ̃P whose coordinate functions are
contained in lin ṖP ; it can be found as the projection of any other “influence function” onto the closed
linear span of the tangent set.
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Remark 5.5. In the preceding set-up the tangent sets ṖP are made to depend both on

the model P and the functional ψ. We do not always want to use the “maximal tangent

set”, which is the set of all score functions of differentiable submodels t 7→ Pt, because the

parameter ψ may not be differentiable relative to it (can we find one such example?). We

consider every subset of a tangent set a tangent set itself.

Remark 5.6 (Parametric model). Consider a parametric model P = {Pθ : θ ∈ Θ} with

parameter θ ranging over an open subset Θ of Rk given by densities pθ with respect to

some dominating measure µ. Suppose that there exists a vector-valued measurable map ˙̀
θ

such that (39) holds (i.e., the family is DQM at θ). Then a tangent set at Pθ is given by

the linear space {h> ˙̀
θ : h ∈ Rk} spanned by the score functions for the coordinates of the

parameter θ.

If the Fisher information matrix Iθ = Pθ[ ˙̀
θ

˙̀>
θ ] is invertible, then every map χ : Θ→ Rp that

is differentiable in the ordinary sense as a map between Euclidean spaces is differentiable

as a map ψ(Pθ) = χ(θ) on the model relative to the given tangent space. This follows

because the submodel t 7→ Pθ+th has score h> ˙̀
θ and

∂

∂t
χ(θ + th)

∣∣∣
t=0

= χ̇θh = Pθ[(χ̇θI
−1
θ

˙̀
θ)h
> ˙̀

θ],

where χ̇θ is the Jacobian matrix at θ of the map χ(·). The above display shows that the

function ψ̃Pθ = χ̇θI
−1
θ

˙̀
θ is the efficient influence function.

Remark 5.7 (Nonparametric models). Suppose that P consists of all probability laws on

the sample space. Then a tangent set at P consists of

all measurable functions g satisfying
∫
gdP = 0 and

∫
g2dP <∞.

Because a score function necessarily has mean zero, this is the maximal tangent set. It

suffices to exhibit suitable one-dimensional submodels. For a bounded function g, consider

for instance the exponential family dPt(x) = c(t) exp(tg(x))dP (x) or, alternatively, the

model dPt(x) = (1 + tg(x))dP (x). Both models have the property that (41) holds, for

every x. By a direct calculation we can show that both models also have score function

g at t = 0. For an unbounded function g, these submodels are not necessarily well-

defined. However, the models have the common structure dPt(x) = c(t)ξ(tg(x))dP (x) for

a nonnegative function ξ with ξ(0) = ξ′(0) = 1. The function ξ(x) = 2(1 + e−2x)−1 is

bounded and can be used with any g.
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5.2.1 Information

To motivate the definition of information, assume for simplicity that the parameter ψ(P ) is

one-dimensional. The Fisher information about t in a submodel t 7→ Pt with score function

g at t = 0 is Pg2. Thus, the “optimal asymptotic variance” for estimating ψ(P ) is the

Cramér-Rao bound (see (2)):

(∂ψ(Pt)/dt)
2

Pg2
=
〈ψ̃P , g〉2P
〈g, g〉P

.

The supremum of this expression over all submodels, equivalently over all elements of the

tangent set, is a lower bound for estimating ψ(P ) given the model P , when the “true

measure” is P . This supremum can be expressed in the norm of the efficient influence

function ψ̃P .

Lemma 5.10. Suppose that the functional ψ : P → R is differentiable at P relative to the

tangent set ṖP . Then

sup
g ∈ lin ṖP

〈ψ̃P , g〉2P
〈g, g〉P

= P [ψ̃2
P ].

Proof. The above result is a consequence of the Cauchy-Schwarz inequality (P [ψ̃Pg])2 ≤
(Pψ̃2

P )(Pg2) and the fact that, by definition, the efficient influence function ψ̃P is contained

in the closure of lin ṖP . To conclude take an approximating sequence of g’s in the former

linear span.

Thus, the squared norm P [ψ̃2
P ] of the efficient influence function plays the role of an “op-

timal asymptotic variance”, just as does the expression ψ̇θI
−1
θ ψ̇>θ in Section 2. Similar

considerations (take linear combinations) show that the “optimal asymptotic covariance”

for estimating a higher-dimensional parameter ψ : P → Rp is given by the covariance

matrix P [ψ̃P ψ̃
>
P ] of the efficient influence function.

Example 5.11 (Example of a specific functional). Suppose one wants to estimate the

linear functional ψ(P ) =
∫
a(u)dP (u) =: Pa, for some function a ∈ L2(P ). Consider the

paths Pt with density pt(x) = 1 + tg(x) with respect to P and bounded score function g.

The tangent set is not maximal but its closure in L2(P ) is the maximal tangent set

ṖNPP =

{
g : X→ R | g measurable,

∫
gdP = 0,

∫
g2dP <∞

}
,

50



so we can work with these simple paths. For any g,

ψ(Pt)− ψ(P )

t
=

∫
a(u)g(u)dP (u) = 〈a, g〉P .

We need to find ψ̃P ∈ ṖNPP such that 〈a, g〉P = 〈ψ̃P , g〉P , for any g ∈ ṖNPP . The previous

identity implies that ψ̃P is the orthogonal projection onto the ṖNPP . Clearly then ψ̃P =

a − Pa and is differentiable. The corresponding information bound is Pψ̃2
P . Notice that

this bound is ‘attained’ by the empirical distribution Pn[a] = n−1
∑n

i=1 a(Xi), in the sense

that, as n→∞, under P ,

√
n(Pna− Pa)

d→ N(0, P ψ̃2
P ).

Definition 5.12 (Regular estimator). For every g in a given tangent set ṖP , write (Pt,g)

for a submodel with score function g along which the function ψ is differentiable. As usual,

an estimator Tn is a measurable function Tn(X1, . . . , Xn) of the observations. An estimator

sequence Tn is called regular at P for estimating ψ(P ) (relative to ṖP ) if there exists a

probability measure L such that

√
n
(
Tn − ψ(P1/

√
n,g)
) P1/

√
n,g→d L, for every g ∈ ṖP .

Theorem 5.13 (Convolution). Let ψ : P → Rp be differentiable at P relative to the

tangent cone ṖP with efficient influence function ψ̃P . Then the asymptotic covariance

matrix of every regular sequence of estimators is bounded below by P [ψ̃P ψ̃
>
P ]. Furthermore,

if ṖP is a convex cone, then every limit distribution L of a regular sequence of estimators

can be written L = N(0, P [ψ̃P ψ̃
>
P ]) ? M for some probability distribution M .

Definition 5.14 (Asymptotically efficient estimator). We shall say that an estimator

sequence is asymptotically efficient at P , if it is regular at P with limit distribution

L = N(0, [ψ̃P ψ̃
>
P ]).

Lemma 5.15. Let the function ψ : P → Rp be differentiable at P relative to the tangent

cone ṖP with efficient influence function ψ̃P . A sequence of estimators Tn is regular at P

with limiting distribution N(0, P [ψ̃P ψ̃
>
P ]) if and only if it satisfies31

√
n(Tn − ψ(P )) =

1√
n

n∑
i=1

ψ̃P (Xi) + op(1).

31The efficient influence function ψ̃P plays the same role as the normalized score function I−1θ
˙̀
θ in

parametric models.
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5.3 Efficient score function

A function ψ(P ) of particular interest is the parameter θ in a semiparametric model {Pθ,η :

θ ∈ Θ, η ∈ H}, where Θ is an open subset of Rk (k ≥ 1) and H is an arbitrary set, typically

infinite dimensional. The information bound for the functional of interest ψ(Pθ,η) = θ can

be conveniently expressed through the “efficient score function”, which we define below.

Definition 5.16 (Nuisance tangent set). As submodels, we use paths of the form t 7→
Pθ+ta,ηt , for given paths t 7→ ηt in the parameter set H. The score functions for such

submodels (if they exist) will typically have the form of a sum of “partial derivatives” with

respect to θ and η. If ˙̀
θ,η is the ordinary score function for θ in the model where η is fixed,

then we expect
∂

∂t
log dPθ+t,ηt(x)

∣∣∣
t=0

= a> ˙̀
θ,η + g.

The function g has the interpretation of a score function for η when θ is fixed, and will run

through (possibly) an infinite-dimensional set if we are concerned with a “true” semipara-

metric model. We refer to this set as the tangent set for η (or the nuisance tangent set),

and denote it by ηṖPθ,η .

The parameter ψ(Pθ+ta,ηt) = θ + ta is certainly differentiable with respect to t in the

ordinary sense, but is, by definition, differentiable as a parameter at Pθ,η if and only if

there exists a function ψ̃θ,η (the efficient influence function) such that

a =
∂

∂t
ψ(Pθ+ta,ηt)

∣∣∣
t=0

= 〈ψ̃θ,η, a> ˙̀
θ,η + g〉Pθ,η , for all a ∈ Rk, g ∈ ηṖPθ,η .

Setting a = 0, we see that ψ̃θ,η must be orthogonal to the nuisance tangent set ηṖPθ,η .

Definition 5.17 (Efficient score function). Define Πθ,η as the orthogonal projection onto

the closure of the linear span of ηṖPθ,η . For a vector w ∈ L2(Pθ,η)
k, we define Πθ,ηw as the

vector of the projections of each coordinate.

The efficient score function for θ is

˜̀
θ,η := ˙̀

θ,η − Πθ,η
˙̀
θ,η.

The efficient information matrix for θ is Ĩθ,η := P [˜̀θ,η ˜̀>
θ,η].

Lemma 5.18. Suppose that for every a ∈ Rk and every g ∈ ηṖPθ,η there exists a path
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t 7→ ηt in H such that

∫ [√
dPθ+ta,ηt −

√
dPθ,η

t
− 1

2
(a> ˙̀

θ,η + g)
√
dP θ,η

]2

→ 0, as t→ 0. (45)

If Ĩθ,η is nonsingular, then the functional ψ(Pθ,η) = θ is differentiable at Pθ,η relative to the

tangent set ṖPθ,η = lin ˙̀
θ,η + ηṖPθ,η with efficient influence function ψ̃θ,η = Ĩ−1

θ,η
˜̀
θ,η.

Proof. The given set ṖPθ,η is a tangent set by assumption. The vector Ĩ−1
θ,η

˜̀
θ,η has coor-

dinates within lin ṖPθ,η . The function ψ is differentiable with respect to this tangent set

since

〈Ĩ−1
θ,η

˜̀
θ,η, a

> ˙̀
θ,η + g〉Pθ,η = Ĩ−1

θ,η 〈˜̀θ,η, ˙̀>
θ,η〉Pθ,ηa = a.

The last equality follows, because the inner product of a function and its orthogonal projec-

tion is equal to the square length of the projection. Thus, we may replace ˙̀
θ,η by ˜̀

θ,η.

Remark 5.8. Consequently, an estimator sequence Tn is asymptotically efficient for esti-

mating θ if
√
n(Tn − ψ(P )) =

1√
n

n∑
i=1

Ĩ−1
θ,η

˜̀
θ,η(Xi) + oPθ,η(1).

This is very similar to the situation for efficient estimators in parametric models. The only

difference is that the ordinary score function ˙̀
θ,η is replaced by the efficient score function

(and similarly for the informations). The intuitive explanation is that a part of the score

function for θ can also be accounted for by score functions for the nuisance parameter η.

When the nuisance parameter is unknown, a part of the information for θ is “lost”, and

this corresponds to a “loss” of a part of the score function.

5.3.1 Efficient information as minimal information along paths

Let us consider, assuming (45), a path Pθ+ta,ηt at Pθ,η with score function La,g := a> ˙̀
θ,η+g.

The information Ia,g along this path is Pθ,ηL2
a,g. Indeed, it is the quadratic term appearing

in the LAN expansion (42), which can be interpreted as the ‘curvature’ of the model along

this path. The following lemma is close in spirit to Lemma 5.10.

Lemma 5.19. Under (45) with scores a>`θ,η + g, suppose that the tangent set of P at Pθ,η

is linear. Then for any a ∈ Rk,

inf
g∈ηṖPθ,η

Ia,g = a>Pθ,η[˜̀θ,η ˜̀>
θ,η]a = a>Ĩθ,ηa. (46)
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Moreover, if the infimum in the last display is attained for a>Γ̃θ,η (for all a ∈ Rk), for

some vector Γ̃θ,η with coordinates in ηṖPθ,η , then it holds Γ̃θ,η = −Πθ,η
˙̀
θ,η (Pθ,η-almost

everywhere), i.e.,
˜̀
θ,η = ˙̀

θ,η + Γ̃θ,η.

Definition 5.20 (Least favorable direction). We call Γ̃θ,η the least favorable direction

and a path with score a> ˙̀
θ,η+a

>Γ̃θ,η = a> ˜̀
θ,η (when it exists) is then called least favorable

submodel along the vector a.

Proof. Let us express the information Ia,g with the help of ˜̀
θ,η. For any a ∈ Rk,

Pθ,ηL2
a,g = E

[
a>( ˙̀

θ,η − ˜̀
θ,η + ˜̀

θ,η) + g
]2

= a>E
[
˜̀
θ,η

˜̀>
θ,η

]
a+ 2E

[
{a>( ˙̀

θ,η − ˜̀
θ,η) + g}˜̀>θ,η

]
a+ E

[
a>( ˙̀

θ,η − ˜̀
θ,η) + g

]2

By definition, the efficient score is orthogonal to the nuisance score space so the cross-

product term is zero. Also, since the tangent set is linear by assumption, there exists a

sequence of scores a> ˙̀
θ,η + gn which converges in L2(Pθ,η) to a> ˜̀

θ,η. Along this sequence,

the last term in the above display tends to 0. Thus for any fixed a, (46) follows.

Moreover, the previous reasoning also shows that if the infimum in (46) can be written

a>Γ̃θ,η, for some vector Γ̃θ,η with coordinates in ηṖPθ,η then it holds (Pθ,η-almost everywhere)
˜̀
θ,η = ˙̀

θ,η + Γ̃θ,η.

Indeed, the third term in the display giving Ia,g is nonnegative and must be zero if g =

a>Γ̃θ,η by definition of the infimum.

5.3.2 Efficient scores: Examples

Example 5.21 (Symmetric location). Suppose that the model consists of all densities

x→ η(x−θ) with θ ∈ R and the “shape” η symmetric about 0 with finite Fisher information

for location Iθ :=
∫
η̇2/η. Thus, the observations are sampled from a density that is

symmetric about θ.

Suppose that ‘true’ η is also C1 and positive on R. Below we show that here ˙̀
θ,η(x) =

−(η′/η)(x − θ) and that a tangent set in the nuisance part η is the (closed) linear space

(Exercise: Show this)

ηṖPθ,η =

{
g(· − θ) : g(−x) = g(x),

∫
g2η <∞,

∫
gη = 0

}
.
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Any function in this space is symmetric about θ. On the other hand η′ is the derivative of

an even function so is odd. For any g in the tangent for nuisances,

〈η′/η(· − θ), g(· − θ)〉L2(P ) =

∫
η′(x− θ)g(x− θ)dx = 0.

Thus, scores for θ and for η are orthogonal. Therefore, ˜̀
θ,η = ˙̀

θ,η and Ĩθ,η = Iθ =
∫
η̇2/η

and there is no loss of information! This fact was discovered by Charles Stein in 1956

and came a bit as a surprise. Finding the center of symmetry of a completely unknown

symmetric density seems at first sight more complicated than if the shape is known. If one

is able to find a semiparametric estimator that achieves the bound, which we will do later in

this course, we will have shown that there is indeed asymptotically no loss of information.

Obtaining tangent sets:

Approach 1: We construct a tangent set by identifying scores with derivatives of the log-

likelihood. Let g a symmetric, C1 function with g, g′ bounded over R. Consider the paths

t 7→ (θ + ta, ηt) where ηt = η(1 + tg).

Note that this is a well-defined path through the model for t small enough. Indeed, the

functions ηt are symmetric, nonnegative for t small enough because g is bounded, and

integrate to 1. Then,

∂

∂t
log pθt,ηt(x)

∣∣∣
t=0

= g(x− θ) + a

[
−η
′(x− θ)
η(x− θ)

]
.

One can then check that Lemma 5.7 applies. With these paths we obtain the following

tangent set

ṖP = lin

[
−η
′(x− θ)
η(x− θ)

]
+

{
g(· − θ) : g(−x) = g(x), g, g′ bounded on R,

∫
gη = 0

}
.

Approach 2: We use exactly the same paths but check instead directly differentiability in

quadratic mean of the model using (40). In particular show that the tangent set can be

taken equal to (Exercise)

Ṗ(2)
P = lin

[
−η
′(x− θ)
η(x− θ)

]
+

{
g(· − θ) : g(−x) = g(x),

∫
gη = 0,

∫
g2η <∞

}
.

Notice that in both cases the scores for the nuisance part form a linear space with the same

55



closure in L2(P ), so considering one or the other tangent set does not matter for efficient

influence functions.

Example 5.22 (Restricted moment model regression).

Example 5.23 (Cox proportional hazards model). In the Cox model, without censoring, a

typical observation is a pair X = (T, Z) of a “survival time” T ≥ 0 and a covariate Z ∈ Rk.

It is best described in terms of the conditional hazard function of T given Z. Recall that

the hazard function λ corresponding to a probability density f is the function

λ(t) =
f(t)

1− F (t)
, for t ≥ 0,

where F is the distribution function corresponding to f . Simple algebra shows that, for

t ≥ 0,

F̄ (t) := 1− F (t) = e−Λ(t) and hence f(t) = λ(t)e−Λ(t)

(here Λ(t) =
∫ t

0
λ(u)du is the cumulative hazard function), so that the relationship between

f and Λ is one-to-one.

In the Cox model the distribution of Z is arbitrary and the conditional hazard function of

T given Z is postulated to be of the form

λT |Z(t|z) = eθ
>zλ(t), for t ≥ 0, z ∈ Rk,

for θ ∈ Rk and λ(·) being a completely unknown hazard function. The parameter θ has an

interesting interpretation in terms of a ratio of hazards. For instance, if the i’th coordinate

Zi of the covariate is a 0− 1 variable then eθi is the ratio of the hazards of two individuals

whose covariates are Zi = 1 and Zi = 0, respectively, and whose covariates are identical

otherwise. This is another reason for the popularity of the model: the model gives a better

fit to data than a parametric model (obtained for instance by assuming that the baseline

hazard function is of Weibull form), but its parameters are still easy to interpret. A third

reason for its popularity is that statistical procedures for estimating the parameters take a

simple form.

The density of an observation in the Cox model takes the form

(t, z) 7→ e−e
θ>zΛ(t)λ(t)eθ

>zpZ(z).

Differentiating the logarithm of this expression with respect to θ gives the score function
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for θ, with x = (t, z),
˙̀
θ,λ = z − zeθ>zΛ(t).

We can also insert appropriate parametric models s 7→ λs and differentiate with respect to

s. If b is the derivative of log λs at s = 0, then the corresponding score for the model for

the observation is Bθ,λb where

[Bθ,λb](t, z) = b(t)− eθ>z
∫ t

0

b(u)dΛ(u).
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